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Abstract
Short-vector SIMD and DSP instructions are popular extensions to
common ISAs. These extensions deliver excellent performance and
compact code for some compute-intensive applications, but they
require specialised compiler support. To enable the programmer to
explicitly request the use of such an instruction, many C compilers
provide platform-specific intrinsic functions, whose implementa-
tion is handled specially by the compiler. The use of such intrin-
sics, however, inevitably results in non-portable code. In this paper
we develop a novel methodology for retargeting such non-portable
code, which maps intrinsics from one platform to another, taking
advantage of similar intrinsics on the target platform. We employ a
description language to specify the signature and semantics of in-
trinsics and perform graph-based pattern matching and high-level
code transformations to derive optimised implementations exploit-
ing the target’s intrinsics, wherever possible. We demonstrate the
effectiveness of our new methodology, implemented in the FREE
RIDER tool, by automatically retargeting benchmarks derived from
OPENCV samples and a complex embedded application optimised
to run on an ARM CORTEX-M4 to an INTEL EDISON module with
SSE4.2 instructions. We achieve a speedup of up to 3.73 over a
plain C baseline, and on average 96.0% of the speedup of manually
ported and optimised versions of the benchmarks.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors—Code generation, run-time environments, op-
timization
General Terms Languages, Performance
Keywords Retargeting, intrinsics, compiler-known functions, graph
pattern matching

1. Introduction
Instruction set extensions are computer architects’ favourite choice
of weapon to add domain-specific acceleration to processor cores
with their mature, proven software and hardware eco-systems, re-
spectively. For example, INTEL have devised various streaming
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SIMD extensions (first MMX, then SSE to SSE4) to speed up graph-
ics and digital signal processing. Similar capabilities are offered
by the ALTIVEC floating point and integer SIMD extensions de-
signed by APPLE, IBM and FREESCALE SEMICONDUCTOR. In
the embedded space, ARM offers DSP and multimedia support
through their SIMD extensions for multimedia and NEON exten-
sions. Whilst conceptually similar, these different instruction set
extensions differ significantly in detail, e.g. in their word and sub-
word size, supported data types, and use of processor registers.

Despite improvements in compiler technology, including auto-
matic vectorisation [14, 15], short-vector instructions offered by the
architecture are typically accessed through platform-specific com-
piler built-in functions. This is due to the superior performance of
hand-tuned vector code, which often outperforms auto-vectorised
code [12]. Built-in functions, also called intrinsics, are functions
available for use in C, but their implementation is handled spe-
cially in the compiler: the original intrinsic call is directly sub-
stituted by a machine instruction. For example, MICROSOFT and
INTEL’s C/C++ compilers as well as GCC and LLVM implement
intrinsics that map directly to the X86 SIMD instructions. The use
of intrinsics enables programmers to exploit the underlying instruc-
tion set extensions and to increase the efficiency of their programs,
but their use inevitably results in non-portable code. Obviously, this
seriously restricts the re-use and porting of software components
such as libraries, which have been heavily optimised for one par-
ticular instruction set extension and where no plain C sources are
available.

In this paper we develop a novel technique for cross-platform re-
targeting of code comprising platform-specific intrinsics. The key
idea is to accept the presence of intrinsics as an opportunity and a
source of information, rather than an obstacle. We develop a graph
based matching approach, which aims at substituting existing in-
trinsics with those available on the target machine and possibly ad-
ditional code providing compatibility. We provide descriptions of
intrinsics for a number of different instruction set extensions using
a custom description language, covering the syntactic and seman-
tic specification of intrinsics. These descriptions are translated to
graph representations by our FREE RIDER tool, which then trans-
lates any C program written using one set of intrinsics (e.g. those
for an ARM CORTEX-M4 core) to make use of intrinsics of any
other platform (e.g. INTEL SSE). Any pair of the available architec-
tures can be used, in either direction. This translation process might
also include additional source code transformations such as loop
unrolling to account for different SIMD word sizes of the source
and target platforms, respectively.



1 c h a r A[ 1 2 8 ] , B[ 1 2 8 ] , C [ 1 2 8 ] ;
2

3 / / . . . i n i t i a l i z e A and B . . .
4

5 / / Packed v e c t o r a c c e s s
6 # d e f i n e PV ( x ) ( ∗ ( ( u i n t 3 2 _ t ∗ ) (&x ) ) )
7

8 / / Compute loop wi th ARM UADD8 i n t r i n s i c
9 f o r ( i n t i = 0 ; i < 128 ; i += 4 ) {

10 PV (C[ i ] ) = __UADD8 ( PV (A[ i ] ) , PV (B[ i ] ) ) ;
11 }
12

(a) Platform-specific code using ARM UADD8 intrinsic.

1 c h a r A[ 1 2 8 ] , B[ 1 2 8 ] , C [ 1 2 8 ] ;
2

3 / / . . . i n i t i a l i z e A and B . . .
4

5 . . .
6 . . .
7

8 / / Compute loop
9 f o r ( i n t i = 0 ; i < 128 ; ++ i ) {

10 C[ i ] = A[ i ] + B[ i ] ;
11 }
12

(b) Portable, but unavailable plain-C implementation.

1 c h a r A[ 1 2 8 ] , B[ 1 2 8 ] , C [ 1 2 8 ] ;
2

3 / / . . . i n i t i a l i z e A and B . . .
4

5 / / Compute loop wi th I n t e l SSE i n t r i n s i c
6 f o r ( i n t i = 0 ; i < 128 ; i += 16 ) {
7 SV (C[ i ] , _mm_add_epi8 ( LV (A[ i ] ) , LV (B[ i ] ) ) ) ;
8 }
9

(c) Platform-specific code using INTEL _mm_add_epi8 intrinsic.

1

2 / / Load v e c t o r
3 # d e f i n e LV( x ) ( _mm_loadu_si128 ( ( __m128i∗ ) (&x ) ) )
4

5 / / S t o r e v e c t o r
6 # d e f i n e SV( x , y ) ( _mm_storeu_si128 ( ( __m128i∗ ) (&x ) , y ) )
7

8

9

(d) Auxiliary load/store macros for INTEL SSE vectors.

Figure 1: Motivating example illustrating the use of the intrinsics to speed up a vector addition loop. The code in Figure 1a is optimised
for an ARM CORTEX-M4. This code makes use of the ARM-specific UADD8 intrinsic and will not compile for e.g. an INTEL platform.
Equivalent plain-C code as shown in Figure 1b is often not available. Figure 1c shows the vector addition loop from Figure 1a translated to
an INTEL platform, now using the INTEL _mm_add_epi8 SSE intrinsic. This translation requires not only substitution of the ARM intrinsic,
but additional code transformations. These comprise the introduction of suitable short vector accesses (Figure 1d), further loop unrolling
to match the wider SIMD word size of the INTEL architecture and dead store elimination of redundant flag setting operations implicitly
contained in the original ARM UADD8 intrinsic, which are not used in this example, but need to be emulated where required.

1.1 Motivating Example
Consider the example in Figure 1, which illustrates the steps in-
volved in translating a vector addition loop using intrinsics for an
ARM CORTEX-M4 to an INTEL SSE-enabled processor.

In Figure 1a ARM-optimised code is shown, which exploits
the UADD8 intrinsic available on the CORTEX-M4 platform and
which provides convenient C-level access to a quad 8-bit unsigned
addition instruction implemented in the processor’s ISA. Using the
UADD8 intrinsic four pairs of one-byte values are added using a
single processor instruction (line 10). To account for this implicit
loop unrolling the surrounding loop is incremented in steps of
four (in line 9), whilst also enabling 32-bit data accesses (rather
than four individual 8-bit accesses). This is achieved by the access
macro PV, which performs the necessary 32-bit cast operation. The
measurable benefit of using the UADD8 intrinsic in Figure 1a is a
speedup of about four over a plain C implementation such as shown
in Figure 1a (on a FREESCALE KINETIS K70 implementation of
the ARM CORTEX-M4 core). However, higher performance for the
platform-specific code comes at a price – the code in Figure 1a is
not portable and does not work on platforms other than the ARM
CORTEX-M4.

Porting of the code in Figure 1a to another platform is hindered
by the fact that a plain C version such as shown in Figure 1b is
often not available. In this situation, the user could (a) manually
derive the plain C implementation and then try to vectorise this
code, either manually or using an auto-vectoriser, or (b) use our
FREE RIDER tool and methodology for automatic retargeting.

Now consider the automatically retargeted code, optimised for
an INTEL processor with SSE extensions, in Figure 1c. It exploits

the _mm_add_epi8 intrinsic, which provides access to an 8-
bit addition instruction that operates on two groups of sixteen
elements. Using _mm_add_epi8 intrinsic sixteen pairs of one-
byte values are added in a single processor instruction (line 7).
Accordingly, the loop increment has been adjusted to sixteen (line
6), and 128-bit data accesses are provided by the access macros LV
and SV, shown in Figure 1d. Without user intervention platform-
specific ARM code has been retargeted to an INTEL platform whilst
retaining the performance benefit of the original ARM intrinsic.
Compared to a plain C baseline (such as the one in Figure 1b) the
code in Figure 1c is about ten times faster1.

FREE RIDER does not require a plain C implementation such as
the one in Figure 1b, but directly retargets platform-specific code
where no plain C implementation exists. Translation of intrinsics
involves a number of processing steps briefly outlined in Figure 2.
We start with the code in Figure 1a, but we do not have access to
a plain C implementation such as the one shown in Figure 1b. As
a first step of the transformation process the UADD8 intrinsic is ex-
panded in the internal representation of FREE RIDER – it is essen-
tially expressed as a vector of four additions followed by a vector
of four compare-and-set operations. This is shown in Figure 2b and
follows closely the specification of the UADD8 intrinsic from Fig-
ure 2a. The next step is to analyse which output of the intrinsic is
actually used by the program. In the case of the motivating example
the result of the addition is later used (for outputting the result, fur-
ther computations, etc.), but the APSR register is never read. This

1 Memory access overheads prevent the speedup to reach its ideal value of
sixteen.



The __uadd8 intrinsic returns:

• the addition of the first bytes in each operand, in the first byte of the return value

• the addition of the second bytes in each operand, in the second byte of the return value

• the addition of the third bytes in each operand, in the third byte of the return value

• the addition of the fourth bytes in each operand, in the fourth byte of the return value.

Each bit in APSR.GE is set or cleared for each byte in the return value, depending on the
results of the operation. If res is the return value, then:

• if res[7:0] ≥ 0x100 then APSR.GE[0] = 1 else 0

• if res[15:8] ≥ 0x100 then APSR.GE[1] = 1 else 0

• if res[23:16] ≥ 0x100 then APSR.GE[2] = 1 else 0

• if res[31:24] ≥ 0x100 then APSR.GE[3] = 1 else 0.

(a) Specification of the ARM CORTEX-M4 __uadd8 intrinsic according to [1].

1 / / Compute loop , a b s t r a c t v e c t o r form
2 f o r ( i n t i = 0 ; i < 128 ; i +=4)
3 {
4 vector_4 [j = 0 .. 3]{
5 C[ i + j ] = A[ i + j ] + B[ i + j ] ;
6 APSR.GE[j] = (C[i + j] > 0x100) ? 1 : 0
7 }
8 }
9

10

11

12

13

14

15

(b) Code in abstract vector representation.

1 / / Reduced a b s t r a c t r e p r e s e n t a t i o n
2 f o r ( i n t i = 0 ; i < 128 ; i += 16 ) {
3 (C[ i ] = A[ i ] + B[ i ] ) x 16
4 }

(c) Unnecessary writes to APSR removed. Unroll factor increased.

1 / / Compute loop wi th I n t e l SSE i n t r i n s i c
2 f o r ( i n t i = 0 ; i < 128 ; i +=16) {
3 SV (C[ i ] , _mm_add_epi8 ( LV (A[ i ] ) , LV (B[ i ] ) ) ) ;
4 }

(d) Equivalent INTEL SSE code.

Figure 2: Motivating example illustrating the transformation from the use of the UADD8 intrinsic on the ARM CORTEX-M4 core (in Figure
2a) to the use of the INTEL _mm_add_epi8 SSE intrinsic (in Figure 2d). The transformation requires not only substitution of the ARM
intrinsic, but additional code transformations, which comprise suitable short vector accesses and further loop unrolling to match the wider
SIMD word size of the INTEL architecture. In addition, the overflow checking logic is removed, as the APSR register is not read later in the
program, making the writes to it unnecessary.

register exists in the ARM CORTEX-M4 core to set flags indicating
different program status - zero result, negative result, overflow (as
is the case of UADD8), and others. Since the register is not read,
writing to it is a waste of processing resources, so the compare-
and-set operations are removed altogether. Another operation per-
formed at this step is to find appropriate target SIMD intrinsic that
consists of the remaining core operation – addition. In the case of
INTEL SSE this is the _mm_add_epi8 intrinsic, which has inter-
nal representation (c = a + b) x 16 - it is a vector of sixteen
additions. Since the widths of the vector operations do not match,
the loop is unrolled to fit an _mm_add_epi8 operation. This step
is shown in Figure 2c. Finally, when the resulting abstract repre-
sentation matches exactly a target instruction it is replaced by that
instruction together with appropriate access macros. The resulting
code after retargeting, shown in Figure 2d, matches the INTEL SSE
implementation from Figure 1d.

We have implemented this methodology in the FREE RIDER
tool and demonstrate its effectiveness using a set of compute-
intensive OPENCV computer vision benchmarks [3]. Automati-
cally retargeting these benchmarks from an ARM NEON platform to
an INTEL EDISON module with short-vector SSE4.2 instructions,
we achieve on average 96.0% of the performance of manually re-
targeted and optimised ports. Furthermore, an evaluation against a
full-scale robotic application [11], which implements the computer
vision component of a high-end autopilot for unmanned aerial ve-
hicles (UAV) delivers a speedup of 3.73 over a plain C baseline,
when ported from an ARM CORTEX-M4 platform to INTEL EDI-
SON using our methodology.

1.2 Contributions
This paper makes the following contributions:

1. We develop a novel, automated methodology for retargeting
C code containing platform-specific intrinsics, whilst making
efficient use of those intrinsics offered by the target platform,

2. we combine in our approach high-level descriptions of intrin-
sics, graph based matching and source-level code transforma-
tions to account for differences in the SIMD word sizes between
machines, and

3. we evaluate our methodology using compute-intensive OPENCV
benchmarks as well as full applications and demonstrate per-
formance levels competitive with manual retargeting efforts.

1.3 Overview
The remainder of this paper is structured as follows. In Section 2
we briefly introduce the background on compiler intrinsics, target
platforms and applications. In Section 3 we present our methodol-
ogy for retargeting of platform-specific intrinsics involving a high-
level description of intrinsics, a graph-based matching algorithm
and source-level code transformations. The results of our evalua-
tion on benchmarks and full applications are presented in Section
4, before we establish the context of related work in Section 5. Fi-
nally, in Section 6 we summarise and conclude.

2. Background
2.1 Target Platforms
The specific target platforms used in our research are the ARM
CORTEX-M4 core and INTEL X86 processors with short-vector
SSE4.2 instructions (in particular, INTEL EDISON). However,
without modification our work applies to any X86 architecture
that supports SSE4.2) and ARM NEON enabled processors. By



providing further target descriptions other platforms such as POW-
ERPC/ALTIVEC could be supported, but this is beyond the scope
of this paper.

The CORTEX-M4 processor is specifically developed to ad-
dress digital signal control markets. It is designed so that it has
low power consumption while offering high-efficiency signal pro-
cessing functionality, provided instruction set extensions accessible
through ARM specific intrinsics.

ARM NEON is ARM’s SIMD extension that targets more com-
putationally demanding tasks, e.g. video processing, voice recog-
nition, or computer graphics rendering. Architectures that support
NEON have higher computational performance compared to the
CORTEX-M4 processor and are typically found as application pro-
cessors within mobile devices such as smartphones or tablets.

INTEL X86 on the other hand includes a huge family of pro-
cessors, from embedded low-power chips to high-end server CPU’s
offering a one-size-fits-all instruction set. SSE4.2 is an instruction
set extension that allows INTEL X86 processors to execute SIMD
instructions on vectors up to 128-bit wide. This allows such proces-
sors to be used efficiently for multimedia and graphics processing.

SIMD operations, both for ARM and INTEL, are accessible to the
C programmer by means of intrinsic functions. An intrinsic func-
tion is not explicitly defined by the programmer, but is provided
(as a built-in function) by the compiler, which replaces a intrinsic
function call with a hard-coded sequence of low-level instructions
[2]. Examples for intrinsic functions are the UADD8 intrinsic for
the ARM CORTEX-M4 processor and the _mm_add_epi8 intrin-
sic for the SSE instruction set extension, both of which are part of
the motivating example (Figure 1).

In general, the operands of CORTEX-M4 SIMD instructions are
32-bit wide fields. Depending on the instruction each operand is
treated as a single 32-bit number, two 16-bit numbers, or four 8-
bit numbers. The available operations that can be performed range
from simple operations like addition, to very specialised operations
like the SMLALDX instruction which performs dual 16-bit exchange
and multiply with addition of products and 64-bit accumulation. A
list of the groups of available operations are: addition (13 instruc-
tions), subtraction (13 instructions), sum of absolute differences
with or without accumulation (2 instructions), halfword multiply
with addition or subtraction, with or without exchange, and with or
without accumulation (12 instructions), parallel add and subtract
halfwords with exchange (12 instructions), sign-extend byte, with
or without addition (4 instructions), half-word saturation (2 instruc-
tions), status register based selection (1 instruction).

At the same time, the operands of INTEL SSE4.2 instructions
are 128-bit wide fields when they signify a vector, or any other
type from the C programming language when they signify vector
elements, bitmasks, or shift values. The 128-bit wide fields can be
treated as vectors of two, four, eight, or sixteen elements of 64, 32,
16, or 8 bit values, respectively, depending on the instruction. The
available operations are not as specialised as those of the CORTEX-
M4 SIMD processor, but rather resemble standard processor in-
structions that operate on vectors instead of single elements.

While there are also miscellaneous utility (e.g. cache control)
instructions for the INTEL SSE instruction set we primarily target
arithmetic instructions. The integer instructions can be grouped in
the following categories: addition (8 instructions), subtraction (8
instructions), sum of absolute differences (1 instruction), halfword
multiply with addition (1 instruction), multiplication (5 instruc-
tions), maximum, minimum and average (6 instructions), shifts and
bitwise operations(22 instructions), comparison (9 instructions).
The miscellaneous instructions that are of our interest are shuffle
instructions and pack/unpack instructions. They can be used to im-
plement more complicated SIMD operations that include exchang-
ing of vector elements.

A[i+0] B[i+0] A[i+1] B[i+1] A[i+2] B[i+2] A[i+3] B[i+3]

+ + + +

C[i+0] C[i+1] C[i+2] C[i+3]0x100 0x100 0x100 0x100

> > > >

.GE[0] .GE[1] .GE[2] .GE[3]

Figure 3: Graph representation of the __UADD8 intrinsic

Finally, the NEON extension is similar to SSE. Vectors can be
either 64-bit or 128-bit wide and can contain signed or unsigned 8-
bit, 16-bit, 32-bit, 64-bit integers, or single precision float numbers.
The operations that are supported include standard arithmetic and
logical operations, comparison operations, memory operations and
shuffling operations. The more specialised operations which we do
not take into consideration include table lookup and complicated
mathematical operations, like reciprocal square-root estimate.

2.2 Target Application
There are no readily available standard benchmarks, which make
explicit use of intrinsic functions due to the resulting undesirable
restriction to a single platform. Therefore, we use a compute-
intensive, open-source application extensively used in the aca-
demic, hobby and industrial communities. This application is PX4
[11] – a high-end autopilot for unmanned aerial vehicles (UAV) us-
ing computer vision algorithms – jointly developed by researchers
from the Computer Vision and Geometry, the Autonomous Systems
and the Automatic Control Labs at ETH Zurich (Swiss Federal In-
stitute of Technology). PX4 has been developed and optimised for
an ARM CORTEX M4F CPU and, in particular, the optical flow
module makes extensive use of SIMD intrinsics. Among the most
computational intensive functions in the computer vision compo-
nent are those for the calculation of the Hessian at a pixel location,
the average pixel gradient of all horizontal and vertical steps, the
SAD distances of subpixel shift of two 8 × 8 pixel patterns, the
SAD of two 8× 8 pixel windows, and the pixel flow between two
images. We have extracted these functions and use them in iso-
lation (to avoid system benchmarking involving the whole UAV)
for our empirical evaluation. A single function (absdiff ) is written
entirely using ARM assembly, for which we provide a portable C
implementation.

In addition, we use a number of benchmarks extracted from the
popular OPENCV computer vision library [3]. This provides with
reference implementations, manually ported and optimised by a
independent third party, supporting both ARM and INTEL through
platform-specific intrinsics. We use these benchmarks to evaluate
the performance and capabilities of our FREE RIDER retargeting
tool in comparison to a manual effort.

3. FREE RIDER Methodology
3.1 Overview
The FREE RIDER tool performs of four major transformation steps
as shown in the overview diagram in Figure 4: Header generation,
data-flow extraction, graph matching, and source-level code trans-
formation.

Initially descriptions of the source and target intrinsics are taken
as inputs and emulation C header files (in the style of [19]) are
generated. These header files declare and define portable C inline



intrinsic
descriptions

generate
C headers extract data flow

source code match optimise output code

Figure 4: Stages of execution of the FREE RIDER tool

functions for the intrinsics of the source platform. We show in
Section 4 that the use of these "emulated" intrinsics results in
portable code, but yields a low performance level of only 70%
of a plain C implementation of the corresponding functionality
on the target platform. This means that emulation of intrinsics
through inline C functions provides compatibility, but results in a
performance penalty.

In a second step the header files are used as input to the next
stage, in which we generate data flow graphs for each intrinsic (see
Figure 3 for example). These graphs, annotated with the types of
inputs and outputs, serve as intermediate representation. Nodes of
the graphs are also annotated with the operations performed, for
example vector addition or vector sum reduction. We will use these
data flow graphs for graph based pattern matching.

In the next step the C header files, the data flow graphs, and
the source code of the program under consideration are all fed to
the matching stage of FREE RIDER. It employs a greedy subgraph
isomorphism algorithm (similar to [10]) to match the data flow
graph of each intrinsic encountered in the source code with data
flow graphs of target intrinsics. The graphs of two target intrinsics
can connect into a single graph, by connecting the output nodes
of one of them to the input nodes of the other by an assignment
edge. In this way multiple target intrinsics can cover completely or
partially a source intrinsic. For source intrinsics, which can only
be partially covered by target intrinsics, scalar C code is generated
for the remaining, non-covered parts of the data flow graphs. The
output of this stage is C code of the target application with its
source intrinsics partly or fully replaced with those of the target
platform, wherever possible, and additional plain C code where a
direct match is not possible.

Finally, the resulting code after substituting source intrinsics
with target intrinsics is further optimised. Checks are performed
to remove dead computations and variables (e.g. introduced as part
of the flag setting operations in ARM intrinsics, see also Figure
5). Additionally, loop unrolling might be performed to adjust the
possibly different SIMD word sizes of the two platforms (also
shown in Figure 5).

3.2 Description of Intrinsics
Intrinsics are described by the user in a high-level, human readable
format. The description comprises the following items: name of
native platform, list of operand names and types, output name
and type, and the behaviour (a snippet of restricted C code). An
abbreviated example of such a description is provided in figure 6,
which shows the specification of the ARM UADD8 intrinsic.

Operand and result types can be standard C types, or vector
types which should also be described in a format comprising the
name of the native platform, total size in bits, and the type of a
single element (atom type). While this allows for nested types of
vectors of vectors, this feature is not used as there are no instruc-
tions that operate on such complex types. Thus, the atom type is a
standard C type.

Behaviours of intrinsics, i.e. semantic actions, are expressed in
a restricted subset of the C language. During generation of header
files behaviours are used as the function body of the generated
inline function for the intrinsic.

1 d e f i n e i n t r i n s i c UADD8
2 {
3 p l a t f o r m ARM_CORTEX_M4
4 o p e r a n d s v a l 0 : uint8x4_t@32 , \
5 v a l 1 : u in t8x4_t@32
6 r e s u l t r e s : u in t8x4_t@32
7 b e h a v i o u r {
8 u i n t 8 x 4 _ t r e s ;
9

10 / / Load d a t a and c a s t t o p r e p a r e f o r
11 / / main o p e r a t i o n
12 u i n t 1 6 _ t a0 =
13 ( u i n t 1 6 _ t ) UINT8X4_T_READ ( va l0 , 0 ) ;
14 u i n t 1 6 _ t a1 =
15 ( u i n t 1 6 _ t ) UINT8X4_T_READ ( va l0 , 1 ) ;
16 u i n t 1 6 _ t a2 =
17 ( u i n t 1 6 _ t ) UINT8X4_T_READ ( va l0 , 2 ) ;
18 u i n t 1 6 _ t a3 =
19 ( u i n t 1 6 _ t ) UINT8X4_T_READ ( va l0 , 3 ) ;
20

21 u i n t 1 6 _ t b0 =
22 ( u i n t 1 6 _ t ) UINT8X4_T_READ ( va l1 , 0 ) ;
23 u i n t 1 6 _ t b1 =
24 ( u i n t 1 6 _ t ) UINT8X4_T_READ ( va l1 , 1 ) ;
25 u i n t 1 6 _ t b2 =
26 ( u i n t 1 6 _ t ) UINT8X4_T_READ ( va l1 , 2 ) ;
27 u i n t 1 6 _ t b3 =
28 ( u i n t 1 6 _ t ) UINT8X4_T_READ ( va l1 , 3 ) ;
29

30 / / Pe r fo rm a d d i t i o n s
31 / / Need 16− b i t i n t e r m e d i a t e r e s u l t s
32 / / t o d e t e r m i n e o v e r f l o w f l a g s
33 u i n t 1 6 _ t c0 = a0 + b0 ;
34 u i n t 1 6 _ t c1 = a1 + b1 ;
35 u i n t 1 6 _ t c2 = a2 + b2 ;
36 u i n t 1 6 _ t c3 = a3 + b3 ;
37

38 / / Ass ign r e s u l t s , c a s t i n g t o 8− b i t
39 UINT8X4_T_WRITE ( r e s , 0 , ( u i n t 8 _ t ) c0 ) ;
40 UINT8X4_T_WRITE ( r e s , 1 , ( u i n t 8 _ t ) c1 ) ;
41 UINT8X4_T_WRITE ( r e s , 2 , ( u i n t 8 _ t ) c2 ) ;
42 UINT8X4_T_WRITE ( r e s , 3 , ( u i n t 8 _ t ) c3 ) ;
43

44 / / F l ag s e t t i n g , depend ing on
45 / / 16− b i t i n t e r m e d i a t e r e s u l t s
46 i f ( c0 >= 0 x100 ) APSR_GE_SET ( 0 ) ;
47 e l s e APSR_GE_RESET ( 0 ) ;
48 i f ( c1 >= 0 x100 ) APSR_GE_SET ( 1 ) ;
49 e l s e APSR_GE_RESET ( 1 ) ;
50 i f ( c2 >= 0 x100 ) APSR_GE_SET ( 2 ) ;
51 e l s e APSR_GE_RESET ( 2 ) ;
52 i f ( c3 >= 0 x100 ) APSR_GE_SET ( 3 ) ;
53 e l s e APSR_GE_RESET ( 3 ) ;
54

55 / / Re tu r n r e s u l t
56 r e t u r n r e s ;
57 }
58 }

Figure 6: Example showing the high-level description of the ARM
UADD8 intrinsic.

Finally, platform-specific special registers can be described if
they are used as part of the side effects of an intrinsic function
execution. An example of such register is the ARM CORTEX-M4
APSR (Application Program Status Register), which is used e.g. for
indicating arithmetic overflow.



_mm_add_epi8

Figure 5: Matching of four __UADD8 intrinsics (in red) and one _mm_add_epi8 intrinsic (in green) resulting from subgraph isomorphism
detection, loop unrolling and dead variable/code elimination. Redundant flag setting computations have no counterpart in SEE and either
require additional scalar C code or can be eliminated if there are no further uses of the flags (see also Figure 3).

3.3 Generation of C Header Files
After the intrinsic descriptions are provided they are used to gener-
ate one C header file per platform. Definitions of the custom types
are output first together with macro functions to read and write sep-
arate elements of a vector. Then, special registers are implemented
as bit field structures and access macros for them are generated.

After this supporting code has been created the implementation
of the intrinsic functions as inline C functions is generated. Sig-
natures are generated using the type information for the operands
and the result, and the body of the functions are copied from the
behaviour descriptions.

Using the generated header files, a data flow graph is derived for
each intrinsic using standard data flow analysis techniques. These
data flow graphs, together with the input/output type information
of each intrinsic are used in the matching stage as descriptions of
the intrinsics.

3.4 Graph Matching and Source-level Transformation
The process of matching intrinsics is outlined in Figure 7. Given
the data flow graph of a source intrinsic, an intrinsic from the target
platform is searched for using the greedy (sub)graph isomorphism
algorithm described in [5]. The overhead that is added to the com-
pilation time by using it is unmeasurably small for all our test cases.
The authors of the algorithm evaluate that it can match graphs up to
2000 nodes in under a tenth of a second. Since the graphs that we
use to represent the intrinsics are quite small in comparison (under
20 nodes for the most complicated intrinsics) we are not concerned
about a potential added overhead.

When a structural and operational match is found, the type in-
formation of the found operation is compared with the type infor-
mation at the source location of the match. If the vector widths
of the operands and the result match, the matching part of the
graph is directly replaced with the found intrinsic and the process
is repeated until no further unmatched parts of the source dataflow
graph can be found or there are no more target operations that can
cover the remaining graph.

There are two reasons for possible mismatches of vector widths:
(a) The target intrinsic is too narrow (i.e. it contains fewer operands
than the corresponding source intrinsic), or (b) it is too wide (i.e. it
contains more operands than the source intrinsic). In the first case,
the target intrinsic can be invoked as many times as it takes to
match the width of the source vector (e.g. using four 4-element
additions to implement one 16-element addition). In the second
case, loop unrolling is required in order to enable a match (e.g.
unroll a loop containing a 4-element addition in order to use a 16-
element addition to implement four 4-element additions from four
iterations).

In case loop unrolling is required it is performed alongside
further data alignment. The latter might be necessary if arrays are
not accessed in order, but some elements are skipped over. If either
the unrolling or the data alignment steps fails, the matching fails
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Figure 7: High-level algorithm for matching source and target in-
trinsics including loop unrolling for adjusting different SIMD word
sizes and aligmnents.

and the default replacement with plain C code is performed to
ensure correctness of the result. However, if they succeed the whole
process is repeated again, until no further matches can be found.

Substitution of intrinsics as well as optimisation (loop unrolling,
alignment, dead code/variable elimination) are implemented as
source-level transformations. This means that C code enhanced
with target intrinsics is generated, which can be compiled with the
standard compiler for the target platform.

3.5 Limitations
As described in Section 2, intrinsics available for one platform can-
not always be expressed by intrinsics available on another platform,
or even in standard C code. Examples of such intrinsics are cache-
ability and synchronisation operations. We limit our approach to



Benchmark Summary
calib Calibrates a camera given a sequence of images.
bgfg Split of background and foreground of video.
edge Canny edge detection on an image.
align Automatic alignment of an image.
polar Polar transformation on a video.
segm Automatic segmentation of objects in a video.
stitch Stitching multiple images into a mosaic.
vstab Automatic stabilisation of a video.

Table 1: OPENCV applications used as benchmarks.

standard data processing operations and do not consider complex
intrinsics whose behaviours cannot be expressed in C.

4. Empirical Evaluation
4.1 Evaluation Methodology
For our evaluation we have applied the FREE RIDER methodol-
ogy to automatically retarget ARM-specific benchmarks and appli-
cations to an INTEL SSE enabled platform. The system used for per-
formance evaluation is an INTEL EDISON module running at 500
MHz. The available physical memory is 1GB and the operating sys-
tem is YOCTO LINUX, kernel version 3.10.17. All the benchmarks
run on a single processor core.

Performance is measured by using the UNIX program time
to retrieve the total execution time of each benchmark. This is
repeated up to 100 times and the reported times are recorded in
a log. This log is then analysed to verify that the values roughly fit
in a normal distribution, supporting the model that the difference
in the measurements is just gaussian white noise. The average of
all runtimes per benchmark is considered to be the representative
runtime for that benchmark. Error bounds are not included, as they
are too small to plot (less than 0.5 % for all benchmarks).

The OPENCV benchmarks are selected from the default sam-
ple programs that are provided with the OPENCV library, ver-
sion 3.0.0-beta. We have prepared them by removing the user
interaction and substituting it with command line arguments and
stdout messages. Our eight benchmark programs each contain a
significant part (> 10% of CPU time) executing vectorisable code.
This was computed by compiling OPENCV with and without the
included manual vector optimisations and comparing the runtimes
of each benchmark for the two cases. Each of the benchmarks
makes heavy use of functions provided by the OPENCV library.
Many of these OPENCV functions have been manually ported and
optimised for different target architectures, including ARM and IN-
TEL. For our evaluation we take the ARM ports of these functions,
automatically retarget them to INTEL and then evaluate the perfor-
mance of these automatically retargeted codes in comparison to the
manual INTEL port provided with OPENCV.

Table 1 provides descriptions of the benchmarks. All of these
benchmarks are real-world examples of programs from the com-
puter vision domain.

The SSE intrinsics that we implemented include 14 arithmetic
operations, 15 logical and comparison operations, 16 memory and
initialisation operations, 4 conversion operations, and 8 shuffling
operations. These correspond roughly to the NEON intrinsics that
we implemented which include 21 arithmetic operations, 13 logi-
cal and comparison operations, 19 memory and initialisation oper-
ations, 12 conversion operations, and 8 shuffling operations. The
greatest discrepancy is in the amount of conversion operations.
There are more NEON conversion operations because NEON allows
for two vector widths (64- and 128-bit), and can convert between
them, adding 8 operations.
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Figure 9: Relative performance of the ported PX4 application on
the INTEL platform relative to a plain C baseline. Compiler vec-
torisation is not effective as it fails to detect and exploit vectori-
sation opportunities. Emulation of ARM intrinsics through inline
functions, implemented in plain C, eases portability, but degrades
performance with and without compiler vectorisation efforts. The
automatically generated FREE RIDER port is capable of exploiting
SIMD parallelism on the INTEL platform and delivers an almost
four-fold speedup over the plain C baseline.

The arithmetic operations comprise different versions of addi-
tions, subtractions, and multiplications, in addition to a single oper-
ation for division, maximum, minimum, and square root. The logi-
cal operations comprise different versions of logical ands, ors, xors,
and shifts, whereas the comparison operations are comparisons for
equality and strict inequalities.

The implemented memory operations comprise different loads
and stores, whereas the initialisation operations are generating vec-
tors, all depending on the data type of the given argument. The
conversion operations convert the elements of the vector between
different datatypes. Finally, the shuffling operations comprise in-
structions that reorder the elements of a vector in different ways.

On the target x86 system we use the CLANG/LLVM compiler
to produce executable binaries. For comparison, we also have con-
ducted an experiment where plain C sources are presented to the
compiler for auto-vectorisation of the PX4 application.

4.2 Benchmark Performance Results
Figure 8 shows the results from running the automatically ported
OPENCV ARM benchmarks on the INTEL evaluation system.
While "native" SSE code delivers a speedup of 1.26 over a plain C
baseline, the FREE RIDER ports approach this performance deliv-
ering a speedup of 1.21. On average, FREE RIDER produced code
that delivers a performance of about 96% of manually ported and
optimised INTEL SSE implementation. For every single benchmark
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Figure 8: OPENCV applications have been ported automatically from ARM NEON to INTEL SSE. Each bar reports the speedup over a
plain C baseline. In each case, the automatically retargeted version produced by FREE RIDER outperforms the plain C baseline. In fact,
the performance of the auto-generated ports approaches that of the manually ported OPENCV applications, tuned extensively by OPENCV
community developers. On average, we achieve 96% of the speedup of a manual port, however, without the cost involved in manual code
rewriting.

the FREE RIDER port outperforms its plain C baseline, despite at-
tempts of the compiler to auto-vectorise this plain C code. Even
for the worst performing benchmark (polar) the automatically
retargeted implementation outperforms the plain C baseline and
delivers a speedup just about 6% lower than that of the manual
port.

Closer inspection of the generated code revealed that the re-
maining performance differences between the manual and the auto-
generated ports are mainly due to additional code restructuring per-
formed by the expert programmers and optimisations to the scalar
code surrounding the intrinsics.

4.3 Application Performance Results
Next we focus on porting a larger application – the PX4 computer
vision system – from ARM CORTEX-M4 to INTEL SSE. Figure
9 shows a set of results from running the target application in
different configurations on the INTEL evaluation system.

The first configuration is a plain C baseline derived from the
application’s original sources. All further results relative to this
baseline configuration. As shown in Figure 9 the compiler fails to
automatically vectorise this application, hence performance levels
with and without compiler vectorisation are the same.

If ARM intrinsics are emulated by inline C functions, following
an approach outlined in [19], performance suffers resulting in a
drop of execution speed of about 18%. Again, the LLVM compiler’s
auto-vectoriser fails to exploit any vectorisation opportunities.

In contrast, the port produced by FREE RIDER substantially out-
performs the baseline implementation. The reason for this is that
even though FREE RIDER fails to exploit some optimisation oppor-
tunities due to irregularity of data accesses, it manages to vectorise
the code in the most critical loop of the program and achieve a 3.73
performance speedup. It clearly demonstrates that FREE RIDER is

capable of exploiting the source platform’s intrinsics and mapping
them onto corresponding intrinsics of the target platform. For the
INTEL target platform used in this study this is close to the ideal
four-fold speedup attainable using four-way SIMD processing.

4.4 Coverage and Frequency of Intrinsics
Tables 2 and 3 list those intrinsics that were encountered in trans-
lation process of the benchmarks (ARM NEON to INTEL SSE) and
the larger application (ARM CORTEX-M4 to INTEL SSE). In ad-
dition, for each intrinsic we list its frequency of occurrence in the
benchmark sources. The first part of each table lists the intrinsics
involved in the translation of the target application, while the sec-
ond part lists the intrinsics involved in the translation of the bench-
marks.

Some of the lines in the table represent multiple intrinsics,
which is indicated by the names ending in an asterisk. An example
is the _mm_add* line from the SSE table, which represents four in-
trinsics: _mm_add_epi16, _mm_add_epi32, _mm_add_ps,
and _mm_adds_epi16. Also, some of the lines represent a group
of instructions separated by a forward slash, for example
vceq*/vcgt*/vcge*/vlt*/vle*.

We note a couple of interesting observations in Tables 2 and 3.
Firstly, there are a lot more occurrences of INTEL intrinsics when
compared to ARM intrinsics. This is because we were targeting IN-
TEL SSE as a destination platform during our experiments and a
single source intrinsic might be mapped to one or more destina-
tion intrinsics, so we end up with more target intrinsics than source
intrinsics after the translation. This is more pronounced in the trans-
lation between ARM CORTEX-M4 and INTEL SSE compared to the
translation between ARM NEON and INTEL SSE since the first pair
of platforms is more dissimilar (as explained in Section 2.1) than
the second. Secondly, the tables show that FREE RIDER is capa-



Intrinsic Frequency
__USADA8 36
__UHADD8 24
__UADD8 3
__USAD8 2
vld* 50
vadd* 38
vsh* 35
vdupq_n_* 27
vget_* 26
vmov* 26
vst* 24
vqmov* 22
vand* 16
vmul* 16
vcombine_* 15
vceq*/vcgt*/vcge*/vlt*/vle* 8
vsub* 7
vmin*/vmax*/vabs* 5
vqdmulhq_s16 4
vmla* 4
vbslq_f32 3
vzip_s16 2
vsqrt* 2

Table 2: Frequency of occurrence of ARM CORTEX-M4 and ARM
NEON intrinsics in our benchmarks and application. Each line
represents a single or multiple intrinsics. In the latter case the name
ends with an asterisk to indicate that there are different variants
available. The number of multiple intrinsics per line varies from 2
to 5.

ble to cover wide range of intrinsics, which enable us to automati-
cally process not only isolated benchmarks, but complex real-world
applications resulting in performance levels approaching those of
manual retargeting and optimisation.

5. Related Work
Handling of intrinsic functions by the compiler has found little at-
tention in the academic community, possibly due to their normally
straight-forward, but target- and compiler-specific implementation.
Among the few publications dealing with various aspects related to
intrinsic functions are the following.

Compilation for multimedia instructions has been an active re-
search area for over a decade [6, 7, 9, 16–18]. Krall and Lelait [9]
describe basic compilation techniques for multimedia processors.
They compare classical vectorisation, borrowed from the age of
the vector supercomputers, to using loop unrolling for vectorisa-
tion. The mentioned classical vectorisation employs a dependency
analysis and might fail if the operations within the loop are not
vectorisable. Loop unrolling is more likely to succeed, as the opera-
tions of consecutive loop iterations are the same – thus vectorisable.
The only reason for failure there might be loop carried dependen-
cies. The authors also explore the problem of unaligned memory
accesses. FREERIDER allows alignment to be specified in the de-
scription of architectures and honours it during translation.

Pokam et al. propose SWARP [16] – a retargetable preproces-
sor for multimedia instructions that is extendable by the user. Their
work allows taking advantage of vector operations, without the pro-
grammer specifying that intention in the source code, i.e. the input
provided to SWARP is plain C and it generates C code, which uses
SIMD extensions. A flexible idiom recognition phase eases the re-
targeting of the system to new machines without changing SWARP

Intrinsic Frequency
_mm_srli_epi32 40
_mm_add_epi16 40
_mm_loadu_si128 34
_mm_store_si128 27
_mm_and_si128 24
_mm_set1_epi32 22
_mm_sub_epi16 20
_mm_abs_epi16 20
_mm_unpackhi_epi8 20
_mm_unpacklo_epi8 20
_mm_add_epi8 7
_mm_or_si128 6
_mm_load* 66
_mm_sll/sra/srl* 51
_mm_pack/unpack* 43
_mm_store* 40
_mm_add* 39
_mm_mul* 30
_mm_set* 27
_mm_and* 17
_mm_xor* 17
_mm_cmp* 16
_mm_cvt* 13
_mm_sub* 11
_mm_andnot_si128 7
_mm_sqrt_ps* 2
_mm_min/max_ps 2
_mm_div* 1
_mm_or_si128 1
_mm_movemask_epi8 1

Table 3: Frequency of occurrence of INTEL SSE intrinsics in the
retargeted benchmarks and application. Asterisks are used similarly
to Table 2. The first part of the table summarises statistics for the
automatic translation of the target application, whereas the second
part summarises statistics for the benchmarks.

itself. Our approach is different in that we are retargeting platform-
specific intrinsics. We leverage the expertise already invested in
optimising the application to one platform and try to maintain this
information when translating to another platform. The idiom recog-
nition is replaced by our matching phase, and flexibility is achieved
by the intrinsic description language, which is used to describe dif-
ferent targets.

Similar approaches, all operating on plain C input and trying
to extract superword level parallelism within an optimising or vec-
torising compiler are described in [6, 7, 17, 18]. Whilst these tech-
niques are useful for the initial identification of vectorisation op-
portunities in C code, they fail to process applications, which have
already been vectorised for a particular platform using intrinsics.

A graph based instruction selection technique has been devel-
oped in [13], where the compiler targets automatically generated
instruction set extensions, where instruction patterns are not tree
shaped, but highly irregular and sometimes larger (up to 12 inputs
and 8 outputs) than typical multimedia instructions. The graph pat-
tern matching approach used in this paper is somewhat comparable
to that in [13], however, the purpose of our work is to aid the user
retargeting an application optimised for a platform other than the
current target platform, whereas graph pattern matching is used in
[13] to match highly idiosyncratic instructions.

Modelling of instruction semantics in ADL processor descrip-
tions for C compiler retargeting has been presented in [4]. The fo-



cus of this work is more on generating a basic compiler using an ar-
chitecture description, rather than retargeting of existing, optimised
code.

Implementation of intrinsic functions for a DSP compiler is
subject of [2]. This paper proposes and implements a new approach
to intrinsic functions where the programmer targets a compiler’s
intermediate representation rather than the assembly language of a
particular processor.

A general introduction to intrinsics for vector processing in the
GCC compiler is provided in [8].

Possibly most relevant to the work presented in the paper is
[19], where a set of hand-coded inline functions compatible with
ARM NEON intrinsics is provided for an INTEL platform with SSE.
The result is a similar “emulation” layer providing portability for
a particular combination of intrinsics (ARM NEON to INTEL SSE),
but unlike FREE RIDER this is not automated and retargetable to
any platform, but the result of a major manual implementation
effort for one specific pair of platforms.

6. Summary & Conclusions
In this paper we have developed a new methodology for retargeting
platform-specific intrinsics from one platform to another. We use
a description language to specify signatures and semantics of in-
trinsics of both platforms. These descriptions are processed by our
FREE RIDER tool, which performs subgraph isomorphism check-
ing to substitute one set of intrinsics with one or more intrinsics of
the target platform, plus additional scalar code wherever needed.
In addition, FREE RIDER performs source-level loop unrolling in
order to account for differences in SIMD word sizes and alignment,
and dead variable/code elimination to remove artefacts introduced
by the substitution of intrinsics. We have evaluated our methodol-
ogy by automatically porting OPENCV benchmarks optimised for
ARM NEON and a compute-intensive application optimised for the
ARM CORTEX-M4 processor to INTEL X86 processors that are
SSE4.2 enabled. We demonstrate that we can take advantage of
foreign intrinsics, and that automatically retargeted code delivers
performance levels comparable to manually optimised code for the
target platform. We achieve a speedup of up to 3.73 over a plain
C baseline on an INTEL EDISON module for the target application,
and on average 96.0% of the speedup of manually ported and opti-
mised versions of the benchmarks.
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