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Service composition for
collective adaptive systems

Stephen Gilmore1, Jane Hillston1, and Mirco Tribastone2

1 Laboratory for Foundations of Computer Science, University of Edinburgh,
Edinburgh, Scotland

2 Electronics and Computer Science, University of Southampton,
Southampton, England

Abstract. Collective adaptive systems are large-scale resource-sharing
systems which adapt to the demands of their users by redistributing
resources to balance load or provide alternative services where the cur-
rent provision is perceived to be insufficient. Smart transport systems
are a primary example where real-time location tracking systems record
the location availability of assets such as cycles for hire, or fleet vehicles
such as buses, trains and trams. We consider the problem of an informed
user optimising his journey using a composition of services offered by
different service providers.

1 Introduction

Flexible composition of services lies at the heart of collective adaptive systems
(CAS) where the collective interaction of users of the system shapes future sys-
tem behaviour because the system adapts to patterns of use. Adaptive systems
such as these are subject to a continuous process of tuning based on measure-
ment data collected by the system itself through integrated instrumentation.
Use of the services provided by the system achieves goals which are important
to the user (perhaps a goal as simple as travelling across the city to enjoy a social
occasion with friends and colleagues) but it also alters the system so that user
experience in the future will be affected by this use of this service, even if only
very subtly. Service provision in the future depends on decisions made by trans-
port system operators, based on perceived demand for services as determined by
collective journey statistics.

CAS depend on real-time measurement and monitoring of their services cou-
pled with the dissemination of service availability information, allowing users to
make informed choices. The provision of real-time information makes it possible
for users to interact intelligently with adaptive systems and to make informed
decisions which are supported by vital, current information.

Investigation of such systems by the construction of formal models of their
behaviour is a hugely productive activity. A formal model provides a compact
representation of an important aspect of a complex system, throwing light on
the most significant issues and giving us the intellectual tools to study them



closely. In this paper we consider a formal model of a collective adaptive system
which is composed of distributed services. In particular we study an integrated
smart transport system which blends public transport and self-powered transport
in an effort to solve the so-called last mile transport problem experienced in
modern cities. This problem arises because although public transport can be
used to transport a passenger close to their intended destination, a final stage
of the journey (the “last mile”) remains to be travelled in another way. The
consequence of not addressing the last mile transport problem is that users
become disenchanted with the service and resort to private transport, putting
more cars on the road with negative consequences for road congestion and the
environment.

Specifically, we consider the interaction between a real-time public-transport
tracking service, a location-identification service, a transport-planning service,
and a cycle-hire service, from the point-of-view of public transport passengers.
These passengers also subscribe to a cycle-hire scheme and wish to optimise
their journey to their destination. Subscribers in a cycle-hire scheme can borrow
cycles from a cycle station when they need one, use the cycle for their allotted
time, and then return the cycle to the cycle station nearest to their destination.

Authors’ note. Our interest in service composition, and the development of
stochastic modelling techniques suitable for studying the performance of com-
posed services, can be directly attributed to Martin. We had the great privilege
of working with him on the SENSORIA project and we look forward to future
opportunities to travel through Munich to enjoy a Maß with him, availing our-
selves of smart transport services (such as those described in our scenario below).

2 Scenario: Travel in Munich

As our running example, we consider how the situation of users of an integrated
smart transport system can be assisted by automated tools which allow them to
make an optimal choice between alternative routes to reach a desired destination.
If journey times were deterministic it would be possible to easily compute the
shortest path. However, in reality all transport systems exhibit a great deal of
uncertainty in journey times due their inherent stochasticity: a tram can break
down, a bicycle tyre can go flat, traffic congestion may affect a bus journey,
and so on. Our idea is to be able to compute an optimal path on-line using the
current state of the system.

To be more concrete and to provide a familiar scenario, we set our example
in Munich during Oktoberfest, and assume that the hard-working staff of the
Ludwig-Maximilians-Universität at the LMU building in Oettingenstrasse wish
to plan their journey to Theresienwiese for their well-earned Maß3 after a long
day in the office. Naturally they prefer to minimise their journey time. We assume
that a user, hereby denoted by M , has a choice between the following three
routes:

3 Maß is the Bavarian for a mug of beer, equivalent to 1 litre.
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1. Take the 54 bus from Hirschauer Strasse to Giselastrasse. We assume that a
bike-sharing station is available at Giselastrasse. Thus M has three options:
directly walk or cycle to Theresienwise, or change with the underground line
U6 to Odeonsplatz. At Odeonsplatz is another bike-sharing station; now M
has the choice to either walk or cycle to Theresienwise.

2. M may prefer to start the journey with a relaxing stroll through the English
Gardens, and take the occasion to drop off a document at the LMU building
in Leopoldstrasse. The journey can then continue by walking to nearby Uni-
versität U-Bahn station. There M will decide between continuing by bike
to Theresienwise, or taking the U3 to Odeonsplatz, where he will choose
between cycling or walking, as in Route 1.

3. Take the tram 18 to Lehel from Tivolistrasse, and change with the U4 to
Hauptbahnhof. We assume the existence of a bike-sharing station at Lehel
and Hauptbahnhof, thus M has always the choice to directly walk or cycle
to Theresienwise.

We will refer to these as routes #1, #2 and #3.

3 Modelling

We may now represent this problem as a formal model with a network structure
where the intermediate stops on the journey are represented as nodes in the
network. We number the stops on each route to remind us of the journey. Thus
route #1 has stops S10, S11 and S12. We can identify 12 nodes in the network.
These are not all distinct and thus correspond to our 11 destinations of interest.
The nodes and corresponding locations are given in Table 1.

Node Location

S0 Origin: The LMU building in Oettingenstrasse, at the end of the day

S10 Hirschauer Strasse

S11 Giselastrasse

S12 Odeonsplatz

S20 The English Gardens

S21 The LMU building in Leopoldstrasse

S22 Universität U-Bahn station

S23 Odeonsplatz

S30 Tivolistrasse

S31 Lehel

S32 Hauptbahnhof

D Destination: Theresienwise, Oktoberfest, and a well-earned Maß

Table 1. Nodes and locations in the network.
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S0start S20

S21 S22 S23

S10 S11 S12

S30 S31 S32

D

d1

d2

d3

b10 u11

c11

w11

c12
w12

w20
w21 u22

c22 c23
w23

t30 u31

c31
w31

c32
w32

Fig. 1. Possible routes to the destination

Having named the nodes of interest we can now express the journey as a
network such as the one illustrated in Figure 1 with our traveller M starting at
the origin of the journey (S0) with options to travel via routes #1, #2 or #3,
each of which has intermediate stops along the way.

Every route eventually passes relatively close to their desired destination
(D), but not so close that walking is the preferred option. Fortunately, cycle-hire
stations are located at intermediate stops S11 and S12 on route #1, intermediate
stops S22 and S23 on route #2, and intermediate stops S31 and S32 on route #3.
The real-time public-transport tracking service predicts delays d1, d2 and d3 for
the public-transport services needed.

We write bn and similarly for the average bus journey times from stop n.
We write tn for a tram journey from stop n and we use un to denote a journey
by underground train. We write cn for the average cycle journey time from
stop n to the destination, and wn for the average walking time. Journeys are
always completed either by cycling or by walking, ending at the destination of
Oktoberfest in our example (D).

In this scenario there are fourteen possible journeys, depending on the route
chosen, and where passenger M decides to alight in order to collect a cycle for
the last stage of the journey.

• d1→ • b10→ • c11→ • • d2→ • w20→ • w21→ • c22→ • • d3→ • t30→ • c31→ •

• d1→ • b10→ • w11→ • • d2→ • w20→ • w21→ • u22→ • c23→ • • d3→ • t30→ • w31→ •

• d1→ • b10→ • u11→ • c12→ • • d2→ • w20→ • w21→ • u22→ • w23→ • • d3→ • t30→ • u31→ • c32→ •

• d1→ • b10→ • u11→ • w12→ • • d3→ • t30→ • u31→ • w32→ •

Cycle stations can store only a limited number of cycles meaning that on a
given day, some of these potential journeys might not be viable. If there are no

4



cycles available for hire at the cycle stations near intermediate stops S11, S12

and S22 (say) then cycling from these intermediate stops on these routes is not
an option.

A ‘smart’ solution to this problem would integrate the real-time informa-
tion services offered by the different public-transport service providers involved,
informing us about arrival times of buses, trams, underground trains, and the
real-time cycle tracking service, keeping subscribers to the cycle-hire scheme
informed about the number of cycles available at each station.

Location-tracking services play a role in this scenario because it is not suf-
ficient to compute a best route at the start of the journey and not revisit this
decision en route. If a downstream cycle station becomes depleted while the
journey is underway then it is important to be aware of this. We would like
the systems which we use to be locally adaptive as well as collectively adaptive.
Knowing that downstream options are no longer viable may promote a possible
choice to being the only choice.

In order for it to be possible to compute results from our model, we must
determine model parameters by estimating concrete values for journey times
whether journeys are made by bus, tram, underground train, cycling or walking.
Fortunately, in our data-rich times this information is readily available from a
variety of web-based sources and we have been able to find all of the model
parameters which we need for our example.

A more comprehensive treatment of all aspects of this scenario should also
consider additional compilations which we do not address here. As with all
service-oriented computing, we should consider the possibility of lack-of-service
for all of the services which the system depends upon. The actor in our story, M ,
may be unable to connect to the real-time bus information service because no 3G
connection is available. Location-tracking services may be unavailable because
of an occluded GPS signal. The cycle-hire tracking service may be unable to
respond to our request for information because of excessive load on the server,
software failures, network failures, a period of maintenance activity, or a host
of other reasons. Failures are ubiquitous in distributed and service-oriented sys-
tems, so it is necessary to represent them in our models. We are aware that the
model which we present in this paper misses many other sources of complexity
in real-time-informed travel such as these.

We would also like our algorithm to prefer cycle stations where more cycles
are available. It might at first seem that the number of cycles which are available
should not play a role in the decision of which route to take: it is enough to know
whether some are available, or none. However, there are at least two complicating
factors. The first complication is that some of the cycles, although present, might
not be usable because of flat tyres, missing saddles, damaged wheels, or other
reasons. Cycle stands at cycle stations report whether a cycle is attached to
the stand, but have no way of knowing whether or not the cycle is usable. The
second complication is that CAS are resource-sharing systems. Other passengers,
and other pedestrians, are also borrowing cycles concurrently, so a small supply
of cycles might be depleted by the time that the bus, tram, or underground
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train has made its journey to the cycle station. For these, and other reasons,
the number of cycles available is significant, not just the presence or absence of
cycles.

Similarly, we should prefer those routes which offer more cycle stations,
because this maximises the number of options which remain open to us once
we have committed to a particular route, but we do not address this here.

4 Model

Our high-level representation of the system in Figure 1 is not yet in a form which
is suitable for analysis. The reason for this is that although we have detailed
durations and dependencies, we have not yet clarified the decision which the
user has to make when they have to choose between cycling, or walking, or
continuing to travel to the next cycle station (if there is a feasible cycle station
further along the route).

If at the end of the route (say at stop S12) then there is a two-way choice
between cycling and walking. We can represent this choice by saying that the pre-
vious part-journey had two possible outcomes, leading to committing to cycling
(Sc

12 is reached with probability pc12) or committing to walking (Sw
12, reached

with probability pw12 = (1−pc12)). Committing to cycling may incur a delay while
waiting for a cycle to be returned by another user.

If instead there is another cycle station further along the route, then the user
has a three-way choice, which we represent as being between states (for example
Sc
11, Su

11 and Sw
11 representing being at location S11, having committed to travel

the next part of the route by cycling, underground train, or walking respectively).
These are reached with probabilities pc11, pu11 and pw11, summing to 1. Figure 2
shows how these probabilities play a role in determining the journey to the
destination.

Our next challenge in modelling arises from the fact that we have populations
of users of the cycle-sharing scheme, and populations of cycles which can be
borrowed. Cycle stations may vary from having the capacity to store as few
as 10 cycles, or as many as 100. Without cycle stations having a finite capacity,
and without a population of users concurrently borrowing cycles, the aspect of
competition for resources which is a defining aspect of resource-sharing collective
systems would not be captured in the model.

Cycle stations consist of an array of cycle stands, each of which is a simple
process recording the presence or absence of a cycle at this stand, together with
the activities which cause a change of state. Figure 3 illustrates the idea.

This modelling decision incorporates the simple but powerful abstraction
that individuals in a population are identityless. One cycle in a cycle-sharing
scheme is treated as being just like any other: each only represents the capacity
to allow M to complete his journey more quickly than he would if he was walking.
Similarly, the individual identities of the users of the cycle-hire scheme is not
important in this modelling context. Each user just represents the potential to
remove a cycle which was previously available for hire and hence possibly force
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S0start Sb
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11

Su
11
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11

Sc
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12

D
d1

pc11 × b10

pu11 × b10

pw11 × b10

c11

w11

pc12 × u11

pw12 × u11

c12

w12

Fig. 2. Exploring route number #1 in greater detail

SE
31 SF

31

return31

borrow31

Fig. 3. A cycle station has several stands, each of which may be empty or full

the outcome that M must complete his journey by walking (if there are no cycles
left to borrow at the chosen cycle station).

Appendix A presents the complete PEPA model for this scenario.

5 Analysis

We encoded our model in the stochastic process algebra PEPA [1] and analysed
it with the PEPA Eclipse Plug-in [2], a modelling tool developed in the Euro-
pean project SENSORIA (Software Engineering for Service-Oriented Overlay
Computers) and subsequently used in teaching and research internationally.

PEPA is a compact formal modelling language which provides the appro-
priate abstract language constructs to represent the model in our example. It
has stochastically-timed activities which can be used to encode activities which
take time to complete, such as travelling between intermediate stops in a jour-
ney and a probabilistic choice operator to express the likelihood of taking dif-
ferent routes. Different patterns of behaviour are encoded in recursive process
definitions. Features such as these are found in many modelling formalisms [3]
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but a distinctive strength of the PEPA language is that populations of compo-
nents, encoded as arrays of process instances, are both convenient to express in
the language and efficiently supported by the dynamic analysis which reveals
the collective behaviour which emerges from the interactions of the populations
of components. The PEPA language has found application in many modelling
problems such as scalable and quantitative analysis of web-services [4–6], com-
paring communications protocols [7], response-time analysis of safety-critical
systems [8], software performance engineering with UML-based models [9, 10],
software patterns [11], software architecture [12], signalling pathways [13], model-
driven development [17], and robot movement [18].

Many of these models would have been impossible to construct without an
efficient method of analysing large-scale population-based models. A mapping
from the PEPA language to systems of ordinary differential equations is pre-
sented in [19], making these analyses possible. A formal semantic account of the
transformation is available [20], together with supporting theory enabling the
definition of reward structures on top of the underlying fluid model [21].

These efficient analysis methods are implemented in the PEPA Eclipse Plug-
in which provides an integrated modelling environment for PEPA. It incorporates
a custom editor for PEPA models, model visualisation and static analysis tools, a
model debugger, Markov chain analysis tools, stochastic simulation and discrete
analysis tools, a model compiler which delivers a continuous representation of the
system, efficient ODE-based solvers, and plotting functions for analysis results.

6 The Optimisation Problem

There are several possible optimisation problems which could be of interest to
the traveller in our story, many of which depend heavily on the choice of which
route to take at the outset of the journey because this makes a commitment to
certain cycle stations.

S0start

S1 S10 · · ·

S2 S20 · · ·

S3 S30 · · ·

p1

p2

p3

d1

d2

d3

Fig. 4. The optimisation problem: choose p1, p2 and p3 to minimise the time to travel
to the destination.
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Figure 4 depicts one aspect of the optimisation problem which we intend to
solve. We assume that all model parameters except p1, p2, and p3, are known.
In practice, we may assume that these other parameters are inferred from mea-
surements on the real system. Indeed, journey times were set using data col-
lected from the Google Maps and the MVV (Munich’s public transportation
provider) websites. The probabilities related to traveller commitment were arbi-
trarily fixed. Here we present results with varying configurations of the cycle
stations. Our problem is to find the optimal values of p1, p2, and p3 to minimise
the average journey time of a traveller wishing to start a journey at location S0.
We envisage this optimisation problem to be solved by a service provider which
computes the optimal route, given the current conditions of the system. The
solution can be interpreted as a randomised algorithm: for instance, p1 repre-
sents the probability with which the service provider suggests to go to Hirschauer
Strasse. This implicitly guarantees some balancing in the system — if all requests
returned the same route, this would introduce contention for shared cycles along
the route to which the traveller commits.

We solved the optimisation problem by means of genetic algorithms; in par-
ticular we used the implementation available in Matlab R2013b, with its default
settings. Figure 5 shows the results of the optimisation problem for three dif-
ferent load conditions on the cycle sharing system, characterised by the ratio
between the number of users and the number of cycles available. For simplicity,
we fixed the same capacity for all cycle stations.

Figure 5(a) plots the best and mean fitness values in the situation where
the system has 10 users per available cycle. The optimal configuration suggests
a preferential choice for route through Tivolistrasse, with probability 0.57. The
average journey time is ca. 1 hour in this case.

Figure 5(b) shows the results for a less loaded cycle sharing system, where
there are 5 users per available cycle. Although the optimal configuration is the
same as in Figure 5(a), we observe that the average journey time is substantially
reduced; this is explained by a lower contention for bikes at the cycle stations,
leading to a higher probability that a traveller will find a cycle as soon as they
arrive.

Finally, Figure 5(c) shows an ideal situation with no contention for bikes in
the network. This leads to a slight improvement in the average journey time
experienced by the user; more interestingly, the algorithm suggests a substantial
preference for the route through S10, unlike the previous cases.

7 Conclusions

Systems which are built as compositions of services are ubiquitous. The ability
to consume services provided by others and to compose services from different
sources plays a crucial role in the design and evolution of the systems of today.
Services make systems work.

In part the impetus towards these kinds of service composition architectures
has been fuelled by a change in attitude towards open systems and open data.
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Fig. 5. Optimisation results. Best and mean fitness values (i.e., average journey time,
measured in minutes) against generation for three different conditions of the bike shar-
ing system. (a) 10 users per bike; (b) 5 users per bike; (c) 1 user per bike. Each caption
shows the optimal configuration of p1, p2, and p3, respectively.

Transport operators in particular have embraced the challenges of providing
open access to their data about the state of their service, allowing others to build
apps which give users access to information about journey times, disruptions,
availability of cycles, and other key system descriptors. More recently apps and
applications have been developed which aggregate disparate sources of data to
give richer insights and open up new possibilities, as in the scenario considered
here where bus and cycle services are integrated.

Possessing the ability to efficiently analyse such service-oriented systems is
equally important. Advances in analysis tools and frameworks are needed to keep
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pace with the ever-increasing challenges which stem from the complex systems
which surround us in our technology-dense lives.
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A PEPA Model

This section contains the complete PEPA model for the scenario described in
Section 4. It is presented with the syntax accepted by the PEPA Eclipse Plug-in.

1 // Pro ba b i l i t i e s of choosing routes .
2 p 1 = 0 . 2 0 ;
3 p 2 = 0 . 2 3 ;
4 p 3 = 0 . 5 7 ;
5

6 // Pro ba b i l i t i e s of cyc l ing , walking or buss ing from S11
7 p 11 c = 0 . 4 5 ;
8 p 11 w = 0 . 1 5 ;
9 // Ensure p 11 c+p 11 w+p 11 b = 1

10 p 11 u = 1 − ( p 11 c + p 11 w ) ;
11

12 // Pro ba b i l i t i e s for S12
13 p 12 c = 0 . 3 8 5 ;
14 p 12 w = 1 − p 12 c ;
15

16 // Pro ba b i l i t i e s for S22
17 p 22 c = 0 . 3 5 ;
18 p 22 u = 1 − p 22 c ;
19

20 // Pro ba b i l i t i e s for S23
21 p 23 c = 0 .3853232 ;
22 p 23 w = 1 − p 23 c ;
23

24 // Pro ba b i l i t i e s for S31
25 p 31 c = 0 . 5 5 ;
26 p 31 w = 0 . 2 75 ;
27 p 31 b = 1 − ( p 31 c + p 31 w ) ;
28

29 // Pro ba b i l i t i e s for S32
30 p 32 c = 0 . 5 2 5 ;
31 p 32 w = 1 − p 32 c ;
32

33 // Rate parameters : uni t time i s minutes
34 t = 1 ; // Think time
35

36 // Delays wait ing for the buses
37 d 1 = 5 ;
38 d 2 = 8 ;
39 d 3 = 12 ;
40

41

42 b 10 = 17 ; // Bus time
43 t 30 = 10 ; // Tram time
44

45 // Cycle times
46 c 11 = 10 ;
47 c 12 = 7 ;
48 c 22 = 7 ;
49 c 23 = 9 ;
50 c 31 = 12 ;
51 c 32 = 15 ;
52

53 // Walking times are roughly twice the cyc l e times
54 w 11 = 20 ;
55 w 12 = 14 ;
56 w 20 = 6 ;
57 w 21 = 10 ;
58 w 23 = 18 ;
59 w 31 = 24 ;
60 w 32 = 30 ;
61

62 // Underground times
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63 u 11 = 11 ;
64 u 22 = 14 ;
65 u 32 = 17 ;
66

67 // Return and borrow from S11
68 r r 1 1 = 0 .21431 ;
69 r b 11 = 0 .8239457 ;
70

71 // Return and borrow from S12
72 r r 1 2 = 0 .21431 ;
73 r b 12 = 0 .8239457 ;
74

75 // Return and borrow from S22
76 r r 2 2 = 0 .21242321 ;
77 r b 22 = 0.2822223294527 ;
78

79 // Return and borrow from S23
80 r r 2 3 = 0 .212431 ;
81 r b 23 = 0.8222329457 ;
82

83 // Return and borrow from S31
84 r r 3 1 = 0 .73453 ;
85 r b 31 = 0 .21348 ;
86

87 // Return and borrow from S32
88 r r 3 2 = 0 .37845 ;
89 r b 32 = 0 .13534 ;
90

91 // Return and borrow from D
92 r r D = 0 .37845 ;
93 r b D = 0 .13534 ;
94

95 // Work
96 w = 1 ;
97

98 User 0 = ( choose , p 1/ t ) . User 1
99 + ( choose , p 2/ t ) . User 2

100 + ( choose , p 3/ t ) . User 3 ;
101

102 // User tak ing the #1 route
103 User 1 = ( delay 1 , d 1 ) . User 10 ;
104

105 User 10 = ( bus to 11 , p 11 c ∗b 10 ) . User c 11
106 + ( bus to 11 , p 11 w∗b 10 ) . User w 11
107 + ( bus to 11 , p 11 u∗b 10 ) . User u 11 ;
108 User c 11 = ( borrow 11 , r b 11 ) . ( cyc l e f rom 11 , c 11 ) . ( return D , r r D ) . User W ;
109 User w 11 = ( walk from 11 , w 11 ) . User W ;
110 User u 11 = ( underground to 12 , p 12 c ∗ u 11 ) . User c 12
111 + ( underground to 12 , p 12 w ∗ u 11 ) . User w 12 ;
112 User c 12 = ( borrow 12 , r b 12 ) . ( cyc l e f rom 12 , c 12 ) . ( return D , r r D ) . User W ;
113 User w 12 = ( walk from 12 , w 12 ) . User W ;
114

115 // User tak ing the #2 route
116 User 2 = ( delay 2 , d 2 ) . User 20 ;
117

118 User 20 = ( walk to 21 , w 20 ) . User w 21 ;
119 User w 21 = ( walk from 21 , p 22 c ∗ w 21 ) . User c 22
120 + ( walk from 21 , p 22 u ∗ w 21 ) . User u 22 ;
121 User c 22 = ( borrow 22 , r b 22 ) . ( cyc l e f rom 22 , c 22 ) . ( return D , r r D ) . User W ;
122 User u 22 = ( underground from 22 , p 23 c ∗ u 22 ) . User c 23
123 + ( underground from 22 , p 23 w ∗ u 22 ) . User w 23 ;
124 User c 23 = ( borrow 23 , r b 23 ) . ( cyc l e f rom 23 , c 23 ) . ( return D , r r D ) . User W ;
125 User w 23 = ( walk from 23 , w 23 ) . User W ;
126

127 // User tak ing the #3 route
128 User 3 = ( delay 3 , d 3 ) . User 30 ;
129

130 User 30 = ( tram to 31 , p 31 c ∗ t 30 ) . User c 31
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131 + ( tram to 31 , p 31 w ∗ t 30 ) . User w 31
132 + ( tram to 31 , p 31 b ∗ t 30 ) . User u 31 ;
133

134 User c 31 = ( borrow 31 , r b 31 ) . ( cyc l e f rom 31 , c 31 ) . ( return D , r r D ) . User W ;
135 User w 31 = ( walk from 31 , w 31 ) . User W ;
136 User u 31 = ( underground to 32 , p 32 c ∗ u 32 ) . User c 32
137 + ( underground to 32 , p 32 w ∗ u 32 ) . User w 32 ;
138 User c 32 = ( borrow 32 , r b 32 ) . ( cyc l e f rom 32 , c 32 ) . ( return D , r r D ) . User W ;
139 User w 32 = ( walk from 32 , w 32 ) . User W ;
140

141 // User at work
142 User W = (work , w) . User 0 ;
143

144 // Def in i t i ons of s t a t i on s
145 Station 11 Empty = ( return 11 , r r 1 1 ) . S t a t i on 11 Fu l l ;
146 S ta t i on 11 Fu l l = ( borrow 11 , r b 11 ) . Station 11 Empty ;
147

148 Station 12 Empty = ( return 12 , r r 1 2 ) . S t a t i on 12 Fu l l ;
149 S ta t i on 12 Fu l l = ( borrow 12 , r b 12 ) . Station 12 Empty ;
150

151 Station 22 Empty = ( return 22 , r r 2 2 ) . S t a t i on 22 Fu l l ;
152 S ta t i on 22 Fu l l = ( borrow 22 , r b 22 ) . Station 22 Empty ;
153

154 Station 23 Empty = ( return 23 , r r 2 3 ) . S t a t i on 23 Fu l l ;
155 S ta t i on 23 Fu l l = ( borrow 23 , r b 23 ) . Station 23 Empty ;
156

157 Station 31 Empty = ( return 31 , r r 3 1 ) . S t a t i on 31 Fu l l ;
158 S ta t i on 31 Fu l l = ( borrow 31 , r b 31 ) . Station 31 Empty ;
159

160 Station 32 Empty = ( return 32 , r r 3 2 ) . S t a t i on 32 Fu l l ;
161 S ta t i on 32 Fu l l = ( borrow 32 , r b 32 ) . Station 32 Empty ;
162

163 Station D Empty = ( return D , r r D ) . S ta t i on D Fu l l ;
164 Stat i on D Fu l l = ( borrow D , r b D ) . Station D Empty ;
165

166 // Def in i t i ons for other users
167 Use r 11 Id l e = ( borrow 11 , r b 11 ) . User 11 Busy ;
168 User 11 Busy = ( return 11 , r r 1 1 ) . U s e r 11 Id l e ;
169

170 Use r 12 Id l e = ( borrow 12 , r b 12 ) . User 12 Busy ;
171 User 12 Busy = ( return 12 , r r 1 2 ) . U s e r 12 Id l e ;
172

173 Use r 21 Id l e = ( borrow 21 , r b 21 ) . User 21 Busy ;
174 User 21 Busy = ( return 21 , r r 2 1 ) . U s e r 21 Id l e ;
175

176 Use r 22 Id l e = ( borrow 22 , r b 22 ) . User 22 Busy ;
177 User 22 Busy = ( return 22 , r r 2 2 ) . U s e r 22 Id l e ;
178

179 Use r 23 Id l e = ( borrow 23 , r b 23 ) . User 23 Busy ;
180 User 23 Busy = ( return 23 , r r 2 3 ) . U s e r 23 Id l e ;
181

182 Use r 31 Id l e = ( borrow 31 , r b 31 ) . User 31 Busy ;
183 User 31 Busy = ( return 31 , r r 3 1 ) . U s e r 31 Id l e ;
184

185 Use r 32 Id l e = ( borrow 32 , r b 32 ) . User 32 Busy ;
186 User 32 Busy = ( return 32 , r r 3 2 ) . U s e r 32 Id l e ;
187

188 User D Id le = ( borrow D , r b D ) . User D Busy ;
189 User D Busy = ( return D , r r D ) . User D Id le ;
190

191 ( User 0 [ 6 0 ] <> Use r 11 Id l e [ 1 ] <> Use r 12 Id l e [ 1 ] <>
192 Use r 21 Id l e [ 1 ] <> Use r 22 Id l e [ 1 ] <> Use r 23 Id l e [ 1 ] <>
193 Use r 31 Id l e [ 1 ] <> Use r 32 Id l e [ 1 ] <> User D Id le [ 1 ] ) <∗> (
194 S ta t i on 11 Fu l l [ 2 ] <> S ta t i on 12 Fu l l [ 2 ] <>
195 ( S t a t i on 22 Fu l l [ 2 ] <> S ta t i on 23 Fu l l [ 2 ] ) <>
196 ( S t a t i on 31 Fu l l [ 2 ] <> S ta t i on 32 Fu l l [ 2 ] <> Stat i on D Fu l l [ 2 ] ) )
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Lines 2–4 define the probabilities of choosing routes. These are the variables
in our optimisation problem; here they are set to the optimal values for the
scenarios illustrated in Figures 5(a) and 5(b). Using the same notation as in
the main text, lines 6–93 define all the other model parameters. Journey times
were inferred from information available on the web, as discussed; the remaining
parameters were arbitrarily fixed. Traveller behaviour is modelled in lines 98–
142. The dynamics of a cycle station is characterised by a two-state automaton
associated with each docking point, lines 145-164. We consider exogenous arrivals
and departures to each cycle station by modelling further users, lines 1767–189.
Finally, lines 191–296 defines the system equation, specifying the total population
of users and the number of docking points for each cycle station. From [21], we
compute the average journey time experienced by a user using Little’s law as

Average Journey Time =
60

User 0× w
,

where the numerator gives the total number of users of interest and User 0 gives
the total number of users in the steady state which are about to start their
journey.
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