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Abstract. One of the goals of cleaning an inconsistent database is to remove
conflicts between tuples. Typically, the user specifies how the conflicts should be
resolved. Sometimes this specification is incomplete, and the cleaned database
may still be inconsistent. At the same time, data cleaning is a rather drastic ap-
proach to conflict resolution: It removes tuples from the database, which may lead
to information loss and inaccurate query answers.
We investigate an approach which constitutes an alternative to data cleaning.The
approach incorporates preference-driven conflict resolution into query answering.
The database is not changed. These goals are achieved by augmentingthe frame-
work of consistent query answers through various notions of preferred repair. We
axiomatize desirable properties of preferred repair families and propose different
notions of repair optimality. Finally, we investigate the computational complexity
implications of introducing preferences into the computation of consistent query
answers.

1 Introduction

In many novel database applications, violations of integrity constraints cannot be avoided.
A typical example is integration of two consistent data sources that contribute conflict-
ing information. At the same time the sources are autonomousand cannot be changed.
Inconsistencies also occur in the context of long running operations. Finally, integrity
enforcement may be neglected because of efficiency considerations.

Integrity constraints, however, often capture important semantic properties of the
stored data. These properties directly influence the way a user formulates a query. Eval-
uation of the query over an inconsistent database may negatively affect the meaning of
the answers.

Example 1.Consider the schema

Mgr(Name,Dept,Salary,Reports)

consistent with two key dependencies:

Dept→ NameSalaryReports, ( f d1)

Name→ Dept SalaryReports, ( f d2)

⋆ Research supported by NSF Grants IIS-0119186 and IIS-0307434.



In an instance of this schema a tuple(x,y,z,v) denotes a managerx of the departmenty
with the salaryz required to writev reports annually.

Now suppose we integrate the following (consistent) sources:

s1 = {(Mary,R&D,40k,3)}, s2 = {(John,R&D,10k,2)},

s3 = {(Mary, IT,20k,1),(John,PR,30k,4)}.

The integrated instancer = s1∪s2∪s3 contains 3 conflicts:

1. (Mary,R&D,40k,3) and(John,R&D,10k,2) w.r.t. f d1,
2. (Mary,R&D,40k,3) and(Mary, IT,20k,1) w.r.t. f d2,
3. (John,R&D,10k,2) and(John,PR,30k,4) w.r.t. f d2.

These inconsistencies can be a result of changes that are notyet fully propagated. For
exampleMary may have been promoted to manageR&D whose previous managerJohn
was moved to managePR, or converselyJohnmay have been moved to manageR&D,
while Mary was moved fromR&D to manageIT .

Consider the queryQ1 asking ifJohnearns more thanMary:

∃x1,y1,z1,x2,y2,z2.Mgr(Mary,x1,y1,z1)∧Mgr(John,x2,y2,z2)∧y1 < y2.

The answer toQ1 in r is true but this is misleading becauser may not correspond to any
actual state of the world.

One way to deal with the impact of inconsistencies in the results of the query eval-
uation isdata cleaning[16]. Although there exist a wide variety of tools for automatic
elimination of duplicates, extraction and standardization of information, there are prac-
tically no tools that automatically resolve integrity constraint violations [18]. Usually,
the user is responsible for providing a procedure that decides how the conflicts should
be resolved. The standard repertoire of actions that can be performed on a conflicting
tuple is [23]: removing the tuple, leaving the tuple, or reporting the tuple to an auxiliary
(contingency) table. Typically, the data cleaning system provides useful information
which may include:

– the timestamp of creation/last modification of the tuple (the conflicts can be re-
solved by removing from consideration old, outdated tuples),

– source of the information of the tuple (a user can consider the data from one source
more reliable than the data from the other).

The approach of data cleaning has several shortcomings:

– If the user provides insufficient information to resolve allthe conflicts then data
cleaning results in an inconsistent database; this again may lead to misleading an-
swers.

– Physically removing the tuples from the database may lead toinformation loss.
– Data cleaning doesn’t allow to utilize the incomplete information often expressed

in inconsistencies.



The framework ofrepairsandconsistent query answers[1] proposes an alternative
approach to deal with inconsistent databases geared towards utilizing incomplete infor-
mation. A repair is a minimally changed consistent database and aconsistent answer
to a query is the answer present ineveryrepair. This approach doesn’t remove physi-
cally any tuples from the database. The framework of [1] has served as a foundation for
most of the subsequent work in the area of querying inconsistent databases (for recent
developments see[3, 11]).

Example 2.The instancer of Example 1 has 3 repairs:

r1 = {(Mary,R&D,40k,3),(John,PR,30k,4)},

r2 = {(John,R&D,10k,2),(Mary, IT,20k,1)},

r3 = {(Mary, IT,20k,1),(John,PR,30k,4)}.

BecauseQ1 is false inr1 andr2, true is not a consistent answer toQ1.

The standard framework of consistent query answers does notcontain any way to
incorporate additional user input about how to resolve someconflicts. One can try to
first clean the database and then use the consistent query answers approach. This is a
radical approach: removing tuples may lead to information loss. Additional user input
in the form of preferences can be used in the framework of consistent query answers
to benefit the correctness of consistent query answers by considering only thepreferred
repairs.

Example 3.Suppose the user finds the sources3 to be less reliable thans1 and less
reliable thans2. The user does not know, however, the relative reliability of the sources
s1 ands2. The cleaning ofr with this information yields an inconsistent database:

r ′ = {(Mary,R&D,40k,3),(John,R&D,10k,2)}.

Consider the queryQ2 asking ifMary earns more and has fewer reports to write than
John:

∃x1,y1,z1,x2,y2,z2.Mgr(Mary,x1,y1,z1)∧Mgr(John,x2,y2,z2)∧y1 > y2∧z1 < z2.

The answer to this query in the “cleaned” database is false. False is also the consistent
answer toQ2 in r ′. Note, however, that neither false nor true is a consistent answer to
Q2 in r.

Intuitively the repairsr1 and r2 incorporate more of reliable information than the
repairr3 (all tuples ofr3 come from a less reliable sources3). If we considerr1 andr2

at the only preferred repairs, then true is thepreferred consistent answerto Q2.

In our paper we extend the framework of consistent query answers with an ad-
ditional input consisting of preference informationΦ . We useΦ to define the set of
preferred repairsRepΦ . When we compute consistent answers, instead of considering
the set of all repairsRep, we use the set of preferred repairs. We assume that there exists
a (possibly partial) operation of extendingΦ with some additional preference informa-
tion and we writeΦ ⊆Ψ whenΨ is anextensionof Φ . We considerΦ to betotal when
it cannot be extended further. We identify the following desirable properties of families
of preferred repairs:



1. Non-emptiness
RepΦ 6= ∅. (P1)

2. Monotonicity : extending preferences can only narrow the set of preferredrepairs

Φ ⊆Ψ ⇒ RepΨ ⊆ RepΦ . (P2)

3. Non-discrimination: if no preference information is given, then no repair is re-
moved from consideration

Rep∅ = Rep. (P3)

4. Categoricity: given maximal preference information we obtain exactly one repair

Φ is total⇒ |RepΦ |= 1. (P4)

In Section 3 we observe, however, that these properties do not enforce practically any
use of preference information. To do so we also study different notions of repairopti-
malitywhich ensure a proper use of preference information to select preferred repairs.

2 Preliminaries

In this paper, we work with databases over a schema consisting of only one relationR
with attributes fromU . We useA,B, . . . to denote elements ofU andX,Y, . . . to denote
subsets ofU . We consider two disjoint domains: uninterpreted namesD and natural
numbersN. Every attribute inU is typed. We assume that constants with different names
are different and that symbols=, 6=, <, > have the natural interpretation overN.

The instances ofR, denoted byr, r ′, . . . , can be seen as finite, first-order structures,
that share the domainsD andN. For any tuplet from r by t.A we denote the value
associated with the attributeA. In this paper we consider first-order queries over the
alphabet consisting ofRand binary relation symbols=, 6=, <, and>.

The limitation to only one relation is made only for the sake of clarity and along
the lines of [7] the framework can be easily extended to handle databases with multiple
relations.

2.1 Inconsistency and repairs

The class of integrity constraints we study consists of functional dependencies. We use
X→Y to denote the following constraint:

∀t1, t2 ∈ R.
∧

A∈X

t1.A = t2.A⇒
∧

B∈Y

t1.B = t2.B (1)

We identify conflicts created by (1) as follows: tuplest1 andt2 areconflictingif t1.A =
t2.A for all A∈ X andt1.B 6= t2.B for someB∈Y. A databaser is inconsistentwith a set
of constraintsF if and only if r contains some conflicting tuples with a constraint from
F . Otherwise, the database isconsistent.

In the general framework when repairing a database we consider two operations:
adding or removing a tuple. Because in the presence of functional dependencies adding
new tuples cannot remove conflicts, we only consider repairsobtained by deleting tuples
from the original instance.



Definition 1 (Repair). Given a database r and a set of integrity constraints F, a database
r ′ is a repairof r w.r.t. F if r′ is a maximal subset of r consistent with F. By RepF(r) we
denote the set of all repairs of r w.r.t F.

A repair can be viewed as the result of a process of cleaning the input relation. Note
that since every conflict can be resolved in two different ways and conflict are often
independent, there may be an exponential number of repairs.

Example 4.For any natural numbern consider an instance

rn = {(0,0),(0,1), . . . ,(n−1,0),(n−1,1)}

of the schemaR(A,B). Note that the set of all repairs ofrn w.r.t. the functional depen-
dencyA→ B is equal to the set{0,1}n of all functions from{0, . . . ,n−1} to {0,1}.

Also note that the set of repairs of a consistent relationr contains onlyr.
Given a relation instancer and a set of functional dependenciesF , aconflict graph

is a graph whose vertices are the tuples ofr and two tuples are adjacent only if they
are conflicting w.r.t. a constraint fromF . Conflict graphs arecompact representations
of repairsbecause the set of all repairs is equal to the set of all maximal sets of the
corresponding conflict graph.

Example 5.The conflict graph for the instancern for n = 4 and the functional depen-
dencyA→ B from Example 4 is presented in Figure 1.

(0,1)

(0,0)

(1,1)

(1,0)

(2,1)

(2,0)

(3,1)

(3,0)

Fig. 1.A conflict graph.

For a given tuplet, by n(t) we denote itsneighborhoodin the conflict graph, i.e. all
tuples conflicting witht; and thevicinity of t is v(t) = {t}∪n(t).

2.2 Priorities and preferred repairs

For the clarity of presentation we assume a fixed database instancer with a fixed set of
functional dependenciesF .

To represent the preference information, we use (possibly partial) acyclic orienta-
tions of the conflict graph. Orientations allows us to express the preferences at the level
of single conflicts and acyclicity ensures unambiguity of the preference.



Definition 2 (Priority). A priority is a binary relation≻⊆ r× r that is defined only on
conflicting tuples and is acyclic, i.e. there there does not exist x∈ r such that x≻∗ x,
where≻∗ is the transitive closure of≻. If x≻ y we say that that xdominatesover y. A
priority ≻ is total if every pair of conflicting tuples{x,y} either x≺ y or y≺ x.

From the point of user interface it is often more natural to define the priority as an arbi-
trary acyclic binary relation onr and then use such a priority relation only on conflicting
tuples. Naturally, those approaches are equivalent.

Extending an orientation consists of orienting some conflicting edges that were not
oriented before; formally, a priority≻′ is anextensionof ≻ if ≻′ ⊇ ≻. Note that an
extension≻′ is also a priority and therefore≻′ is acyclic and defined only on pairs of
conflicting tuples. Also observe that a priority that cannotbe extended further is total
(i.e. all edges of the conflict graph are oriented).

Preferred repairs In our work we investigate families of preferred repairs: subsets of
repairs selected with priorities. For the clarity we adapt the following naming conven-
tion. For each investigated way of selecting preferred repairs we use one letter name to
refer to it, e.g.X . For a given relationr, a given set of functional dependenciesF and
a given priority≻, by X -Rep≻F (r) we denote the selected set of preferred repairs. We
dropr, F , and≻ if they are known from the context.

Database cleaning A total priority represent an unambiguous information on how
each conflict should be resolved. With Algorithm 1 a total priority is used to construct a
“clean” database by iteratively selecting tuples that are not dominated by any other, i.e.
tuples selected by thewinnow operator[5]:

ω≻(r) = {t ∈ r|¬∃t ′ ∈ r.t ′ ≻ t}.

After selecting a tuple we remove it and its neighbors from further considerations.

Algorithm 1 Cleaning the database
1: r ′←∅

2: while ω≻(r) 6= ∅ do
3: choose anyx∈ ω≻(r)
4: r ′← r ′∪{x}
5: r ← r \

(

{x}∪n(x)
)

⊲ wheren(x) – the neighborhood ofx.
6: return r ′

Proposition 1. For a total priority ≻ Algorithm 1 computes a unique repair for any
sequence of choices in Step 3.

2.3 Preferred consistent query answers

We generalize the notion of consistent query answer [1] by considering only preferred
repairs when evaluating a query (instead of all repairs). Weonly study closed first-order



logic queries. We can easily generalize our approach to openqueries along the lines
of [1, 7]. For a given queryQ we say thattrue is an answer toQ in r, if r |= Q in the
standard model-theoretic sense.

Definition 3 (X -Consistent query answer).Given a closed query Q and a family of
repairs X -Rep,true is theX -consistent query answerto a query Q if for every repair
r ′ ∈ X -Rep we have r′ |= Q.

Note that we obtain the original notion of consistent query answer [1] if we consider
the whole set of repairsRepF(r).

3 Optimal use of the priority

The main purpose of introducingP1–P4 is identification of desired properties of
families of preferred repairs. We note that all properties except forP4 do not require
any use of the priority to eliminate any repairs. This makes it possible to construct a
family of preferred repairs which satisfiesP1–P4 which practically makes no use of
the given priority.

Example 6.Consider a family of repairs which for a total priority consists of the clean
database obtained with Algorithm 1 and otherwise it consists of all repairs. This family
of repairs fulfills propertiesP1–P4.

Thus we investigate a number of increasingly complex notions of repair optimality that
ensure effective use of the preference information:

1. r ′ is a locally optimal repair, if no tuplex from r ′ can be replaced with a tupley
such thaty≻ x and the resulting set of tuples is consistent;

2. r ′ is a semi-globally optimalif no nonempty subsetX of tuples fromr ′ can be
replaced with a tupley such that∀x ∈ X.y≻ x and the resulting set of tuples is
consistent;

3. r ′ is aglobally optimalif no nonempty subsetX of tuples fromr can be replaced
with a set of tuplesY such that∀x∈ X.∃y∈Y.y≻ x and the resulting set of tuples
is consistent.

We note that global optimality implies semi-global optimality which in turn implies
local optimality. Intuitively, global optimality makes anaggressive use of priorities to
select repairs, while local optimality does so in a less aggressive manner.

3.1 Locally optimal repairs

With L-Repwe denote the set of all locally optimal repairs. The following example
illustrates that the notion of local optimality allows to effectively use priorities to handle
relations with one key.

Example 7.Consider the relational schemaR(A,B) with a key dependencyF = {A→
B} and take an instancer = {ta = (1,1), tb = (1,2), tc = (1,3)} with the priority≻ =
{(ta, tc),(ta, tb)}. Figure 2 contains the corresponding conflict graph and its orientation.
The repairs areRepF(r) = {r1 = {ta}, r2 = {tb}, r3 = {tc}}. Only r1 is locally preferred.



Proposition 2. L-Rep satisfies propertiesP1–P3.

As it’s shown on the following example, locally optimal repairs do not satisfyP4.

Example 8.Consider the relational schemaR(A,B,C) with a functional dependency
A→ B and take an instancer = {ta = (1,1,1), tb = (1,1,2), tc = (1,2,3)} with the
total priority≻ = {(tc, ta),(tc, tb)}. The corresponding conflict graph can be found in
Figure 3. The set of repairs consists of two repairsRepF(r) = {r1 = {ta, tb}, r2 = {tc}}.
All the repairs are locally optimal.

ta

tb tc

Fig. 2.Use ofL-Rep.

tc

ta tb

Fig. 3.Non-categoricity ofL-Rep.

3.2 Semi-globally optimal repairs

In Example 8, we note that even though the priority suggest rejecting r1 from consid-
eration, the notion of local optimality is too weak to do so. The main reason is the
existence of violations of functional dependency with duplicates (ta andtb which are
not conflicting, but both of them conflict withtc). The notion of semi-global optimality,
however, effectively applies the priority in the situations of violations of one non-key
functional dependency: the repairr1 is not semi-globally optimal andr2 is. We denote
the family of all semi-globally optimal repairs byS-Repand we note thatS-Repis as
effective in enforcing priorities asL-Rep.

Proposition 3. S-Rep satisfies propertiesP1–P3. MoreoverS-Rep⊆ L-Rep and for
one key dependencyL-Rep coincides with SRep.

Also this family of preferred repairs does not satisfyP4.

Example 9.Consider the schemaR(A,B,C,D) with two functional dependenciesF =
{A→B,C→D} and suppose we have a database:r = {ta =(1,1,0,0), tb =(1,2,1,1), tc =
(2,1,1,2), td =(2,2,2,1), te=(0,0,2,2)}with a total priority≻= {(ta, tb),(tb, tc),(tc, td),(td, te)}.
The conflict graph is presented on Figure 4. The set of repairsis RepF(r) = {r1 =
{ta, tc, te}, r2 = {tb, td}}. This is also the set of semi-globally optimal repairs.

3.3 Globally optimal repairs

Situations similar to Example 9 are encountered in the setting where a relation has
more than one functional dependency which are violated by mutual conflicts (a tuple



ta

tb

tc

td

te

Fig. 4.Non-categoricity ofS-Rep.

may be involved in conflicts generated by more than one functional dependency) and
the user provides priority only for some of the violated functional dependencies. In
those settings the notion of global optimality follows our intuitions:r2 is not globally
optimal andr1 is.

Let G-Repbe the family of globally optimal repairs. This family satisfiesP4.

Proposition 4. G-Rep satisfies propertiesP1–P4. MoreoverG-Rep⊆ S-Rep and for
one functional dependencyG-Rep coincides withS-Rep.

Globally optimal repairs can be characterized in an alternative way.

Proposition 5. For a given priority≻ and two repairs, we say that r2 is preferredover
r1, denoted r1≪ r2, if

∀x∈ r1\ r2. ∃y∈ r2\ r1. y≻ x.

A repair r′ is globally optimal if and only if it’s≪-maximal (there is no repair r′′ such
that r′≪ r ′′).

This particular “lifting” of a preference on objects to a preference on sets of objects can
be found in other contexts. For example, a similar definitionis used for a preference
among different models of a logic program [21], or for a preference among different
worlds [15].

3.4 Importance of monotonicity

In Section 4 we study the computational implications of using priorities to handle in-
consistent databases. Restricting our choice when constructing a family of repairs to one
of the optimal classes of repairs, still does not prevent us to construct trivial families of
optimal repairs.

Example 10.For any instancer, any set of functional dependenciesF , and any priority
≻ for r andF , choose one extension≻′ that is total forr andF . Now, consider the family
T -Repwhich for an instancer, a set of functional dependenciesF , and a priority≻
consists of the only repair constructed with Algorithm 1 forr, F , and the corresponding
total priority≻′.

We can easily show that the repair obtained with Algorithm 1 for a total priority is
a globally optimal repair. ThereforeT -Repis a family of globally optimal repairs that
satisfiesP1, P3, andP4.

We conclude here that while optimality enforces use of priorities to eliminate repairs
from considerations, the monotonicity prevents from groundless elimination. Hence, in
the context of preferred consistent query answers it is natural to restrict our attention to
families of optimal repairs which satisfy the essential propertiesP1 andP2.



3.5 Common optimal repairs

Now, we investigate the question whether there are repairs common for any family of
optimal repairs that satisfies the propertiesP1 andP2, i.e. for a given instancer, a
given set of functional dependencies, and a given priority≻, is there a repairr ′ which
is in X -Rep≻F (r) for any familyX -Repof optimal repairs satisfyingP1 andP2. The
answer is negative for families of semi-globally (and thus also locally) optimal repairs.
For instance we can construct two families of semi-globallyoptimal repairs that define
the same set of preferred repairs asS-Repexcept that for the setting in Example 9 one
returns onlyr1 while the other onlyr2. Surprisingly, the situation is different for families
of globally optimal repairs.

Theorem 1. For every instance r, every set of functional dependencies F, and any every
priority ≻, there exists a repair r′ such that r′ ∈ X -Rep≻F (r) for any familyX -Rep of
globally optimal repairs that satisfiesP1 andP2.

We define a new family ofC -Repwhich selects onlycommonrepairs of all families
of globally optimal repairs satisfying the essential properties P1 andP2. C -Repis
another family of preferred repairs that satisfies all properties.

Proposition 6. C -Rep satisfies propertiesP1 andP4 andC -Rep⊆ G-Rep

Interestingly the family of common repairs has an alternative proceduralcharacteriza-
tion.

Proposition 7. For a given instance r, a given set of functional dependencies F, and
a given priority≺, the setC -Rep≺F (r) consists of all results of Algorithm 1 for any
sequence of choices in Step 3.

We also note that under some conditions, the propertiesP1 andP2 specify exactly
one family of globally optimal repairs.

Theorem 2. C -Rep andG-Rep coincide for priorities that cannot be extended to a
cyclic orientation of the conflict graph.

4 Computational properties

In this section we study the computational implications of using priorities to handle
inconsistent databases. Because of space restriction we skip the proofs (most of them
can be found in or easily based on reductions presented in [8]).

4.1 Data complexity

In our paper we use the notion ofdata complexity[22] which captures the complexity
of a problem as a function of the number of tuples in the database. The input consists of
the relation instance and the priority relation, while the database schema, the integrity
constraints, and the query are assumed to be fixed. For a family X -Repof preferred
repairs we study two fundamental computational problems:



(i) X -repair checking– determining if a database is a preferred repair of a given
database i.e., the complexity of the following set

B
X
F = {(r,≻, r ′) : r ′ ∈ X -Rep≻F (r)}.

(ii) X -consistent query answers– checking iftrue is an answer to a given query in every
preferred repair i.e., the complexity of the following set

D
X
F,Q = {(r,≻) : ∀r ′ ∈ X -Rep≻F (r).r ′ |= Q}.

4.2 Complexity results

First we state that computing preferred consistent query answer with any family of
semi-globally (and thus also globally) optimal repairs that satisfiesP1 andP2 leads
to intractability.

Theorem 3. For any familyX -Rep of semi-globally optimal repairs that satisfiesP1
and P2, there exists a set of two functional dependencies F and a quantifier-free
ground query Q (consisting of one atom) to which computing the X -consistent answer
is co-NP-hard.

It’s an open question whether a similar statement holds for families of locally optimal
repairs. We note that computing preferred consistent queryanswers is co-NP-hard if we
consider a slightly restricted locally optimal repairs: locally optimal repairs for which
there doesn’t exists a pair of tuplesx1,x2 which can be replaced with a tupley such that
y≻ x1 andy≻ x2 and the resulting set of tuples is consistent. Therefore we state the
following conjecture.

Conjecture 1.For any familyX -Repof preferred repairs satisfyingP1,P2, and global
local optimality computingX -consistent answers is co-NP-hard.

Another argument for this conjecture is the intractabilityof computingL-consistent
query answers.

Theorem 4. TheL-repair checking is in PTIME . There exists a set of two functional
dependencies and a quantifier-free query (consisting of oneatom only) for which com-
putingL-consistent answers co-NP-complete.

To find if a repairr ′ is semi-globally optimal we seek a tupleyr \ r ′ whose all
neighbors inr ′ are dominated byy. Such a tuple exists if and only ifr ′ is not semi-
globally optimal. The tractability ofS-checking implies that computingS-consistent
answers is in co-NP: the nondeterministic machine uses a polynomial in the size ofr
number of nondeterministic steps to construct a repairr ′, checks ifr ′ is semi-globally
optimal; the machine finds the answer to the query inr ′ (if r ′ is not semi-optimal then
the machine halts with the answer ‘yes’). With Theorem 3 we obtain:

Corollary 1. TheS-repair checking is in PTIME and computingS-consistent answers
is co-NP-complete.



Checking if a repair is globally optimal requires, however,an essential use of nondeter-
minism. This also promotes computing preferred consistentquery answers to a higher
level of the polynomial hierarchy.

Theorem 5. There exists a set of five functional dependencies for which the G-repair
checking is co-NP-complete. There exists a set of four functional dependencies and a
quantifier-free query (consisting of one atom only) for which computingG-consistent
answers isΠ p

2 -complete.

The procedural nature of common repairs makes it possible tocheck if a repair
r ′ belongs toC -Rep≻F (r) with a simulation of Algorithm 1 with the choices in Step 3
restricted toω≻(r)∩ r ′. Naturally this process can be performed in polynomial time.
Again using Theorem 3 we get:

Corollary 2. TheC -repair checking is in PTIME and computingC -consistent answers
is co-NP-complete.

5 Related work

We limit our discussion to work on using priorities to maintain consistency and facilitate
resolution of conflicts.

The first to notice the importance of priorities in information systems is [9]. The
authors study there the problem of updates of databases containing propositional sen-
tences. The priority is expressed by storing a natural number with each clause. If during
an update (inserting or deleting a sentence) the inconsistency arises, then the priorities
are used in a fashion similar toG-repairs to select minimally different repairs. We note,
however, that the chosen representation of priorities imposes a significant restriction
on the class of considered priorities. In particular it assumes transitivity of the priority
on conflicting facts i.e. if factsa, b, andc are pair-wise conflicting anda has a higher
priority thanb andb has a higher priority thanc, then the priority ofa is higher thanc.
This assumption cannot be always fulfilled in the context of inconsistent databases. For
example the conflicts betweena andb, and betweenb andc may be caused by violation
of one integrity constraints while the conflict betweena andc is introduced by a differ-
ent constraint. While the user may supply us with a rule assigning priorities to conflicts
created by the first integrity constraint, the user may not wish to put any priorities on
any conflicts created by the other constraint.

A similar representation of priorities used to resolve inconsistency in first-order
theories is studied in [4], where the inconsistent set of clauses is stratified (again the
lowest strata has the highest priority). Then preferred maximal consistent subtheories
are constructed in a manner analogous toC -repairs. Furthermore, this approach is gen-
eralized to priorities being a partial orders, by considering all extensions to weak orders.
Again, however, this approach assumes transitivity of priority on conflicts, which as we
explained previously may be considered a significant restriction.

In [19] priorities are studied to facilitate the process ofbelief revision. A belief state
is represented as an ordered list of propositional formulaeand the revision operation
simply adds the given sentence at the end of the given belief state. This representation



of belief state allows to keep track of revision history, which is later used to impose
a preference order on the possible interpretations of the belief state. Only maximally
preferred interpretations are used when defining the entailment relation.

In the context of logic programs, priorities among rules canbe used to handle incon-
sistent logic programs (where rules imply contradictory facts). More preferred rules are
satisfied, possibly at the cost of violating less important ones. In a manner analogous
to≪, [21] lifts a total order on rules to a preference on (extended) answers sets. When
computing answers only maximally preferred answers sets are considered.

[20] investigate disjunctive logic programs with priorities on facts. A a transitive
and reflexive closure of user supplied priorities on facts isused to define a relation
of preference on models of the program. The definition of preference on models of the
disjunctive program is essentially different from the characterization of globally optimal
repairs in Proposition 5. The answer to a program in the extended framework consists of
all maximally preferred answer sets. The main shortcoming of using this framework is
it’s computational infeasibility (which is specific to decision problems involving general
disjunctive programs): computing answers to ground queries to disjunctive prioritized
logic programs under cautious (brave) semantics isΠ p

3 -complete (resp.Σ p
3 -complete).

A simpler approach to the problem of inconsistent logic programs is presented in
[14]. There conflicting facts are removed from the model unless the priority specifies
how to resolve the conflict. Because only programs without disjunction are considered,
this approach always returns exactly one model of the input program. Constructing pre-
ferred repairs in a corresponding fashion (by removing all conflicts unless the priority
indicates a resolution) would similarly return exactly onedatabase instance (fulfillment
of P1 andP4). However, if the priority does not specify how to resolve every conflict,
the returned instance is not a maximal set of tuples and therefore it is not a repair. Such
an approach leads to a loss of (disjunctive) information anddo not satisfyP2 andP3.

[10] proposes a framework ofconditioned active integrity constraints, which al-
lows the user to specify the way some of the conflicts created with the constraint can
be resolved. This framework satisfies propertiesP1 andP3 and doesn’t satisfyP2
andP4. [10] also describes how to translate conditioned active integrity constraints
into a prioritized logic program [20], whose preferred models correspond to maxi-
mally preferred repairs. We note that the framework of prioritized logic programming
is computationally more powerful (computing answers underthe brave semantics is
Σ p

3 -complete) than required by the problem of finding if an atom is present in any re-
pair (Σ p

2 -complete). It is yet to be seen if less powerful programmingenvironment (like
general disjunctive logic programs) can be used to compute preferred answers.

[17] uses ranking functions on tuples to resolve conflicts bytaking only the tuple
with highest rank and removing others. This approach constructs a unique repair under
the assumption that no two different tuples are of equal rank(satisfaction ofP4). If this
assumption is not satisfied and the tuples contain numeric values, a new value, called
the fusion, can be calculated from the conflicting tuples (then, however, the constructed
instance is not a repair in the sense of Definition 1 which means a possible loss of
information).

A different approach based on ranking is studied in [13]. Theauthors consider poly-
nomial functions that are used to rank repairs. When computing preferred consistent



query answers, only repairs with the highest rank are considered. The propertyP3 is
trivially satisfied, but because this form of preference information does not have natu-
ral notions of extensions and maximality, it is hard to discuss postulatesP2 andP4.
Also, the preference among repairs in this method is not based on the way in which the
conflicts are resolved.

An approach where the user has a certain degree of control over the way the conflicts
are resolved is presented in [12]. Using repair constraintsthe user can restrict considered
repairs to those where tuples from one relation have been removed only if similar tuples
have been removed from some other relation. This approach satisfiesP2 but notP1.
A method of weakening the repair constraints is propose to get P1, however this comes
at the price of losingP2.

6 Conclusions and future work

In this paper we proposed a general framework of preferred repairs and preferred consis-
tent query answer. We also proposed a set of desired properties a family of preferred re-
pairs should satisfy. We presented 4 families of preferred repairs:L-Rep, S-Rep, G-Rep,
andC -Rep. Figure 5 summarizes the computational complexity results; its first row is
taken from [6].

Repair Check
Consistent Answers to

Possible Applications
{∀,∃}-free queriesconjunctive queries

Rep PTIME PTIME co-NP-complete no priorities given
L-Rep PTIME co-NP-complete key (no duplicates)
S-Rep PTIME co-NP-complete one FD (duplicates)
G-Repco-NP-complete Π2

p-complete many FDs with
mutual conflictsC -Rep PTIME co-NP-complete

Fig. 5.Summary of complexity results.

We envision several directions for further work. Along the lines of [2], the compu-
tational complexity results could be further studied, by assuming the conformance of
functional dependencies with BCNF.

Extending our approach to cyclic priorities is an interesting and challenging is-
sue. Including priorities in similar frameworks [12] of preferences leads to loosing the
monotonicity. A modified, conditional, version of monotonicity may be necessary to
capture non-trivial families of repairs.

The last is a generalization of our framework to a broader class of constraints. Con-
flict graphs can be generalized to hypergraphs [6], which allow to handle broader class
of denial constraints. Then, more than two tuples can be involved in a single conflict
and the current notion of priority does not have a clear meaning.
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