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Abstract. One of the goals of cleaning an inconsistent database is to remove
conflicts between tuples. Typically, the user specifies how the conflictddshe
resolved. Sometimes this specification is incomplete, and the cleaned skataba
may still be inconsistent. At the same time, data cleaning is a rather drastic ap-
proach to conflict resolution: It removes tuples from the databasehwnay lead

to information loss and inaccurate query answers.

We investigate an approach which constitutes an alternative to data clegnéeng.
approach incorporates preference-driven conflict resolution irtoycpnswering.

The database is not changed. These goals are achieved by augrntanfiagne-
work of consistent query answers through various notions of pefeepair. We
axiomatize desirable properties of preferred repair families and peogifferent
notions of repair optimality. Finally, we investigate the computational complexity
implications of introducing preferences into the computation of consistearyq
answers.

1 Introduction

In many novel database applications, violations of intggonstraints cannot be avoided.
A typical example is integration of two consistent data searthat contribute conflict-
ing information. At the same time the sources are autonorandsannot be changed.
Inconsistencies also occur in the context of long runningrations. Finally, integrity
enforcement may be neglected because of efficiency coasioles.

Integrity constraints, however, often capture importarhantic properties of the
stored data. These properties directly influence the wagafaemulates a query. Eval-
uation of the query over an inconsistent database may negatiffect the meaning of
the answers.

Example 1.Consider the schema
Mgr(NameDept, Salary Reportg
consistent with two key dependencies:

Dept— Name Salary Reports (fdy)
Name— Dept Salary Reports (fdp)
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In an instance of this schema a tupley, z,v) denotes a manageof the departmeng
with the salaryz required to writev reports annually.
Now suppose we integrate the following (consistent) sairce

Sl:{(Mary7R&D74u<33)}v %:{(‘]Ohn R&D,lG(,Z)},
s3 = {(Mary,IT,20k, 1), (John PR 30k,4)}.

The integrated instange= s, U's; U sz contains 3 conflicts:

1. (Mary,R&D, 40k, 3) and(John R&D, 10k, 2) w.r.t. fdj,
2. (Mary,R&D, 40k, 3) and(Mary, 1 T,20k, 1) w.r.t. fdy,
3. (JohnR&D, 10k, 2) and(John PR 30k, 4) w.r.t. fdy.

These inconsistencies can be a result of changes that ayetrfolly propagated. For
exampleMary may have been promoted to man&#$eD whose previous managéohn
was moved to manageR, or converselyJohnmay have been moved to mandggD,
while Mary was moved fronR& D to managdT .

Consider the quer®; asking ifJohnearns more thaMary:

IX1,Y1,21, X2, Y2, Z2.Mgr(Mary, X1,y1,21) AMgr(John xo,y2,22) Ayy < Yo.

The answer t@ in r is true but this is misleading becauseay not correspond to any
actual state of the world.

One way to deal with the impact of inconsistencies in theltesdi the query eval-
uation isdata cleaning16]. Although there exist a wide variety of tools for autdina
elimination of duplicates, extraction and standardizatibinformation, there are prac-
tically no tools that automatically resolve integrity ctmaint violations [18]. Usually,
the user is responsible for providing a procedure that @sdbw the conflicts should
be resolved. The standard repertoire of actions that caretiermed on a conflicting
tuple is [23]: removing the tuple, leaving the tuple, or rdjpm the tuple to an auxiliary
(contingency table. Typically, the data cleaning system provides usiefermation
which may include:

— the timestamp of creation/last modification of the tuplee (tonflicts can be re-
solved by removing from consideration old, outdated tuples

— source of the information of the tuple (a user can considedtta from one source
more reliable than the data from the other).

The approach of data cleaning has several shortcomings:

— If the user provides insufficient information to resolve thié conflicts then data
cleaning results in an inconsistent database; this agajnieaa to misleading an-
swers.

— Physically removing the tuples from the database may leatfdomation loss.

— Data cleaning doesn't allow to utilize the incomplete imi@tion often expressed
in inconsistencies.



The framework ofepairsandconsistent query answeft] proposes an alternative
approach to deal with inconsistent databases geared tewtliding incomplete infor-
mation. Arepair is a minimally changed consistent database andresistent answer
to a query is the answer presentaveryrepair. This approach doesn’t remove physi-
cally any tuples from the database. The framework of [1] leagexi as a foundation for
most of the subsequent work in the area of querying incargistatabases (for recent
developments see[3, 11]).

Example 2.The instance of Example 1 has 3 repairs:

ri = {(Mary,R&D, 40k, 3), (John PR 30k, 4)},
r, = {(JohnR&D, 10k, 2), (Mary,IT,20k,1)},
rz = {(Mary,IT,20k, 1), (John PR 30k,4)}.

Because), is false inr; andro, true is not a consistent answerQ@a.

The standard framework of consistent query answers doesomtdin any way to
incorporate additional user input about how to resolve soadlicts. One can try to
first clean the database and then use the consistent quevgranapproach. This is a
radical approach: removing tuples may lead to informatass| Additional user input
in the form of preferences can be used in the framework ofisterg query answers
to benefit the correctness of consistent query answers ksydsnng only thepreferred
repairs.

Example 3.Suppose the user finds the sousgeo be less reliable thasy and less
reliable thars,. The user does not know, however, the relative reliabilitthe sources
s andsp. The cleaning of with this information yields an inconsistent database:

r' = {(Mary,R&D, 40k, 3), (John R&D, 10k, 2) }.

Consider the quer), asking if Mary earns more and has fewer reports to write than
John

3X1,Y1,21, %2, Y2, Z2.Mgr(Mary, x1,¥1,21) AMgr(Johnxz,y2,22) Ay1 > Y2 A 21 < 2.

The answer to this query in the “cleaned” database is fakseks also the consistent
answer toQ, in r’. Note, however, that neither false nor true is a consisteswar to
Qoinr.

Intuitively the repairg'; andr, incorporate more of reliable information than the
repairrs (all tuples ofrz come from a less reliable soursg). If we consider; andry
at the only preferred repairs, then true is ineferred consistent answéy Q..

In our paper we extend the framework of consistent query arswith an ad-
ditional input consisting of preference informatidgh We use® to define the set of
preferred repairRed®. When we compute consistent answers, instead of considering
the set of all repairRep we use the set of preferred repairs. We assume that thests exi
a (possibly partial) operation of extendidgwith some additional preference informa-
tion and we write® C ¥ whenW is anextensiorof ®@. We conside® to betotal when
it cannot be extended further. We identify the following idesle properties of families
of preferred repairs:



1. Non-emptiness

Rep’ # @. (21)
2. Monotonicity : extending preferences can only narrow the set of prefeapdirs
® C Y= Rep’ CRep. (22)

3. Non-discrimination: if no preference information is given, then no repair is re-
moved from consideration

Re =Rep (923)
4. Categoricity: given maximal preference information we obtain exactlg ogpair
¢ is total= |Rep’| = 1. (24)

In Section 3 we observe, however, that these properties tlenforce practically any
use of preference information. To do so we also study diffenetions of repaiopti-
mality which ensure a proper use of preference information to spteferred repairs.

2 Preliminaries

In this paper, we work with databases over a schema cortsistianly one relatiorR
with attributes fromJ. We useA, B, ... to denote elements &f andX,Y,... to denote
subsets ofJ. We consider two disjoint domains: uninterpreted namesnd natural
numbers\. Every attribute ilJ is typed. We assume that constants with different names
are different and that symbots, #, <, > have the natural interpretation over

The instances dR, denoted by,r’, ..., can be seen as finite, first-order structures,
that share the domairi3 andN. For any tuplet from r by t.A we denote the value
associated with the attribut& In this paper we consider first-order queries over the
alphabet consisting d® and binary relation symbols, #, <, and>.

The limitation to only one relation is made only for the sakelarity and along
the lines of [7] the framework can be easily extended to laddtabases with multiple
relations.

2.1 Inconsistency and repairs

The class of integrity constraints we study consists of fienal dependencies. We use
X —Y to denote the following constraint:

i, eR A ttA=tbA= A\ t1.B=t,.B 1)
AeX BeY

We identify conflicts created by (1) as follows: tupte@ndt, areconflictingif t;.A =
to.Afor all A€ X andt;.B #t,.B for someB € Y. A database is inconsistentvith a set
of constraintd= if and only if r contains some conflicting tuples with a constraint from
F. Otherwise, the databasedsnsistent

In the general framework when repairing a database we censicb operations:
adding or removing a tuple. Because in the presence of fumaitdependencies adding
new tuples cannot remove conflicts, we only consider rephit@ned by deleting tuples
from the original instance.



Definition 1 (Repair). Given a database r and a set of integrity constraints F, a Hase
r’ is arepairof r w.r.t. F if r’ is a maximal subset of r consistent with F. By Rap we
denote the set of all repairs of r w.r.t F.

A repair can be viewed as the result of a process of cleanigntiut relation. Note
that since every conflict can be resolved in two different svapd conflict are often
independent, there may be an exponential number of repairs.

Example 4.For any natural number consider an instance
rn={(0,0),(0,1),...,(n—1,0),(n—1,1)}

of the schem&(A, B). Note that the set of all repairs of w.r.t. the functional depen-
dencyA — Bis equal to the seff0,1}" of all functions from{0,...,n— 1} to {0,1}.

Also note that the set of repairs of a consistent relatioantains onlyr.

Given a relation instanceand a set of functional dependenciesa conflict graph
is a graph whose vertices are the tuples aind two tuples are adjacent only if they
are conflicting w.r.t. a constraint frof. Conflict graphs areompact representations
of repairsbecause the set of all repairs is equal to the set of all mddeta of the
corresponding conflict graph.

Example 5.The conflict graph for the instaneg for n = 4 and the functional depen-
dencyA — B from Example 4 is presented in Figure 1.

(0,1) (1,1) (2,1) (3,1)

(0,00 (1,00 (2,0) (3,0

Fig. 1. A conflict graph.

For a given tuplé, by n(t) we denote itmeighborhoodn the conflict graph, i.e. all
tuples conflicting witht; and thevicinity of t is v(t) = {t} Un(t).

2.2 Priorities and preferred repairs

For the clarity of presentation we assume a fixed databatires with a fixed set of
functional dependencids.

To represent the preference information, we use (posstuntygh) acyclic orienta-
tions of the conflict graph. Orientations allows us to expttbe preferences at the level
of single conflicts and acyclicity ensures unambiguity & pheference.



Definition 2 (Priority). A priority is a binary relation>- C r x r that is defined only on
conflicting tuples and is acyclic, i.e. there there does mdgtex< r such that x-* X,
where>* is the transitive closure of. If x > y we say that that dominateover y. A
priority > is totalif every pair of conflicting tuple$x,y} either x<y or y < x.

From the point of user interface it is often more natural tfirdethe priority as an arbi-
trary acyclic binary relation onand then use such a priority relation only on conflicting
tuples. Naturally, those approaches are equivalent.

Extending an orientation consists of orienting some cditflicedges that were not
oriented before; formally, a priority-" is anextensiorof >~ if =’ D ~. Note that an
extension-’ is also a priority and therefore’ is acyclic and defined only on pairs of
conflicting tuples. Also observe that a priority that canbetextended further is total
(i.e. all edges of the conflict graph are oriented).

Preferred repairs In our work we investigate families of preferred repairdsets of
repairs selected with priorities. For the clarity we addugt following naming conven-
tion. For each investigated way of selecting preferredirepae use one letter name to
refer to it, e.gx. For a given relatiom, a given set of functional dependenckesand

a given priority>-, by x-ReE (r) we denote the selected set of preferred repairs. We
dropr, F, and>- if they are known from the context.

Database cleaning A total priority represent an unambiguous information omvho
each conflict should be resolved. With Algorithm 1 a totabpty is used to construct a
“clean” database by iteratively selecting tuples that atedominated by any other, i.e.
tuples selected by th@innow operatof5]:

w (r)={ter|-3t ert’ =t}.

After selecting a tuple we remove it and its neighbors fronthier considerations.

Algorithm 1 Cleaning the database
Lr—o
2: while w.(r) # @ do

3: choose any € w, (r)

4: r—r'u{x}

5: r—r\ ({xtun(x)) > wheren(x) — the neighborhood of
6: return r’

Proposition 1. For a total priority > Algorithm 1 computes a unique repair for any
sequence of choices in Step 3.

2.3 Preferred consistent query answers

We generalize the notion of consistent query answer [1] mgickering only preferred
repairs when evaluating a query (instead of all repairs)owe study closed first-order



logic queries. We can easily generalize our approach to gpenies along the lines
of [1, 7]. For a given queryd we say thatrue is an answer t® in r, if r = Q in the
standard model-theoretic sense.

Definition 3 (x-Consistent query answer).Given a closed query Q and a family of
repairs xX-Rep,trueis the x-consistent query answés a query Q if for every repair
r' € x-Rep we have'i= Q.

Note that we obtain the original notion of consistent quergveer [1] if we consider
the whole set of repaiRe(r).

3 Optimal use of the priority

The main purpose of introducing?1-274 is identification of desired properties of
families of preferred repairs. We note that all propertiesept for #24 do not require
any use of the priority to eliminate any repairs. This makgsgsible to construct a
family of preferred repairs which satisfie81-274 which practically makes no use of
the given priority.

Example 6.Consider a family of repairs which for a total priority costsi of the clean
database obtained with Algorithm 1 and otherwise it coasitall repairs. This family
of repairs fulfills properties?1-424.

Thus we investigate a number of increasingly complex netifrrepair optimality that
ensure effective use of the preference information:

1. r’ is alocally optimalrepair, if no tuplex from r’ can be replaced with a tuple
such thaty > x and the resulting set of tuples is consistent;

2. r’ is a semi-globally optimalf no nonempty subseX of tuples fromr’ can be
replaced with a tuple such thatvx € X.y = x and the resulting set of tuples is
consistent;

3. r’ is aglobally optimalif no nonempty subseX of tuples fromr can be replaced
with a set of tuple¥ such thatvx € X.3y € Y.y = x and the resulting set of tuples
is consistent.

We note that global optimality implies semi-global optiibalwhich in turn implies
local optimality. Intuitively, global optimality makes aaggressive use of priorities to
select repairs, while local optimality does so in a less eggjve manner.

3.1 Locally optimal repairs

With £-Repwe denote the set of all locally optimal repairs. The follogriexample
illustrates that the notion of local optimality allows tdegtively use priorities to handle
relations with one key.

Example 7.Consider the relational scherRéA, B) with a key dependendy = {A —
B} and take an instanae= {ta = (1,1),t, = (1,2),tc = (1,3)} with the priority > =
{(ta,tc), (ta,tp) }. Figure 2 contains the corresponding conflict graph andrietation.
The repairs ar®efe(r) = {r1 = {ta},r2={tv},r3s = {tc}}. Onlyrq is locally preferred.



Proposition 2. £-Rep satisfies propertie¥1-73.

As it’'s shown on the following example, locally optimal résado not satisfy%?4.

Example 8.Consider the relational scheni®A, B,C) with a functional dependency
A — B and take an instance= {t; = (1,1,1),t, = (1,1,2),tc = (1,2,3)} with the
total priority > = {(tc,ta), (tc,to) }. The corresponding conflict graph can be found in
Figure 3. The set of repairs consists of two repRiegr (r) = {r1 = {ta,to},r2 = {tc}}.

All the repairs are locally optimal.

ta tC
th tc ta ty
Fig. 2.Use of .-Rep Fig. 3. Non-categoricity of.-Rep

3.2 Semi-globally optimal repairs

In Example 8, we note that even though the priority sugggsttiagr; from consid-
eration, the notion of local optimality is too weak to do sdneTmain reason is the
existence of violations of functional dependency with degies {3 andt, which are
not conflicting, but both of them conflict witl). The notion of semi-global optimality,
however, effectively applies the priority in the situatoof violations of one non-key
functional dependency: the repairis not semi-globally optimal ang is. We denote
the family of all semi-globally optimal repairs l§Repand we note thag-Repis as
effective in enforcing priorities as-Rep

Proposition 3. $-Rep satisfies propertie® 1-23. Moreovers-RepC £-Rep and for
one key dependenayRep coincides with SRep.

Also this family of preferred repairs does not satisi4.

Example 9.Consider the schen®(A,B,C,D) with two functional dependencids=

{A— B,C — D} and suppose we have a database{t,=(1,1,0,0),t, = (1,2,1,1),tc =
(2,1,1,2),t4=(2,2,2,1),te =(0,0,2,2) } with a total priority>= = {(ta,to), (tv, tc), (te,ta), (ta, te) }-
The conflict graph is presented on Figure 4. The set of repaiRep:(r) = {r1 =
{ta,tc,te},r2 = {tp,tq} }. This is also the set of semi-globally optimal repairs.

3.3 Globally optimal repairs

Situations similar to Example 9 are encountered in therggttthere a relation has
more than one functional dependency which are violated bipahonflicts (a tuple
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Fig. 4. Non-categoricity ofs-Rep

may be involved in conflicts generated by more than one fanatidependency) and
the user provides priority only for some of the violated fiimical dependencies. In
those settings the notion of global optimality follows ontuiitions:r» is not globally
optimal andr; is.

Let G-Repbe the family of globally optimal repairs. This family sdits &74.

Proposition 4. g-Rep satisfies propertie¥1-274. Moreoverg-RepC s-Rep and for
one functional dependena}Rep coincides wit3-Rep.

Globally optimal repairs can be characterized in an altaraavay.

Proposition 5. For a given priority>- and two repairs, we say tha is preferredover
ri, denoted 1 < ro, if
VXerp\ra. Iy era\ri.y = x

A repair r' is globally optimal if and only if it's<-maximal (there is no repair’rsuch
thatr < r”).

This particular “lifting” of a preference on objects to a faeence on sets of objects can
be found in other contexts. For example, a similar definii®nsed for a preference
among different models of a logic program [21], or for a prefeee among different

worlds [15].

3.4 Importance of monotonicity

In Section 4 we study the computational implications of ggdiorities to handle in-
consistent databases. Restricting our choice when catisigua family of repairs to one
of the optimal classes of repairs, still does not prevenbudhstruct trivial families of
optimal repairs.

Example 10.For any instance, any set of functional dependenciesand any priority
> for r andF, choose one extensiod that is total forr andF. Now, consider the family
T-Repwhich for an instance, a set of functional dependenciEs and a priority~
consists of the only repair constructed with Algorithm 1ifoF, and the corresponding
total priority ~'.

We can easily show that the repair obtained with Algorithnorld total priority is
a globally optimal repair. Thereforg-Repis a family of globally optimal repairs that
satisfies?1, &3, andZ74.

We conclude here that while optimality enforces use of fires to eliminate repairs
from considerations, the monotonicity prevents from gdiess elimination. Hence, in
the context of preferred consistent query answers it israbto restrict our attention to
families of optimal repairs which satisfy the essentialgagies#?1 and272.



3.5 Common optimal repairs

Now, we investigate the question whether there are repairsron for any family of
optimal repairs that satisfies the properti#d and 72, i.e. for a given instance a
given set of functional dependencies, and a given prioitys there a repair’ which

is in x-Reg (r) for any family x-Repof optimal repairs satisfying”1 and. 2. The
answer is negative for families of semi-globally (and this®docally) optimal repairs.
For instance we can construct two families of semi-globafitimal repairs that define
the same set of preferred repairssaRe pexcept that for the setting in Example 9 one
returns onlyr1 while the other only,. Surprisingly, the situation is different for families
of globally optimal repairs.

Theorem 1. For every instance r, every set of functional dependencjes & any every
priority -, there exists a repair’rsuch that f € x-Reg (r) for any family.x-Rep of
globally optimal repairs that satisfies?1 and £22.

We define a new family of’-Repwhich selects onlycommonrepairs of all families
of globally optimal repairs satisfying the essential pmipe &#1 and £22. C-Repis
another family of preferred repairs that satisfies all progs.

Proposition 6. ¢c-Rep satisfies propertie®1 and #24 and c-RepC Gg-Rep

Interestingly the family of common repairs has an altexegiroceduralcharacteriza-
tion.

Proposition 7. For a given instance r, a given set of functional dependenEigand
a given priority <, the setc-ReF (r) consists of all results of Algorithm 1 for any
sequence of choices in Step 3.

We also note that under some conditions, the propef#dsand &22 specify exactly
one family of globally optimal repairs.

Theorem 2. ¢-Rep andg-Rep coincide for priorities that cannot be extended to a
cyclic orientation of the conflict graph.

4 Computational properties

In this section we study the computational implications sing priorities to handle
inconsistent databases. Because of space restrictionipi¢ghgkproofs (most of them
can be found in or easily based on reductions presented)in [8]

4.1 Data complexity

In our paper we use the notion data complexity22] which captures the complexity
of a problem as a function of the number of tuples in the databBhe input consists of
the relation instance and the priority relation, while tlagatbase schema, the integrity
constraints, and the query are assumed to be fixed. For ayfarfitepof preferred
repairs we study two fundamental computational problems:



(i) x-repair checking— determining if a database is a preferred repair of a given
database i.e., the complexity of the following set

BE={(r,;=,r"):r € x-Refg (r)}.

(i) x-consistent query answerschecking iftrueis an answer to a given query in every
preferred repair i.e., the complexity of the following set

PRo=1{(r,-):Vr' e x-Reg (r).r' =Q}.

4.2 Complexity results

First we state that computing preferred consistent quesyvanwith any family of
semi-globally (and thus also globally) optimal repairst thetisfies”?1 and &2 leads
to intractability.

Theorem 3. For any familyx-Rep of semi-globally optimal repairs that satisfig&l
and 72, there exists a set of two functional dependencies F and atijigs-free
ground query Q (consisting of one atom) to which computirgxtitonsistent answer
is co-NP-hard.

It's an open question whether a similar statement holdsdmilfes of locally optimal
repairs. We note that computing preferred consistent qaresyers is co-NP-hard if we
consider a slightly restricted locally optimal repairscaddly optimal repairs for which
there doesn't exists a pair of tuples x, which can be replaced with a tupfesuch that
y > x1 andy = x2 and the resulting set of tuples is consistent. Thereforetaie she
following conjecture.

Conjecture 1.For any familyx-Re pof preferred repairs satisfying?1, 22, and global
local optimality computingr-consistent answers is co-NP-hard.

Another argument for this conjecture is the intractabitifycomputing £-consistent
guery answers.

Theorem 4. The £-repair checking is in PTIME . There exists a set of two fuoreti
dependencies and a quantifier-free query (consisting ofsbm@ only) for which com-
puting L-consistent answers co-NP-complete.

To find if a repairr’ is semi-globally optimal we seek a tuple \ r’ whose all
neighbors inr’ are dominated by. Such a tuple exists if and only if is not semi-
globally optimal. The tractability ofs-checking implies that computing-consistent
answers is in co-NP: the nondeterministic machine usesymepuiial in the size of
number of nondeterministic steps to construct a repatchecks ifr’ is semi-globally
optimal; the machine finds the answer to the query ifif r’ is not semi-optimal then
the machine halts with the answer ‘yes’). With Theorem 3 wiziob

Corollary 1. Thes-repair checking is in PTIME and computirggconsistent answers
is co-NP-complete.



Checking if a repair is globally optimal requires, howeweressential use of nondeter-
minism. This also promotes computing preferred consisianty answers to a higher
level of the polynomial hierarchy.

Theorem 5. There exists a set of five functional dependencies for whielgtrepair
checking is co-NP-complete. There exists a set of four ifumat dependencies and a
guantifier-free query (consisting of one atom only) for vahiomputingG-consistent
answers ig7}-complete.

The procedural nature of common repairs makes it possibtéhéak if a repair
r’ belongs toc-Re g (r) with a simulation of Algorithm 1 with the choices in Step 3
restricted tocw. (r) Nr’. Naturally this process can be performed in polynomial time
Again using Theorem 3 we get:

Corollary 2. Thec-repair checking is in PTIME and computirgconsistent answers
is co-NP-complete.

5 Related work

We limit our discussion to work on using priorities to mainteonsistency and facilitate
resolution of conflicts.

The first to notice the importance of priorities in inforneatisystems is [9]. The
authors study there the problem of updates of databaseasiiogt propositional sen-
tences. The priority is expressed by storing a natural numvtik each clause. If during
an update (inserting or deleting a sentence) the inconsigiarises, then the priorities
are used in a fashion similar tp-repairs to select minimally different repairs. We note,
however, that the chosen representation of priorities Bepa significant restriction
on the class of considered priorities. In particular it asss transitivity of the priority
on conflicting facts i.e. if factg, b, andc are pair-wise conflicting and has a higher
priority thanb andb has a higher priority thag, then the priority ofis higher tharc.
This assumption cannot be always fulfilled in the contexhobinsistent databases. For
example the conflicts betwearandb, and betweeb andc may be caused by violation
of one integrity constraints while the conflict betweeandc is introduced by a differ-
ent constraint. While the user may supply us with a rule agsigoriorities to conflicts
created by the first integrity constraint, the user may nehwo put any priorities on
any conflicts created by the other constraint.

A similar representation of priorities used to resolve imgistency in first-order
theories is studied in [4], where the inconsistent set afis#a is stratified (again the
lowest strata has the highest priority). Then preferredimakconsistent subtheories
are constructed in a manner analogoug-epairs. Furthermore, this approach is gen-
eralized to priorities being a partial orders, by consiuggll extensions to weak orders.
Again, however, this approach assumes transitivity ofrfiyi@n conflicts, which as we
explained previously may be considered a significant i&ini.

In [19] priorities are studied to facilitate the procesdefief revision A belief state
is represented as an ordered list of propositional formalakthe revision operation
simply adds the given sentence at the end of the given bédief.SThis representation



of belief state allows to keep track of revision history, @his later used to impose
a preference order on the possible interpretations of thieflstate. Only maximally
preferred interpretations are used when defining the emtai relation.

In the context of logic programs, priorities among rulesloamsed to handle incon-
sistent logic programs (where rules imply contradictoct$q More preferred rules are
satisfied, possibly at the cost of violating less importams In a manner analogous
to <, [21] lifts a total order on rules to a preference on (exteNdmswers sets. When
computing answers only maximally preferred answers setsatsidered.

[20] investigate disjunctive logic programs with prioeisi on facts. A a transitive
and reflexive closure of user supplied priorities on factssed to define a relation
of preference on models of the program. The definition ofgrezice on models of the
disjunctive program is essentially different from the awerization of globally optimal
repairs in Proposition 5. The answer to a program in the egiframework consists of
all maximally preferred answer sets. The main shortcomingsimg this framework is
it's computational infeasibility (which is specific to dsmn problems involving general
disjunctive programs): computing answers to ground geeaadisjunctive prioritized
logic programs under cautious (brave) semantitﬂg‘?scomplete (respZ\lf—complete).

A simpler approach to the problem of inconsistent logic paogs is presented in
[14]. There conflicting facts are removed from the model sglthe priority specifies
how to resolve the conflict. Because only programs withosjudiction are considered,
this approach always returns exactly one model of the inppgnam. Constructing pre-
ferred repairs in a corresponding fashion (by removing atifiicts unless the priority
indicates a resolution) would similarly return exactly afaabase instance (fulfillment
of 21 and4?4). However, if the priority does not specify how to resolvery conflict,
the returned instance is not a maximal set of tuples andfthreri is not a repair. Such
an approach leads to a loss of (disjunctive) information@mdot satisfy%?2 and#73.

[10] proposes a framework afonditioned active integrity constraintsvhich al-
lows the user to specify the way some of the conflicts creaidfu thve constraint can
be resolved. This framework satisfies properti#d and ##3 and doesn't satisfy?2
and 274, [10] also describes how to translate conditioned actitegrrity constraints
into a prioritized logic program [20], whose preferred migdeorrespond to maxi-
mally preferred repairs. We note that the framework of fitiied logic programming
is computationally more powerful (computing answers uritier brave semantics is
Z:f—complete) than required by the problem of finding if an atgrpriesent in any re-
pair (Zf—complete). Itis yet to be seen if less powerful programnangironment (like
general disjunctive logic programs) can be used to compatiewed answers.

[17] uses ranking functions on tuples to resolve conflictsaking only the tuple
with highest rank and removing others. This approach coatstta unique repair under
the assumption that no two different tuples are of equal (satisfaction of274). If this
assumption is not satisfied and the tuples contain numeliesaa new value, called
the fusion, can be calculated from the conflicting tuplesrtthowever, the constructed
instance is not a repair in the sense of Definition 1 which rmeapossible loss of
information).

A different approach based on ranking is studied in [13]. diiors consider poly-
nomial functions that are used to rank repairs. When comguiieferred consistent



query answers, only repairs with the highest rank are censi The property?3 is
trivially satisfied, but because this form of preferenceinfation does not have natu-
ral notions of extensions and maximality, it is hard to dspostulates”2 and #74.
Also, the preference among repairs in this method is notdoasehe way in which the
conflicts are resolved.

An approach where the user has a certain degree of contnaire/esay the conflicts
are resolved is presented in [12]. Using repair constréietsiser can restrict considered
repairs to those where tuples from one relation have beeoavedronly if similar tuples
have been removed from some other relation. This approdisiiessZ2 but notZ1.

A method of weakening the repair constraints is proposettaffe however this comes
at the price of losing72.

6 Conclusions and future work

In this paper we proposed a general framework of preferqgaireand preferred consis-
tent query answer. We also proposed a set of desired preparfamily of preferred re-
pairs should satisfy. We presented 4 families of preferepdirs:£.-Rep s-Rep G-Rep
and c-Rep Figure 5 summarizes the computational complexity resitétdirst row is
taken from [6].

Consistent Answers to

Repair Check [V, 3} free querie{sconjunctive querieEOSSIble Applications
Rep PTIME PTIME [ co-NP-complete| no priorities given
L-Rep PTIME co-NP-complete key (no duplicates)
S-Rep PTIME co-NP-complete one FD (duplicates
G-Repco-NP-complete ng-complete many FDs with
C-Rep PTIME co-NP-complete mutual conflicts

Fig. 5. Summary of complexity results.

We envision several directions for further work. Along tireek of [2], the compu-
tational complexity results could be further studied, bgumsing the conformance of
functional dependencies with BCNF.

Extending our approach to cyclic priorities is an intemgtand challenging is-
sue. Including priorities in similar frameworks [12] of feeences leads to loosing the
monotonicity. A modified, conditional, version of monotoity may be necessary to
capture non-trivial families of repairs.

The last is a generalization of our framework to a broadeysctd constraints. Con-
flict graphs can be generalized to hypergraphs [6], whidwatb handle broader class
of denial constraints. Then, more than two tuples can beliedoin a single conflict
and the current notion of priority does not have a clear meani
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