

Edinburgh Research Explorer

Simple Schemas for Unordered XML

Citation for published version:
Boneva, I, Ciucanu, R & Staworko, S 2013, Simple Schemas for Unordered XML. in Proceedings of the
16th International Workshop on the Web and Databases 2013, WebDB 2013, New York, NY, USA, June 23,
2013.. pp. 13-18.

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Proceedings of the 16th International Workshop on the Web and Databases 2013, WebDB 2013, New York, NY,
USA, June 23, 2013.

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 05. Apr. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/43712840?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://www.research.ed.ac.uk/portal/en/publications/simple-schemas-for-unordered-xml(b51be574-5340-4d43-aceb-33f66eb40164).html

ar
X

iv
:1

30
3.

42
77

v4
 [

cs
.D

B
]

 2
0

Ju
n

20
13

Simple Schemas for Unordered XML

Iovka Boneva Radu Ciucanu S lawek Staworko

University of Lille & INRIA, France

Abstract

We consider unordered XML, where the relative order among siblings is ignored, and pro-
pose two simple yet practical schema formalisms: disjunctive multiplicity schemas (DMS),
and its restriction, disjunction-free multiplicity schemas (MS). We investigate their compu-
tational properties and characterize the complexity of the following static analysis problems:
schema satisfiability, membership of a tree to the language of a schema, schema contain-
ment, twig query satisfiability, implication, and containment in the presence of schema. Our
research indicates that the proposed formalisms retain much of the expressiveness of DTDs
without an increase in computational complexity.

1 Introduction

When XML is used for document-centric applications, the relative order among the elements
is typically important e.g., the relative order of paragraphs and chapters in a book. On the
other hand, in case of data-centric XML applications, the order among the elements may be
unimportant [1]. In this paper we focus on the latter use case. As an example, take a trivialized
fragment of an XML document containing the DBLP repository in Figure 1. While the order of
the elements title, author, and year may differ from one publication to another, it has no impact
on the semantics of the data stored in this semi-structured database.

A schema for XML is a description of the type of admissible documents, typically defining
for every node its content model i.e., the children nodes it must, may, or cannot contain. For
instance, in the DBLP example, we shall require every article to have exactly one title, one year,
and one or more author’s. A book may additionally contain one publisher and may also have
one or more editor’s instead of author’s. A schema has numerous important uses. For instance,
it allows to validate a document against a schema and identify potential errors. A schema also
serves as a reference for any user who does not know yet the structure of the XML document
and attempts to query or modify its contents.

The Document Type Definition (DTD), the most widespread XML schema formalism for (or-
dered) XML [6, 13], is essentially a set of rules associating with each label a regular expression
that defines the admissible sequences of children. The DTDs are best fitted towards ordered con-
tent because they use regular expressions, a formalism that defines sequences of labels. However,
when unordered content model needs to be defined, there is a tendency to use over-permissive
regular expressions. For instance, the DTD below corresponds to the one used in practice for
the DBLP repository:

dblp Ñ (article | book)˚

article Ñ (title | year | author)˚

book Ñ (title | year | author | editor | publisher)˚

http://arxiv.org/abs/1303.4277v4

dblp

book

year title author publisher

“1994”

“Computational

complexity”

“C . Papadimitriou”

“Addison-Wesley”

article

author year title

“L. Valiant”

“1984”

“A theory

of the learnable”

Figure 1: A trivialized DBLP repository.

This DTD allows an article to contain any number of title, year, and author elements. A book

may also have any number of title, year, author, editor, and publisher elements. These regular
expressions are clearly over-permissive because they allow documents that do not follow the
intuitive guidelines set out earlier e.g., a document containing an article with two title’s and no
author should not be admissible.

While it is possible to capture unordered content models with regular expressions, a simple
pumping argument shows that their size may need to be exponential in the number of possible
labels of the children. In case of the DBLP repository, this number reaches values up to 12,
which basically precludes any practical use of such regular expressions. This suggests that over-
permissive regular expressions may be employed for the reasons of conciseness and readability.

The use of over-permissive regular expressions, apart from allowing documents that do not
follow the guidelines, has other negative consequences e.g., in static analysis tasks that involve
the schema. Take for example the following two twig queries [2, 25]:

{dblp{bookrauthor “ “C . Papadimitriou”s

{dblp{bookrauthor “ “C . Papadimitriou”srtitles

The first query selects the elements labeled book, children of dblp and having an author contain-
ing the text “C. Papadimitriou.” The second query additionally requires that book has a title.
Naturally, these two queries should be equivalent because every book element should have a title

child. However, the DTD above does not capture properly this requirement, and, consequently,
the two queries are not equivalent w.r.t. this DTD.

In this paper, we study two new schema formalisms: the disjunctive multiplicity schema
(DMS) and its restriction, the disjunction-free multiplicity schema (MS). While they use a user-
friendly syntax inspired by DTDs, they define unordered content model only, and, therefore, they
are better suited for unordered XML. A DMS is a set of rules associating with each label the
possible number of occurrences for all the allowed children labels by using multiplicities : “˚” (0
or more occurrences), “`” (1 or more), “?” (0 or 1), “1” (exactly 1 occurrence; often omitted for
brevity). Additionally, alternatives can be specified using restricted disjunction (“|”) and all the
conditions are gathered with unordered concatenation (“||”). For instance, the following DMS
captures precisely the intuitive requirements for the DBLP repository:

dblp Ñ article˚|| book˚

article Ñ title || year || author`

book Ñ title || year || publisher?|| (author` | editor`)

In particular, an article must have exactly one title, exactly one year, and at least one author. A
book may additionally have a publisher and may have one or more editor’s instead of author’s.

2

Problem of interest DTD DMS disjunction-free DTD MS

Schema satisfiability PTIME [9, 21] PTIME (Prop. 4.7) PTIME [9, 21] PTIME (Prop. 4.7)

Membership PTIME [9, 21] PTIME (Prop. 4.7) PTIME [9, 21] PTIME (Prop. 4.7)

Schema containment PSPACE-c:/PTIME [9, 21] PTIME (Th. 4.6) coNP-h:/PTIME [9, 16] PTIME (Th. 4.6)

Query satisfiability; NP-c [4] NP-c (Prop. 4.8) PTIME [4] PTIME (Th. 4.16)

Query implication; EXPTIME-c [19] EXPTIME-c (Prop. 4.9) PTIME (Cor. 4.18) PTIME (Th. 4.16)

Query containment; EXPTIME-c [19] EXPTIME-c (Prop. 4.9) coNP-c (Cor. 4.18) coNP-c (Th. 4.17)
: when non-deterministic regular expressions are used. ; for twig queries.

Table 1: Summary of complexity results.

Note that, unlike the DTD defined earlier, this DMS does not allow documents having an article

with several title’s or without any author.
There has been an attempt to use DTD-like rule based schemas to define unordered content

models by interpreting the regular expressions under commutative closure [3]: essentially, an
unordered collection of children matches a regular expression if there exists an ordering that
matches the regular expression in the standard way. However, testing whether there exists a
permutation of a word that matches a regular expression is NP-complete [15], which implies
a significant increase in computational complexity of the membership problem i.e., validating
an XML document against the schema. The schema formalisms proposed in this paper, DMS
and MS, can be seen as DTDs interpreted under commutative closure using restricted classes
of regular expressions. Two natural questions arise: do these restrictions allow us to avoid the
increase in computational complexity, and how much of the expressiveness of DTDs is retained.
The answers are generally positive. There is no increase in computational complexity but also
no decrease (cf. Table 1). Furthermore, the proposed schema formalisms seem to capture a
significant part of the expressiveness of DTDs used in practice (Section 5).

We study the complexity of several basic decision problems: schema satisfiability, membership
of a tree to the language of a schema, containment of two schemas, twig query satisfiability,
implication, and containment in the presence of schema. Table 1 contains the summary of
complexity results compared with general DTDs and disjunction-free DTDs. The lower bounds
for the decision problems for DMS and MS are generally obtained with easy adaptations of their
counterparts for general DTDs and disjunction-free DTDs. To obtain upper bounds we develop
several new tools. Dependency graphs for MS and a generalized definition of an embedding of a
query help us to reason about query satisfiability, query implication, and query containment in
the presence of MS. An alternative characterization of DMS with characterizing triples is used to
reduce the containment of DMS to the containment of their characterizing triples, which can be
tested in PTIME. We add that our constructions and results for MS extend easily to disjunction-
free DTDs and allow to solve the problems of query implication and query containment, which,
to the best of our knowledge, have not been previously studied for disjunction-free DTDs.
Related work. Languages of unordered trees can be expressed by logic formalisms or by tree
automata. Boneva et al. [7, 8] make a survey on such formalisms and compare their expressiveness.
The fundamental difference resides in the kind of constraints that can be expressed for the allowed
collections of children for some node. We mention here only formalisms introduced in the context
of XML. Presburger automata [24], sheaves automata [11], and the TQL logic [10] allow to express
Presburger constraints on the numbers of occurrences of the different symbols among the children
of some node. This is also equivalent to considering DTDs under commutative closure, similarly
to [3]. The consequence of the high expressive power is that the membership problem is NP-
complete for an unbounded alphabet [15]. Therefore, these formalisms were not extensively
used in practice. Suitable restrictions on Presburger automata and on the TQL logic allow to

3

obtain the same expressiveness as the MSO logic on unordered trees [7, 8]. DMS are strictly less
expressive than these MSO-equivalent languages. Static analysis problems involving twig queries
were not studied for these languages. Additionally, we believe that DMS are more appropriate
to be used as schema languages, as they were designed as such, in particular regarding the
more user-friendly DTD-like syntax. As mentioned earlier, unordered content model can also be
defined by DTDs defining commutatively-closed sets of ordered trees. An (ordered) tree matches
such a DTD iff all tree obtained by reordering of sibling nodes also matches the DTD. This also
turns out to be equally expressive as MSO on unordered trees [7, 8]. However, such a DTD may
be of exponential size w.r.t. the size of the alphabet and, moreover, it is PSPACE-complete to
test whether a DTD defines a commutatively-closed set of trees [18], which makes such DTDs
unusable in practice. XML Schema allow for a bounded number of symbols to appear in arbitrary
order, and RELAX NG allows to interleave sequences of symbols of bounded length. In contrast,
the Kleene star in DMS allows for unbounded unordered collections of children. Schematron
allows to specify very general constraints on the number of occurrences of symbols among the
children of a node, in particular Presburger constraints are expressible. Schema languages using
regular expressions with unbounded interleaving were studied in [12]. These are more expressive
than DMS but exhibit high computational complexity of inclusion [12] and membership [5]. To
the best of our knowledge, the static analysis problems involving queries were not studied for
these languages when unordered content is allowed.
Organization. The paper is organized as follows. In Section 2 we introduce some preliminary
notions, while in Section 3 we present our schema formalisms. In Section 4 we define the problems
of interest and then we analyze them for DMS (Subsection 4.1) and for MS (Subsection 4.2).
In Section 5 we discuss the expressiveness of the proposed formalisms, while in Section 6 we
summarize our results and outline further directions. Because of space restriction, we present
only sketches of some proofs; complete proofs will be given in the full version of the paper, which
is currently in preparation for journal submission.

2 Preliminaries

Throughout this paper we assume an alphabet Σ which is a finite set of symbols.
Trees. We model XML documents with unordered labeled trees. Formally, a tree t is a tuple
pNt, root t, labt, child tq, where Nt is a finite set of nodes, root t P Nt is a distinguished root node,
labt : Nt Ñ Σ is a labeling function, and child t Ď Nt ˆ Nt is the parent-child relation. We
assume that the relation child t is acyclic and require every non-root node to have exactly one
predecessor in this relation. By Tree we denote the set of all finite trees.

r

a b

a

c

b

a

b

(a) Tree t0.

r

‹

a‹

(b) Twig query q0.

Figure 2: A tree and a twig query.

Queries. We work with the class of twig queries, which are essentially unordered trees whose
nodes may be additionally labeled with a distinguished wildcard symbol ‹ R Σ and that use two

4

types of edges, child ({) and descendant ({{), corresponding to the standard XPath axes. Note
that the semantics of {{-edge is that of a proper descendant (and not that of descendant-or-self).
Formally, a twig query q is a tuple pNq, rootq, labq, child q, descqq, where Nq is a finite set of nodes,
rootq P Nq is the root node, labq : Nq Ñ ΣYt‹u is a labeling function, child q Ď NqˆNq is a set of
child edges, and descq Ď NqˆNq is a set of descendant edges. We assume that child qXdescq “ H
and that the relation child qYdescq is acyclic and we require every non-root node to have exactly
one predecessor in this relation. By Twig we denote the set of all twig queries. Twig queries are
often presented using the abbreviated XPath syntax [25] e.g., the query q0 in Figure 2(b) can be
written as r{‹r‹s{{a.
Embeddings. We define the semantics of twig queries using the notion of embedding which is
essentially a mapping of nodes of a query to the nodes of a tree that respects the semantics of
the edges of the query. Formally, for a query q P Twig and a tree t P Tree, an embedding of q in
t is a function λ : Nq Ñ Nt such that:

1. λprootqq “ root t,

2. for every pn, n1q P child q, pλpnq, λpn
1qq P child t,

3. for every pn, n1q P descq, pλpnq, λpn
1qq P pchild tq

` (the transitive closure of child t),

4. for every n P Nq, labqpnq “ ‹ or labqpnq “ labtpλpnqq.

If there exists an embedding from q to t we say that t satisfies q and we write t |ù q. By Lpqq
we denote the set of all the trees satisfying q. Note that we do not require the embedding to
be injective i.e., two nodes of the query may be mapped to the same node of the tree. Figure 3
presents all embeddings of the query q0 in the tree t0 from Figure 2.

r

a b

a

c

b

a

b

r

‹

a‹

r

‹

a‹

Figure 3: Embeddings of q0 in t0.

Unordered words. An unordered word is essentially a multiset of symbols i.e., a function
w : Σ Ñ N0 mapping symbols from the alphabet to natural numbers, and we call the number
wpaq the number of occurrences of the symbol a in w. We also write a P w as a shorthand for
wpaq ‰ 0. An empty word ε is an unordered word that has 0 occurrences of every symbol i.e.,
εpaq “ 0 for every a P Σ. We often use a simple representation of unordered words, writing each
symbol in the alphabet the number of times it occurs in the unordered word. For example, when
the alphabet is Σ “ ta, b, cu, w0 “ aaacc stands for the function w0paq “ 3, w0pbq “ 0, and
w0pcq “ 2.

The (unordered) concatenation of two unordered words w1 and w2 is defined as the multiset
union w1Zw2 i.e., the function defined as pw1Zw2qpaq “ w1paq`w2paq for all a P Σ. For instance,
aaacc Z abbc “ aaaabbccc. Note that ε is the identity element of the unordered concatenation
εZw “ wZ ε “ w for all unordered word w. Also, given an unordered word w, by wi we denote
the concatenation w Z . . .Z w (i times).

A language is a set of unordered words. The unordered concatenation of two languages L1

and L2 is a language L1 ZL2 “ tw1 Zw2 | w1 P L1, w2 P L2u. For instance, if L1 “ ta, aacu and
L2 “ tac, b, εu, then L1 Z L2 “ ta, ab, aac, aabc, aaaccu.

5

3 Multiplicity schemas

A multiplicity is an element from the set t˚,`, ?, 0, 1u. We define the function J¨K mapping
multiplicities to sets of natural numbers. More precisely:

J˚K “ t0, 1, 2, . . .u, J`K “ t1, 2, . . .u, J?K “ t0, 1u, J1K “ t1u, J0K “ t0u.

Given a symbol a P Σ and a multiplicity M , the language of aM , denoted LpaM q, is tai | i P JMKu.
For example, Lpa`q “ ta, aa, . . .u, Lpb0q “ tεu, and Lpc?q “ tε, cu.

A disjunctive multiplicity expression E is:

E :“ DM1

1
|| . . . ||DMn

n ,

where for all 1 ď i ď n, Mi is a multiplicity and each Di is:

Di :“ a
M 1

1

1
| . . . | a

M 1

k

k ,

where for all 1 ď j ď k, M 1
j is a multiplicity and aj P Σ. Moreover, we require that every symbol

a P Σ is present at most once in a disjunctive multiplicity expression. For instance, pa | bq || pc | dq
is a disjunctive multiplicity expression, but pa | bq || c || pa | dq is not because a appears twice. A
disjunction-free multiplicity expression is an expression which uses no disjunction symbol “|” i.e.,
an expression of the form aM1

1
|| . . . || aMk

k , where for all 1 ď i ď k, the ai’s are pairwise distinct
symbols in the alphabet and the Mi’s are multiplicities.

The language of a disjunctive multiplicity expression is:

LpaM1

1
| . . . | aMk

k q “ LpaM1

1
q Y . . .Y LpaMk

k q,

LpDM q “ tw1 Z . . .Z wi | w1, . . . , wi P LpDq ^ i P JMKu,

LpDM1

1
|| . . . ||DMn

n q “ LpDM1

1
q Z . . .Z LpDMn

n q.

If an unordered word w belongs to the language of a disjunctive multiplicity expression E, we
denote it w |ù E. When a symbol a (resp. a disjunctive multiplicity expressionE) has multiplicity
1, we often write a (resp. E) instead of a1 (resp. E1). Moreover, we omit writing symbols and
disjunctive multiplicity expressions with multiplicity 0. Take for instance, E0 “ a` ||pb | cq||d? and
note that both the symbols b and c as well as the disjunction pb | cq have an implicit multiplicity
1. The language of E0 is:

LpE0q “ ta
ibjckdℓ | i, j, k, ℓ P N0, i ě 1, j ` k “ 1, ℓ ď 1u.

Next, we formally define the proposed schema formalisms.

Definition 3.1 A disjunctive multiplicity schema (DMS) is a tuple S “ prootS , RSq, where
rootS P Σ is a designated root label and RS maps symbols in Σ to disjunctive multiplicity ex-
pressions. By DMS we denote the set of all disjunctive multiplicity schemas. A disjunction-free
multiplicity schema (MS) S “ prootS , RSq is a restriction of the DMS, where RS maps symbols
in Σ to disjunction-free multiplicity expressions. By MS we denote the set of all disjunction-free
multiplicity schemas.

To define satisfiabily of a DMS (or MS) S by a tree t we first define the unordered word chn
t

of children of a node n P Nt of t i.e., chn
t paq “ |tm P Nt | pn,mq P child t ^ labtpmq “ au|.

Now, a tree t satisfies S, in symbols t |ù S, if labtproot tq “ rootS and for any node n P Nt,
chn

t P LpRSplabtpnqqq. By LpSq Ď Tree we denote the set of all the trees satisfying S.
In the sequel, we represent a schema S “ prootS , RSq as a set of rules of the form aÑ RSpaq,

for any a P Σ. If LpRSpaqq “ ε, then we write aÑ ǫ or we simply omit writing such a rule.

6

Example 3.2 We present schemas S1, S2, S3, S4 illustrating the formalisms defined above. They
have the root label r and the rules:

S1 : rÑ a || b˚ || c? aÑ b? bÑ a? cÑ b

S2 : rÑ c || b || a aÑ b? bÑ a cÑ b

S3 : rÑ pa | bq` || c aÑ b? bÑ a? cÑ b

S4 : rÑ pa | b | cq˚ aÑ ǫ bÑ a? cÑ b

S1 and S2 are MS , while S3 and S4 are DMS . The tree t0 from Figure 2(a) satisfies only S1 and
S3. ˝

4 Static analysis

We first define the problems of interest and we formally state the corresponding decision problems
parameterized by the class of schema and, when appropriate, by a class of queries.
Schema satisfiability – checking if there exists a tree satisfying the given schema:

SATS “ tS P S | Dt P Tree. t |ù Su.

Membership – checking if the given tree satisfies the given schema:

MEMBS “ tpS, tq P S ˆ Tree | t |ù Su.

Schema containment – checking if every tree satisfying one given schema satisfies another
given schema:

CNTS “ tpS1, S2q P S ˆ S | LpS1q Ď LpS2qu.

Query satisfiability by schema – checking if there exists a tree that satisfies the given schema
and the given query:

SATS,Q “ tpS, qq P S ˆQ | Dt P LpSq. t |ù qu.

Query implication by schema – checking if every tree satisfying the given schema satisfies
also the given query:

IMPLS,Q “ tpS, qq P S ˆQ | @t P LpSq. t |ù qu.

Query containment in the presence of schema – checking if every tree satisfying the given
schema and one given query also satisfies another given query:

CNTS,Q “ tpp, q, Sq P QˆQˆ S | @t P LpSq. t |ù pñ t |ù qu.

We next study these decision problems for DMS an MS.

4.1 Disjunctive multiplicity schema

In this subsection we present the static analysis for DMS. We first introduce the notion of
normalized disjunctive multiplicity expressions and an alternative definition with characterizing
triples. Finally, we state the complexity results for DMS.

7

4.1.1 Normalized disjunctive multiplicity expressions

Recall that a disjunctive multiplicity expression has the form E “ DM1

1
||. . .||DMm

m . Intuitively, in
a normalized disjunctive multiplicity expression, every disjunction DMi

i has one of the following
three forms:

1. pa1 | . . . | anq
`,

2. paM1

1
| . . . | aMn

n q, where @j. 1 ď j ď n. 0 R JMjK,

3. paM1

1
| . . . | aMn

n q, where @j. 1 ď j ď n. 0 P JMjK.

Given a disjunctive multiplicity expression E “ DM1

1
|| . . . ||DMm

m , we denote by ΣDi
the set of

symbols used in the disjunction from Di and by Ma the multiplicity corresponding to a symbol
a. Formally, we say that E is normalized if the following two conditions are satisfied:

@i. 1 ď i ď m. Mi ‰ 1ñMi “ `^ @a P ΣDi
. Ma “ 1,

@i. 1 ď i ď m. pDa P ΣDi
. 0 P JMaKq ñ p@a1 P ΣDi

. 0 P JMa1

Kq.

Any DMi

i can be rewritten as an equivalent normalized disjunctive multiplicity expression using
the following rules:

• paM1

1
| . . . | aMn

n q˚ goes to a˚
1
|| . . . || a˚

n.

• paM1

1
| . . . | aMn

n q? goes to pa
M 1

1

1
| . . . | a

M 1

n

n q, where @j. 1 ď j ď n. JM 1
jK “ t0u Y JMjK.

• paM1

1
| . . . | aMn

n q, where Dj. 1 ď j ď n. 0 P JMjK goes to pa
M 1

1

1
| . . . | a

M 1

n

n q, where
@j. 1 ď j ď n. JM 1

jK “ t0u Y JMjK.

• paM1

1
| . . . | aMn

n q`, where Dj. 1 ď j ď n. 0 P JMjK goes to a˚
1
|| . . . || a˚

n.

• paM1

1
| . . . | aMn

n q`, where @j. 1 ď j ď n. 0 R JMjK goes to pa1 | . . . | anq
`.

• paM1

1
| . . . | aMn

n q0 is removed.

• a0 occurring in some disjunction is removed.

Note that each of the rewriting steps gives an equivalent expression. From now on, we assume
w.l.o.g. that all the disjunctive multiplicity expressions that we manipulate are normalized.

4.1.2 Alternative definition with characterizing triples

We propose an alternative definition of the language of a disjunctive multiplicity expression
using a characterizing triple. Moreover, we show that each element of the triple has a compact
representation which is polynomial in the size of the alphabet and computable in PTIME. Recall
that the disjunctive multiplicity expressions do not allow repetitions of symbols hence they have
size linear in |Σ|. Next, we prove that the inclusion of two disjunctive multiplicity expressions
is equivalent to the inclusion of the characterizing triples. Thus, we can view the characterizing
triple as a normal form of a disjunctive multiplicity expression. Recall that a P w means that
wpaq ‰ 0.

Given a disjunctive multiplicity expressionE, we define the characterizing triple pCE , NE , PEq
consisting of the following sets:

8

• The conflicting pairs of siblings CE consists of pairs of symbols in Σ such that E defines
no word using both symbols simultaneously:

CE “ tpa1, a2q P Σˆ Σ | Dw P LpEq. a1 P w ^ a2 P wu.

• The extended cardinality map NE captures for each symbol in the alphabet the possible
numbers of its occurrences in the unordered words defined by E:

NE “ tpa, wpaqq P Σˆ N0 | w P LpEqu.

• The sets of required symbols PE which captures symbols that must be present in every
word; essentially, a set of symbols X belongs to PE if every word defined by E contains at
least one element from X :

PE “ tX Ď Σ | @w P LpEq. Da P X. a P wu.

As an example we take E0 “ a` || pb | cq || d?. Because PE is closed under supersets, we list only
its minimal elements:

CE0
“ tpb, cq, pc, bqu, PE0

“ ttau, tb, cu, . . .u,

NE0
“ tpb, 0q, pb, 1q, pc, 0q, pc, 1q, pd, 0q, pd, 1q, pa, 1q, pa, 2q, . . .u.

An unordered word w is consistent with the triple pCE , NE, PEq corresponding to a disjunctive
multiplicity expression E, denoted w |ù pCE , NE , PEq if w is consistent with CE , NE , and PE ,
respectively. Formally:

w |ù CE :“ @pa1, a2q P CE . pa1 P w ñ a2 R wq ^ pa2 P wñ a1 R wq,

w |ù NE :“ @a P Σ. pa, wpaqq P NE ,

w |ù PE :“ @X P PE . Da P X. a P w.

Furthermore, each element of a characterizing triple has a compact representation, which is poly-
nomial in the size of the alphabet and computable in PTIME. Next, we present the construction
for each compact representation:

• Given a disjunctive multiplicity expression E “ DM1

1
||. . . ||DMm

m , the size of CE is quadratic
in |Σ|, but we can represent it linearly in |Σ|. Thus, we obtain C˚

E , which consists intuitively
of non-singleton sets of labels from the same disjunction from E such that the multiplicity
associated to the disjunction is 1:

C˚
E “ tX Ď ΣD1

Y . . .Y ΣDm
| @a, a1 P X. a ‰ a1 ñ pa, a1q P CEu.

Then, pa, bq P Σ ˆ Σ belongs to CE iff one of the following holds: (i) there exists X P C˚
E

s.t. ta, bu Ď X , or (ii) a R ΣD1
Y . . .Y ΣDm

or b R ΣD1
Y . . .Y ΣDm

.

• Given a disjunctive multiplicity expression E “ DM1

1
|| . . . || DMm

m , note that the set NE

may be infinite, but it can be represented in a compact manner using multiplicities: for any
label a, the set tx P N0 | pa, xq P NEu is representable by a multiplicity. Given a symbol
a P Σ, by N˚

Epaq we denote the multiplicity M such that JMK “ tx P N0 | pa, xq P NEu.

9

Moreover, for any a P Σ, the multiplicity N˚
Epaq can be easily obtained from E. More

precisely:

N˚
Epaq “

$

’

’

’

&

’

’

’

%

0, if @i. 1 ď i ď m. a R ΣDi
,

Ma, if Di. 1 ď i ď m. ΣDi
“ tau,

?, if Di. 1 ď i ď m. a P ΣDi
^Mi “ 1^Ma P t?, 1u,

˚, otherwise.

Then, obviously, pa, xq P NE iff x P JN˚
EpaqK.

• PE may be exponential in |Σ|, but it can be represented with its Ď-minimal elements:

P˚
E “ tX P PE | DX

1 P PE . X
1 Ă Xu.

For a disjunctive multiplicity expression E “ DM1

1
|| . . . ||DMm

m , P˚
E consists intuitively of

the disjunctions from E such that the labels from the disjunction have multiplicities not
accepting 0 occurrences. Therefore, we can construct P˚

E in a straightforward manner:

P˚
E “ tΣDi

| 1 ď i ď m^ @a P ΣDi
. 0 R JMaKu.

Then X P PE iff there exists X 1 P P˚
E s.t. X 1 Ď X .

For example, for the same E0 “ a` || pb | cq || d?, we have:

C˚
E0
“ ttb, cuu, P˚

E0
“ ttau, tb, cuu,

N˚
E0
paq “ `, N˚

E0
pbq “ N˚

E0
pcq “ N˚

E0
pdq “?.

We also illustrate the construction of the compact representation of the characterizing triple on
a more complex disjunctive multiplicity expression:

E1 “ pa | bq
` || pc? | d˚ | e˚q || f` || g? || ph` | iq

over the alphabet Σ “ ta, b, c, d, e, f, g, h, i, ju. We obtain:

C˚
E1
“ ttc, d, eu, th, iuu,

P˚
E1
“ tta, bu, tfu, th, iuu,

N˚
E1
paq “ N˚

E1
pbq “ N˚

E1
pdq “ N˚

E1
peq “ N˚

E1
phq “ ˚,

N˚
E1
pcq “ N˚

E1
pgq “ N˚

E1
piq “?, N˚

E1
pfq “ `, N˚

E1
pjq “ 0.

We use the characterizing triple to give an alternative characterization of the membership of an
unordered word to the language of a disjunctive multiplicity expression:

Lemma 4.1 An unordered word w belongs to the language of a disjunctive multiplicity expression
E iff it is consistent with the triple pCE , NE , PEq.

Proof For the if part, consider the triple pCE , NE , PEq corresponding to a normalized dis-
junctive multiplicity expression E “ DM1

1
|| . . . || DMm

m , and an unordered word w such that
w |ù pCE , NE , PEq. Let w “ w1 Z . . . Z wm Z w1, where, intuitively, each wi contains all the
occurrences in w of the symbols from ΣDi

. Formally:

@i. 1 ď i ď m. pp@a P ΣDi
. wipaq “ wpaqq ^ p@a1 P Σ z ΣDi

. wipa
1q “ 0qq.

Since w |ù NE , we infer that @a P Σ z pΣD1
Y . . .Y ΣDm

q. wpaq “ 0, which implies that w1 “ ε.
Thus, proving w |ù E reduces to proving that @i. 1 ď i ď m. wi |ù DMi

i . We prove while

reasoning on each of the three possible forms of the disjunctions DMi

i , for every i such that
1 ď i ď m:

10

1. DMi

i “ pa1 | . . . | anq
`, which implies that ta1, . . . , anu P PE . Since w is consistent with

PE , we infer that Dj. 1 ď j ď n. aj P w. From the construction of wi we obtain aj P wi,

hence wi |ù DMi

i .

2. DMi

i “ paM1

1
| . . . | aMn

n q ^ @j. 1 ď j ď n. 0 R JMjK. The form of DMi

i and the definition of
NE imply that:

@j. 1 ď j ď n. @x P t0u Y JMjK. paj , xq P NE .

The form of DMi

i and the definition of PE imply that ta1, . . . , anu P PE . Since w is
consistent with PE and NE , we infer that Dj. 1 ď j ď n. aj P w, and, moreover, wpajq P
JMjK.

The form of DMi

i and the definition of CE imply that @j, l P t1, . . . , nu. pj ‰ l ñ paj , alq P
CEq, which implies that @j, l P t1, . . . , nu. ppj ‰ l ^ aj P wq ñ al R wq.

From the last two relations we obtain that:

Dj. 1 ď j ď n. pwipajq P JMjK^ @l. 1 ď l ď n. pl ‰ j ñ al R wiqq,

in other words we have shown that wi |ù DMi

i .

3. DMi

i “ paM1

1
| . . . | aMn

n q^@j. 1 ď j ď n. 0 P JMjK. The reasoning is similar to the previous

case, the only difference is that now ta1, . . . , anu R PE , so we obtain wi |ù DMi

i even if
none of the aj is present in wi.

From the three cases presented above we conclude that w |ù pCE , NE , PEq ñ w |ù E.
For the only if part, consider a normalized disjunctive multiplicity expression E “ DM1

1
||

. . . ||DMm

m and an unordered word w such that w |ù E. This is equivalent to:

Dw1, . . . , wm. w “ w1 Z ¨ ¨ ¨ Z wm ^ @i. 1 ď i ď m. wi |ù DMi

i .

We prove that E |ù pCE , NE, PEq while reasoning on the three cases for DMi

i , for every i such
that 1 ď i ď m:

1. DMi

i “ pa1 | . . . | anq
`. In this case wi |ù DMi

i implies that Dj. 1 ď j ď n. aj P wi, so
ta1, . . . , anu P PE is satisfied. There are no conflicting pairs of symbols in ta1, . . . , anu.
Since @j. 1 ď j ď n. @x P N0. paj , xq P NE , we obtain that in wi all the symbols have
numbers of occurrences consistent with NE .

2. DMi

i “ paM1

1
| . . . | aMn

n q ^ @j. 1 ď j ď n. 0 R JMjK. In this case wi |ù DMi

i implies that:

Dj. 1 ď j ď n. pwipajq P JMjK^ @l. 1 ď l ď n. pl ‰ j ñ al R wiqq,

which implies that ta1, . . . , anu P PE is satisfied.

The conflicting pairs of symbols are also satisfied, more precisely we know from the form
of DMi

i and the definition of CE that @j, l P t1, . . . , nu. pj ‰ l ñ paj , alq P CEq. Moreover,

wi |ù DMi

i implies that @j, l P t1, . . . , nu. pj ‰ l ^ aj P wi ñ al R wiq, so there are no
conflicts in wi.

From the form of DMi

i and the definition of NE , we know that:

@j. 1 ď j ď n. @x P t0u Y JMjK. paj , xq P NE .

We infer that wi is consistent with NE for the present symbol (since wi |ù DMi

i) and also
for the symbols which are not present (since 0 belongs to their extended cardinality map).

11

3. DMi

i “ paM1

1
| . . . | aMn

n q ^ @j. 1 ď j ď n. 0 P JMjK. In this case the reasoning for CE and
NE is similar to the previous case. The difference is that now PE is less restrictive, since
ta1, . . . , anu R PE .

From the three cases presented above we conclude that w |ù E ñ w |ù pCE , NE, PEq ˝

We also characterize the inclusion of two languages given by the characterizing triples:

Lemma 4.2 Given two disjunctive multiplicity expressions E1 and E2: pCE1
Ď CE2

^ NE2
Ď

NE1
^ PE1

Ď PE2
q iff p@w. w |ù pCE2

, NE2
, PE2

q ñ w |ù pCE1
, NE1

, PE1
qq.

Proof For the if part, we prove by contraposition:

• CE1
Ď CE2

ñ Dpa1, a2q P CE1
. pa1, a2q R CE2

ñ Dpa1, a2q P Σ ˆ Σ. p Dw P LpE1q. a1 P
w ^ a2 P wq ^ pDw

1 P LpE2q. a1 P w
1 ^ a2 P w

1q ñ pDw1. w1 |ù CE2
^ w1 |ù CE1

q.

• NE2
Ď NE1

ñ Da P Σ. Dw P LpE2q. Dw1 P LpE1q. w
1paq “ wpaq ñ pDw. w |ù NE2

^ w |ù
NE1

q.

• PE1
Ď PE2

ñ DX Ď Σ. p@w P LpE1q. Da P X. a P wq ^ pDw1 P LpE2q. @a P X. a R
w1q ñ pDw1. w1 |ù LpE2q ^ w1 |ù LpE1qq. Using the previous Lemma, we infer that
pDw1. w1 |ù PE2

^ w1 |ù PE1
q.

For the only if part, we take an unordered word w such that w |ù pCE2
, NE2

, PE2
q and we want

to prove that w |ù pCE1
, NE1

, PE1
q, assuming that CE1

Ď CE2
, NE2

Ď NE1
, and PE1

Ď PE2
.

By definition, w |ù NE2
implies that @a P Σ, pa, wpaqq P NE2

. By hypothesis, NE2
Ď NE1

,
therefore @a P Σ.pa, wpaqq P NE1

, which by definition gives w |ù NE1
.

By definition, w |ù CE2
implies that for all pa, bq P CE2

, (i) pa P w ñ b R wq^pb P w ñ a R wq.
By hypothesis, CE1

Ď CE2
, therefore (i) holds also for all pa, bq P CE1

, which by definition gives
w |ù CE1

.
By definition, w |ù PE2

implies that for all X P PE2
, (ii) Da P X s.t. a P w. By hypothesis,

PE1
Ď PE2

, therefore (ii) also holds for all X P PE1
, which by definition gives w |ù PE1

. ˝

A consequence of Lemmas 4.1 and 4.2 is that the characterizing triples allow us to capture the
containment of disjunctive multiplicity expressions:

Lemma 4.3 Given two disjunctive multiplicity expressions E1 and E2, LpE2q Ď LpE1q iff CE1
Ď

CE2
, NE2

Ď NE1
, and PE1

Ď PE2
.

The above lemma shows that two equivalent disjunctive multiplicity expressions yield the same
triples and hence the triple pCE , NE, PEq can be viewed as a normal form for the languages
definable by a DMS. Formally:

Corollary 4.4 Given two disjunctive multiplicity expressions E1, E2, it holds that LpE1q “
LpE2q iff CE1

“ CE2
, NE1

“ NE2
, and PE1

“ PE2
.

4.1.3 Complexity results

From Lemma 4.3 we know that the containment of two disjunctive multiplicity expressions is
equivalent to the containment of their characterizing triples. Next, we show that we can decide
it in PTIME by using the compact representation of the characterizing triples:

Lemma 4.5 Given two disjunctive multiplicity expressions E1 and E2, deciding whether LpE2q Ď
LpE1q is in PTIME.

12

Proof From Lemma 4.3 we know that, given two disjunctive multiplicity expressions E1 and
E2, LpE2q Ď LpE1q iff CE1

Ď CE2
, NE2

Ď NE1
, and PE1

Ď PE2
. Note that testing NE2

Ď NE1

is equivalent to testing whether @a P Σ. N˚
E2
paq Ď N˚

E1
paq, which is in PTIME since it reduces

to manipulating multiplicities. Moreover, note that testing PE1
Ď PE2

is equivalent to testing
whether @X P P˚

E1
. DY P P˚

E2
. Y Ď X , which is in PTIME since it reduces to testing the inclusion

of a polynomial number of polynomial sets. On the other hand, we can decide CE2
Ď CE1

in
PTIME without using the compact representation because each of these sets has a number of
elements quadratic in |Σ|, and can be easily computed in Op|Σ|2q. ˝

Furthermore, testing the containment of two DMS reduces to testing, for each symbol in the
alphabet, the containment of the associated disjunctive multiplicity expressions. This problem
is in PTIME (from Lemma 4.5). Hence, we obtain:

Theorem 4.6 CNTDMS is in PTIME.

Next, we present the complexity results for satisfiability and membership, and a streaming algo-
rithm for solving the membership. The problem of validating a XML document with bounded
memory was addressed in [22, 23] and their conclusion is that constant memory validations can
be performed only for some DTDs. We propose a streaming algorithm which processes an XML
document in a single pass, using memory which depends on the height of the tree and not on its
size. For a tree t, heightptq is the height of t defined in the usual way. We employ the standard
RAM model and assume that subsequent natural numbers are used as labels in Σ, startig with
1.

Proposition 4.7 Checking satisfiability of a DMS S can be done in time Op|Σ|2q. There exists
a streaming algorithm that checks membership of a tree t in a DMS S in time Op|Σ| ˆ |t| ` |Σ|2q
and using space Opheight ptq ˆ |Σ| ` |Σ|2q.

The algorithm first checks satisfiability of the schema, by performing a preprocessing in time
Op|Σ|2q, and then a simple process based on dynamic programming. If the schema is not satis-
fiable, the algorithm rejects the tree w/o reading anything on the stream. Then the algorithm
checks whether the schema is universal. A schema S is universal if the LpRSprootSqq is the
set of all unordered words over Σ. This can be performed in time Op|Σ|2q. If we assume that
Σ “ ta1, . . . , anu, a simple algorithm has to check whether each normalized disjunctive multiplic-
ity expression from the rules of the schema has the form a˚

1
|| . . . || a˚

n.
For checking in streaming the membership of a tree t to the language of a DMS S, the input

tree t is given in XML format. The algorithm works for any arbitrary ordering of sibling nodes.
If the schema is universal, then the algorithm only reads the opening tag of the root of the
tree. The tree is accepted if the label of the root is rootS , and rejected otherwise. Otherwise,
given a DMS S, in a preprocessing stage the algorithm constructs compact representations of the
characterizing triples of the expressions used by S. Remark that, as DMS forbids repetition of
symbols, the size of the representation of any expression is linear in |Σ|. Therefore, encoding the
schema requires Op|Σ|2q space. For each symbol a P Σ, we encode its corresponding rule using
three global dictionaries, that we define as functions:

• cardinalitya : Σ Ñ t0, 1, ?,`, ˚u which represents the extended cardinality map of the
disjunctive multiplicity expression RSpaq.

• conflicta : ΣÑ t0, 1, . . . , |Σ|u which encodes the conflicts from RSpaq and has the following
properties:

– For any disjunction of the form paM1

1
| . . . | aMn

n q from RSpaq. conflictapa1q “ . . . “
conflictapanq ^ @a

1 P Σ. a1 R ta1, . . . , anu. conflictapa
1q ‰ conflictapa1q,

13

– @a1 P Σ. @X P C˚
RSpaq. a

1 R X. conflictapa
1q “ 0.

Let Ca “ tx P t0, 1, . . . , |Σ|u | Da
1 P Σ. conflictapa

1q “ xu.

• requireda : ΣÑ t0, 1, . . . , |Σ|u which encodes the sets of required symbols from RSpaq and
has the following properties:

– For any disjunction of the form pa1 | . . . | anq
` or paM1

1
| . . . | aMn

n q. 0 R JM1K from
RSpaq. requiredapa1q “ . . . “ requiredapanq^@a

1 P Σ. a1 R ta1, . . . , anu. requiredapa
1q ‰

requiredapa1q,

– @a1 P Σ. @X P P˚
RSpaq. a

1 R X. requiredapa
1q “ 0.

Let Pa “ tx P t0, 1, . . . , |Σ|u | Da
1 P Σ. requiredapa

1q “ xu.

For example, assume the rule r Ñ pa | bq` || pc? | d˚ | e˚q || f` || g? || pi | j`q over the alphabet
Σ “ ta, b, c, d, e, f, g, h, i, ju. A possible encoding is the following:

cardinalityrpaq “ cardinalityrpbq “ cardinalityrpdq “ cardinalityrpeq “ cardinalityrpjq “ ˚,

cardinalityrpcq “ cardinalityrpgq “ cardinalityrpiq “?,

cardinalityrpfq “ `, cardinalityrphq “ 0,

conflictrpaq “ conflictrpbq “ conflictrpfq “ conflictrpgq “ conflictrphq “ 0,

conflictrpcq “ conflictrpdq “ conflictrpeq “ 1,

conflictrpiq “ conflictrpjq “ 2,

requiredrpcq “ requiredrpdq “ requiredrpeq “ requiredrpgq “ requiredrphq “ 0,

requiredrpaq “ requiredrpbq “ 1, requiredrpfq “ 2,

requiredrpiq “ requiredrpjq “ 3.

During the execution, the algorithm maintains a stack whose height is the depth of the currently
visited node. The bound on space required for stack operations is Opheight ptqˆ|Σ|q. We describe
the local variables for each node n P Nt, more precisely three dictionaries (with size linear in |Σ|)
that we define as functions:

• count : ΣÑ t0, 1, 2u (initial value = 0),

• present conflict : Clabtpnq z t0u Ñ ΣY t0u (initial value = 0),

• present required : Plabtpnq z t0u Ñ t0, 1u (initial value = 0).

Next, we present Algorithms 1 and 2, which are executed when we encounter an opening or a
closing tag, respectively. The streaming algorithm rejects a tree as soon as the opening tag is
read for nodes that violate either some conflicting pair (Algorithm 1, lines 8-9) or the allowed
cardinality (Algorithm 1, lines 4-7). The algorithm also rejects a tree if at the closing tag of a
node, there are children symbols required by the corresponding rule of the node’s label and not
present in its children list (Algorithm 2, lines 1-2). Unless the schema is universal (i.e., accepts
any tree), the acceptance of a tree can be decided only after the closing tag of the root.

A streaming algorithm is called earliest if it produces its result at the earliest point. More
precisely, consider the algorithm processing an XML stream of tree t for checking membership of
t to a schema S. At each position of the stream (i.e. each opening or closing tag), the algorithm
has seen a part of the tree t, and another part of t remains unknown at that position. Let p

be some position of the stream. If the tree t would be accepted (resp. rejected) whatever the

14

Algorithm 1 Procedure to execute when we are in a node n P Nt and we encounter an open tag
of a node na labeled by a.

algorithm open tagpnaq
Input: Open tag of a node na P Nt labeled by a

Output: Reject the tree or update the local variables
1: push on the stack the local variables for na

2: if countpaq ‰ 2 then
3: countpaq :“ countpaq ` 1
4: if countpaq “ 2 and cardinality labtpnqpaq R t`, ˚u then
5: reject
6: if countpaq “ 1 and cardinality labtpnqpaq “ 0 then
7: reject
8: if conflict labtpnqpaq ‰ 0 and present conflictpconflict labtpnqpaqq R t0, au then
9: reject

10: if conflict labtpnqpaq ‰ 0 then
11: present conflictpconflict labtpnqpaqq :“ a

12: if required labtpnqpaq ‰ 0 then
13: present requiredprequired labtpnqpaqq :“ 1

Algorithm 2 Procedure to execute when we encounter the close tag of a node n P Nt.

algorithm close tagpnq
Input: Close tag of a node n P Nt

Output: Accept or reject the tree, or continue
1: if Dp P Plabtpnq z t0u. present requiredppq “ 0 then
2: reject
3: pop the local variables for n from the stack
4: if n “ root t then
5: accept

15

part of t unknown at position p, then an earliest streaming algorithm has to accept (resp. reject)
the tree at position p. For example, if the language of the schema is universal, then an earliest
algorithm would accept or reject the tree as soon as the opening tag of the root is read. It can
be shown that the algorithm presented here is earliest.
We continue with complexity results that follow from known facts. Query satisfiability for DTDs
is known to be NP-complete [4] and we adapt the result for DMS:

Proposition 4.8 SATDMS ,Twig is NP-complete.

Proof [sketch] Proposition 4.2.1 from [4] implies that satisfiability of twig queries in the presence
of DTDs is NP-hard. We adapt the proof and we obtain the following reduction from 3SAT to
SATDMS,Twig : we take a 3CNF formula ϕ “

Źn

i“1
Ci over the variables x1, . . . , xm, where

each Ci is a disjunction of 3 literals. Consider Σ “ tr, t1, f1, . . . , tm, fm, C1, . . . , Cnu and the
corresponding tuple pS, qq:

• The schema S having the root label r and the rules:

– r Ñ pt1 | f1q || . . . || ptm | fmq

– tj Ñ Cj1 || . . . || Cjk , 1 ď j ď m. xj appears in Cji

– fi Ñ Cj1 || . . . || Cjk , 1 ď j ď m. xj appears in Cji

• The query q “ rr{{C1s . . . r{{Cns

For example, for the 3CNF formula over the variables x1, . . . , x4: ϕ0 “ px1_ x2_x3q^p x1_
x3 _ x4q we have the schema S containing the rules:

r Ñ pt1 | f1q || pt2 | f2q || pt3 | f3q || pt4 | f4q

t1 Ñ C1 t3 Ñ C1 || C2

f1 Ñ C2 f3 Ñ ǫ

t2 Ñ ǫ t4 Ñ ǫ

f2 Ñ C1 f4 Ñ C2

and the query:
q “ {rr{{C1sr{{C2s

The formula ϕ is satisfiable iff pS, qq P SATDMS ,Twig . The described reduction works in poly-
nomial time in the size of the input formula ϕ. Moreover, Theorem 4.4 from [4] implies that
satisfiability of twig queries in the presence of DTDs is in NP, which yields the NP upper bound
for SATDMS,Twig . ˝

The complexity results for query implication and query containment in the presence of DMS fol-
low from the EXPTIME-completeness proof from [19] for twig query containment in the presence
of DTDs.

Proposition 4.9 IMPLDMS ,Twig and CNTDMS ,Twig are EXPTIME-complete.

Proof [sketch] Theorem 4.4 from [19] implies that twig query containment in the presence of
DTDs is in EXPTIME. This implies that the problems IMPLDTD,Twig , IMPLDMS,Twig , and
CNTDMS ,Twig are also in EXPTIME. The EXPTIME-hardness proof of twig containment in the
presence of DTDs (Theorem 4.5 from [19]) has been done using a reduction from Two-player
corridor tiling problem and a technique introduced in [17]. In the proof from [19], when testing
inclusion p ĎS q, p is chosen such that it satisfies any tree in S, hence IMPLDTD,Twig is also

16

EXPTIME-complete. Furthermore, Lemma 3 in [17] can be adapted to twig queries and DMS:
for any S P DMS and twig queries q0, q1, . . . , qm there exists S1 P DMS and twig queries q and
q1 such that:

q0 ĎS q1 Y . . .Y qm ðñ q ĎS1 q1.

Because the DTD in [19] can be captured with DMS, from the last two statements we conclude
that IMPLDMS ,Twig and CNTDMS ,Twig are also EXPTIME-complete. ˝

4.2 Disjunction-free multiplicity schema

In this subsection we present the static analysis for MS. Although query satisfiability and query
implication are intractable for DMS, these problems become tractable for MS because they can
be reduced to testing embedding of queries in some dependency graphs that we define in the
sequel. We first present some of the technical tools which help us to reason about the disjunction-
free multiplicity schemas. Next, we use these tools to prove our results. Recall that MS use
expressions of the form aM1

1
|| . . . || aMn

n .

4.2.1 Dependency graphs

Definition 4.10 Given an MS S “ prootS , RSq, the dependency graph of S is a directed rooted
graph GS “ pΣ, rootS , ESq with the node set Σ, where rootS is the distinguished root node, and
pa, bq P ES if RSpaq “ . . . || bM || . . . and M P t˚,`, ?, 1u. Furthermore, the edge pa, bq is called
nullable if 0 P JMK (i.e., M is ˚ or ?), otherwise pa, bq is called non-nullable (i.e., M is ` or 1).
The universal dependency graph of an MS S is the subgraph Gu

S containing only the non-nullable
edges.

In Figure 4 we present the dependency graphs for the schema S5 containing the rules r Ñ
a` || b˚, aÑ b?, bÑ ǫ.

r

ab

r

ab

Figure 4: Dependency graph GS5
and universal dependency graph Gu

S5
for schema S5.

An MS S is pruned if Gu

S is acyclic. We observe that any MS has an equivalent pruned version
which can be constructed in PTIME by removing the rules for the labels from which a cycle can
be reached in the universal dependency graph. Note that a schema is satisfiable iff no cycle can
be reached from its root in the universal dependency graph. From now on, we assume w.l.o.g.
that all the MS that we manipulate are pruned.

We generalize the notion of embedding as a mapping of the nodes of a query q to the nodes
of a rooted graph G “ pΣ, root , Eq, which can be either a dependency graph or a universal
dependency graph. Formally, an embedding of q in G is a function λ : Nq Ñ Σ such that:

1. λprootqq “ root ,

2. for every pn, n1q P child q, pλpnq, λpn
1qq P E,

3. for every pn, n1q P descq, pλpnq, λpn
1qq P E` (the transitive closure of E),

4. for every n P Nq, labqpnq “ ‹ or labqpnq “ λpnq.

If there exists an embedding from q to G, we write G ď q.

17

4.2.2 Graph simulation

A simulation of a rooted graph (either dependency graph or universal dependency graph) G “
pΣ, root , Eq in a tree t is a relation R Ď ΣˆNt such that:

1. proot , root tq P R

2. for every pa, nq P R, pa, a1q P E, there exists n1 P Nt such that pn, n1q P child t and
pa1, n1q P R

3. for every pa, nq P R. labtpnq “ a

Note that R is a total relation for the nodes of the graph reachable from the root i.e., for every
a P Σ reachable from root in G, there exists a node n P Nt such that pa, nq P R. If there exists a
simulation from G to t, we write t ď G. The language of a graph is LpGq “ tt P Tree | t ď Gu.

A rooted graph G1 “ pΣ, root , E1q is a subgraph of another rooted graph G2 “ pΣ, root , E2q if
E1 Ď E2. For a rooted graph G “ pΣ, root , Eq, we define the partial order ďG on the subgraphs
of G: given G1 and G2 two subgraphs of G, G1 ďG G2 if G1 is a subgraph of G2. Note
that the relation ďG is reflexive, antisymmetric, and transitive, thus being an order relation.
Moreover, it is well-founded and it has a minimal element, that we denote G0 for a graph G. Let
G0 “ pΣ, root ,Hq and indeed, for any G1 subgraph of G we have G0 ďG G1. In the sequel, we
assume w.l.o.g. that all the subgraphs that we use in our proofs have the property that every
edge can be part of a path starting at the root.

Lemma 4.11 For any disjunction-free multiplicity schema S, its universal dependency graph
can be simulated in any tree t which belongs to the language of S:

@S PMS . @t P LpSq. t ď Gu

S

Proof Consider an MS S and its universal dependency graph Gu

S . Let t be a tree which belongs
to LpSq. We want to construct a witness relation R Ď Σ ˆ Nt for t ď Gu

S and the proof goes
by induction on the structure of Gu

S , using the well-founded order ďGu

S
defined above. Let P pGq

denote the statement t ď G. Let G be a subgraph of Gu

S . The induction hypothesis is that for
all G1 ďGu

S
G and G1 ‰ G, there exists a relation R1 witness of the simulation t ď G1 and we are

going to construct R that witnesses t ď G.
For the base case, we take the minimal element for the relation ďGu

S
let it G0 “ pΣ, root ,Hq,

then P pG0q holds for the relation R0 “ tproot , root tqu, so the subgraph containing no edge can
be simulated in t.

For the induction case, let G a subgraph of Gu

S . By the induction hypothesis, we know that
P pG1q holds, for every G1 ďGu

S
G. Consider a subgraph G1 of G such that G contains exactly one

additional edge w.r.t. G1, let the additional edge pa, a1q and R1 the witness relation for t ď G1.
Because G1 ďGu

S
G and pa, a1q is the only additional edge, we know that R1 already contains

images for a in t i.e., there exists a node n such that pa, nq P R1. We construct the relation R

as the union of R1 with tpa1, n1q | labtpn
1q “ a1 ^ pDn. pn, n1q P child t ^ pa, nq P R1qu. The set

of tuples that we add is not empty because the edge pa, a1q belongs to the universal dependency
graph Gu

S , so for any node labeled by a in the tree t there exists a child of it labeled with a1.
The construction ensures that R satisfies all the conditions of the definition of a simulation, so
t ď G, so P pGq is true.

We have proved that P pG0q is true and that (@G1. G1 ďGu

S
Gñ P pG1qq ñ P pGq, so P pGq is

true for any G subgraph of Gu

S , so also for Gu

S , hence Gu

S can be simulated into any tree t which
belongs to the language of S. ˝

18

4.2.3 Graph unfolding

A path in a rooted graph (either dependency graph or universal dependency graph)G “ pΣ, root , Eq
is a non-empty sequence of vertices starting at root such that for any two consecutive ver-
tices in the sequence, there is a directed edge between them in G. By PathspGq Ď Σ` we
denote the set of all the paths in G. The set of paths is finite only for graphs without cy-
cles reachable from the root. For instance, the paths of the graph G1 in Figure 5(b) are
PathspG1q “ tr, ra, rb, rc, rbd, rcd, rbde, rcdeu.

Similarly, a path in a tree t is a non-empty sequence of nodes starting at root t such that
any two consecutive nodes in the sequence are in the relation childt. By Pathsptq we de-
note the set of all the paths in t. Then, we define LabPathsptq as the set of sequences of
labels of nodes from all the paths in t. For instance, for the tree t1 from Figure 5(a) we
have Pathspt1q “ tn0, n0n1, n0n1n2, n0n3, n0n3n4u and LabPathspt1q “ tr, ra, rabu. Note that
Pathsptq Ď N`

t , LabPathsptq Ď Σ` and |LabPathsptq| ď |Pathsptq|. The unfolding of a rooted
graph G “ pΣ, root , Eq, denoted uG, is a tree uG “ pNuG

, rootuG
, labuG

, childuG
q, such that:

• NuG
“ PathspGq,

• rootuG
P NuG

is the root of uG,

• pp, p.aq P childuG
, for all paths p, p.a P PathspGq (note that “.” stands for concatenation),

• labuG
prootuG

q “ root , and labuG
pp.aq “ a, for all the paths p.a P PathspGq.

The unfolding of a graph is finite only when the graph has no cycle reachable from the root,
because otherwise PathspGq is infinite, so uG is infinite. In the sequel we use the unfolding for
graphs without any cycle reachable from the root and in this case the unfolding is the smallest
tree uG (w.r.t. the number of nodes) having LabPathspuGq “ PathspGq. The idea of the unfolding
is to transform the rooted graph G into a tree having the child relation instead of directed edges.
There are nodes duplicated in order to avoid nodes with more than one incoming edge. For
instance, in Figure 5(b) we take the graph G1 and construct its unfolding uG1

. We remark that
the size of the unfolding may be exponential in the size of the graph, for example for the graph
G2 from Figure 5(c).

r

aa

bb

n0

n1

n2 n4

n3

(a) Tree t1.

r

a b c

d

e

r

a b c

d d

e e

(b) Graph G1 and its unfolding.

r

a1 a2

b

c1 c2

d

.

r

a1 a2

b b

c1 c2 c2c1

d d d d

. .

(c) Graph G2 and its exponential unfolding.

Figure 5: A tree and two graphs with their corresponding unfoldings.

4.2.4 Extending the definition of embedding

If a query q can be embedded in a tree t, we may write t ď q instead of t |ù q. We also extend
the definition of embedding from a query to a tree to the embedding from a tree to another tree

19

i.e., given two trees t and t1, we say that t1 can be embedded in t (denoted t ď t1) if the query
pNt1 , root t1 , labt1 , child t1 ,Hq can be embedded in t. Similarly, we can define the embedding from
a tree to a rooted graph. Note that two embeddings can be composed, for example:

• @t, t1 P Tree. @q P Twig . pt ď t1 ^ t1 ď q ñ t ď qq.

• @S P MS . @t P Tree. @q P Twig . pG
puq
S ď t^ t ď q ñ G

puq
S ď qq.

Lemma 4.12 A rooted graph (dependency graph or universal dependency graph) G “ pΣ, root , Eq
can be simulated in a tree t iff its unfolding uG can be embedded in t.

Proof For the if part, we know that t ď uG so there exists a function λ : NuG
Ñ Nt which

witnesses the embedding of uG in t. We construct a relation R Ď ΣˆNt such that:

R “ tproot , root tqu Y tpa, nq | Dp P NuG
. p.a P NuG

^ λpp.aq “ nu

This construction ensures that for every pa, nq P R and for every pa, a1q P E, there exists n1 P Nt

such that pn, n1q P childt and pa
1, n1q P R because the function λ is a witness for t ď uG so the

child relation is simply translated from uG to G. The construction of R also guarantees that for
every pa, nq P R we have labtpnq “ a because λ is the witness for t ď uG and λpp.aq “ n. Thus
we obtain that R satisfies all the conditions to be a simulation of G in t.

For the only if case, we take a relation R which witnesses the simulation of G in t. We
construct the function λ : NuG

Ñ Nt, witness of t ď uG, by recursion on the paths of G, because
PathspGq “ NuG

. First of all, λprootuG
q “ root t. We assume that we have a recursive procedure

which takes as input a path p, a label a, and the values of the function λ computed before the
procedure call, and it outputs λpp.aq. The invariant of the procedure is that while defining λ

for p.a, λ satisfies the conditions from the definition of embedding for all the nodes rootuG
, . . . , p

on the path to p. Furthermore, the values of λ were obtained using the information given by
R, so λppq “ n1 iff Rplabtpn

1q, n1q. Let λppq “ n1 and we construct λpp.aq “ n, where Rpa, nq
and child tpn

1, nq. There exists such a node n because of the recursive construction of λ using
R and the invariant λpp.aq “ n iff Rpa, nq is true. The construction of λ ensures that λ is
root-preserving, child-preserving and label-preserving, so it satisfies all the conditions to be an
embedding from uG to t, so we have found a correct witness for t ď uG. ˝

Lemma 4.13 A query q can be embedded in a rooted graph (dependency graph or universal
dependency graph) G iff q can be embedded in the unfolding tree of G.

Proof For the if part, we know that uG ď q, so there exists a function λ : Nq Ñ NuG
witness

of this embedding. We construct a function λ1 : Nq Ñ Σ, such that λ1pnq “ labuG
pλpnqq for each

node n from Nq. Since λ is the witness of the embedding uG ď q, the constructed λ1 satisfies all
the conditions of the definition of an embedding from q to G.

For the only if part, we know that G ď q, so there exists a function λ : Nq Ñ Σ witness of
this embedding. We want to construct a function λ1 : Nq Ñ NuG

to prove uG ď q. We construct
λ1 by recursion on the tree structure of q. First of all, λ1prootqq “ rootuG

. Then, the recursion
hypothesis says that G ď q1 for any connected subtree q1 obtained from q by deleting some edges,
uG ď q1, which is witnessed by the function λ1. Thus, for any node n of q, λ1pnq “ p, where
p P NuG

because NuG
“ PathspGq so any node in the unfolding can be identified by a unique

sequence of labels among the paths of G. For the inductive case consider that q is obtained
from q1 by adding one more edge, let it pn, n1q. If it is a child edge and λ1pnq “ p, we construct
λ1pn1q “ p.λpn1q, which is a path in G by the definition of the unfolding. Otherwise, if it is a
descendant edge and λ1pnq “ p, we construct λ1pn1q “ p.p1.λpn1q, where p1 is a randomly chosen

20

path in G from λpnq to λpn1q. We know by definition of λ that such path exists. The construction
ensures that uG ď q, for any q satisfying the conditions of the recursion, so we can construct a
function λ1 which is a correct witness for uG ď q. ˝

4.2.5 Fuse and add operations

In Figure 6 we present the operations fuse and add. We say that t⊳0 t
1 if t1 is obtained from t

by applying one of the operations from Figure 6. The fuse operation takes two siblings with the
same label and creates only one node having below it the subtrees corresponding to each of the
siblings. The add operation consists simply in adding a subtree at any place in the tree. By E

we denote the transitive and reflexive closure of ⊳0.

.

a b b c

t1 t2 t3 t4

fuse
ÝÝÑ

.

a b c

t1 t2 t3 t4

.

a b c

t1 t2 t3

addÝÝÑ

.

a b c d

t1 t2 t3 t4

Figure 6: Operations fuse and add.

Note that the fuse and add operations preserve the embedding i.e., given a twig query q and
two trees t and t1, if t ď q and tE t1, then t1 ď q. Furthermore, if we can embed a query q in a
tree t which can be embedded in the dependency graph of an MS S, we can perform a sequence
of operations such that t is transformed into another tree t1 satisfying S and q at the same time.
Formally:

Proposition 4.14 Given an MS S, a query q and a tree t, if GS ď t and t ď q, then there
exists a tree t1 P LpSq X Lpqq. The tree t1 can be constructed after a sequence of fuse and add
operations (consistently with the schema S) from the tree t and we denote tES t1.

4.2.6 Family of characteristic graphs

Given a query q and a schema S, if q can be embedded in GS then we can capture all the
trees satisfying S and q at the same time with a potentially infinite family of graphs. First, we
explain the construction of the characteristic graphs. A characteristic graph G for a schema S

and a query q is a tuple pVG, rootG, labG, EGq, where VG is a finite set of vertices, rootG P VG

is the root of the graph, labG : VG Ñ Σ is a labeling function (with labGprootGq “ rootS), and
EG Ď VGˆVG represents the set of edges. Note that for two x, y P ΣYt‹u we say that x matches
y if y ‰ ‹ implies x “ y. We construct G with the three steps described below:

1. For any pn1, n2q P child q, add n1
1, n

1
2 to VG and pn1

1, n
1
2q to EG, where labGpn

1
1q matches

labqpn1q and labGpn
1
2q matches labqpn2q.

2. For any pn1, n2q P descq, choose an acyclic path n1
1, . . . , n

1
k from GS , such that n1

1 matches
labqpn1q and n1

k matches labqpn2q. We add to G the corresponding vertices and edges for
this path, as shown for the previous case.

21

3. For any n P VG, take the subgraph from Gu

S starting at labGpnq and fuse it in the node n

in the graph G.

In Figure 7(b) we present an example of graph obtained from the embedding from Figure 7(a).
We denote by Gpq, Sq the set of all the graphs obtained from a query q and a disjunction-free
multiplicity schema S using the three steps above, using all the embeddings from q into S.
We extend the previous definition of the unfolding to the characteristic graphs. Since a graph
G P Gpq, Sq is acyclic, it has a finite unfolding. From the definition it also follows that the size
of G is polynomially bounded by |q| ˆ |S| and G ď q.

If we allow cyclic paths in step 2, then we obtain similarly the set G˚pq, Sq. Note that |Gpq, Sq|
is finite and may be exponential, while |G˚pq, Sq| may be infinite. All the trees t P LpSq X Lpqq
can be obtained by fuse and add operations (consistently with S) from the unfolding trees of the
graphs in G˚pq, Sq:

@t P LpSq X Lpqq. DG P G˚pq, Sq. uG ES t

Furthermore, by using a pumping argument, we have:

@q P Twig . @G P G˚pq, Sq. pG ę q ñ DG1 P Gpq, Sq. G1 ę qq.

r

c

a1 a2

b

r

‹

‹

‹

b

c

(a) Embedding λ : Nq Ñ GS .

r c
a1

a2
b

c
a1

a2
b

a2 b

b

c
a1

a2
b

a2 b

c
a1

a2
b

a1 b

b

c
a1

a2
b

(b) Graph G P Gpq, Sq

Figure 7: An embedding from a query q to a dependency graph GS and a graph G P Gpq, Sq. In
GS , the non-nullable edges are drawn with a full line and the nullable edges with a dotted line.

4.2.7 Complexity results

The dependency graphs and embeddings capture satisfiability and implication of queries by MS.

Lemma 4.15 For a twig query q and an MS S we have: 1) q is satisfiable by S iff GS ď q, 2)
q is implied by S iff Gu

S ď q.

Proof [sketch] (1) For the if part, we know that GS ď q, so the family of graphs Gpq, Sq is not
empty. The unfolding of any graph from Gpq, Sq satisfies S and q at the same time, hence q is
satisfiable by S.

22

For the only if part, we know that there exists a tree t P LpSqXLpqq, which can for example be
obtained after fuse operations (since one occurrence is consistent to all the multiplicities except
0) on the unfolding of a graph G from G˚pq, Sq. Since t ď q, we obtain uG ď q, so G ď q, which,
from the construction of G, implies that GS ď q.
(2) For the if part, we know that Gu

S ď q, which implies by Lemma 4.13 that uGu

S
ď q. On the

other hand, take a tree t P LpSq. By Lemma 4.11 we have t ď Gu

S , which implies by Lemma 4.12
that t ď uGu

S
. From the last embedding and uGu

S
ď q we infer that t ď q. Since t can be any tree

in the language of S, we conclude that q is implied by S.
For the only if part, we know that for any t P LpSq, t ď q. Naturally, uGu

S
is in the language

of S (since one occurrence is consistent to all the multiplicities except 0), so uGu

S
ď q. From the

definition of the unfolding, we can infer that Gu

S ď uGu

S
, which implies that Gu

S ď q. ˝

Furthermore, testing the embedding of a query in a graph can be done in polynomial time with
a simple bottom-up algorithm. From this observation and Lemma 4.15, we obtain:

Theorem 4.16 SATMS ,Twig and IMPLMS ,Twig are in PTIME.

The intractability of the containment of twig queries [17] implies the coNP-hardness of the
containment of twig queries in the presence of MS. Proving the membership of the problem to
coNP is, however, not trivial. Given an instance pp, q, Sq, the set of all the trees satisfying p and
S can be characterized with a set Gpp, Sq containing an exponential number of polynomially-sized
graphs and p is contained in q in the presence of S iff the query q can be embedded into all the
graphs in Gpp, Sq. This condition is easily checked by a non-deterministic Turing machine.

Theorem 4.17 CNTMS,Twig is coNP-complete.

Proof [sketch] Theorem 4 from [17] implies that CNTMS,Twig is coNP-hard. Next, we prove
the membership of the problem to coNP. Given an instance pp, q, Sq, a witness is a function
λ : Np Ñ Σ. Testing whether λ is an embedding from p to GS requires polynomial time. If λ
is an embedding, a non-deterministic polynomial algorithm chooses a graph G from Gpp, Sq and
checks whether q can be embedded in G. We claim that:

p ĎS q ðñ DG P Gpp, Sq. G ę q

For the if case, we assume that there exists a graph G P Gpp, Sq such that G ę q. We know that
G ď p, so uG ď p, so there exists a tree t P LpSq such that t ď p and uG ES t (using only fusions
since one occurrence is consistent to all the multiplicities except 0). If we assume by absurd that
t ď q, we have uG ď q, so G ď q, which is a contradiction. We infer thus that there exists a tree
t P LpSq X Lppq, such that t R Lpqq, so p ĎS q.

For the only if case, we assume that p ĎS q, so there exists a tree t P LpSq X Lppq such that
t R Lpqq. Because t P LpSq X Lppq, we know that there exists a graph G P G˚pp, Sq, such that
uG ES t. We know that t ę q, so uG ę q, so G ď q. Moreover, we know using the pumping
argument that in this case there exists a graph G1 P Gpp, Sq such that G1 ę q. ˝

4.2.8 Extending the complexity results to disjunction-free DTDs

We also point out that the complexity results for implication and containment of twig queries
in the presence of MS can be adapted to disjunction-free DTDs. This allows us to state results
which, to the best of our knowledge, are novel.

Similarly to the MS, we represent a disjunction-free DTD as a tuple S “ prootS , RSq, where
rootS is a designed root label and RS maps symbols to regular expressions using no disjunction
i.e., regular expressions of the form:

E ::“ ε | a | E˚ | E? | E` | E1 ¨E2,

23

where a P Σ. Given such an expression E, consider the set non nullablepEq which contains the
set of labels present in all the words from LpEq. Formally,

non nullablepEq “ ta P Σ | @w P LpEq. Dw1, w2. w “ w1 ¨ a ¨ w2u

We can compute non nullablepEq recursively:

non nullablepεq “ non nullablepE˚q “ non nullablepE?q “ H

non nullablepaq “ tau

non nullablepE1 ¨E2q “ non nullablepE1q Y non nullablepE2q

non nullablepE`q “ non nullablepEq

Similarly, let nullablepEq the set containing labels which appear in at least one word from LpEq.
Formally,

nullablepEq “ ta P Σ | Dw P LpEq. Dw1, w2. w “ w1 ¨ a ¨ w2u

We can compute nullablepEq recursively:

nullablepεq “ H

nullablepaq “ tau

nullablepE`{˚{?q “ nullablepEq

nullablepE1 ¨E2q “ nullablepE1q Y nullablepE2q

Next, we adapt the notions of dependency graph and universal dependency graph for disjunction-
free DTDs. The dependency graph of a disjunction-free DTD S is a rooted graph GS “
pΣ, rootS , ESq, where

ES “ tpa, a
1q | a1 P nullablepRSpaqqu.

Similarly, the universal dependency graph of a disjunction-free DTD S is a rooted graph Gu

S “
pΣ, rootS , E

u

Sq, where
Eu

S “ tpa, a
1q | a1 P non nullablepRSpaqqu.

We assume w.l.o.g. that from now on we manipulate only disjunction-free DTDs having no cycle
in the universal dependency graph. Otherwise, if there is a cycle in the universal dependency
graph, this means that there does not exist any tree consistent with the schema and containing
any of the labels implied in that cycle.

For a symbol a P Σ and a disjunction-free regular expression E, by min nbpE, aq we denote
the minimum number of occurrences of the symbol a in any word consistent with E.

min nbpε, aq “ min nbpE˚, aq “ min nbpE?, aq “ 0

min nbpa, aq “ 1

min nbpE1 ¨E2, aq “ min nbpE1, aq `min nbpE2, aq

min nbpE`, aq “ min nbpE, aq

We adapt the definition of unfolding for the (universal) dependency graph of a disjunction-free
DTD. For a disjunction-free multiplicity schema, the unfolding of the universal dependency graph
belongs to its language since one occurrence is consistent with all the multiplicities except 0. On
the other hand, for a disjunction-free DTD S this property does not hold, so we extend the
construction of the unfolding with one more step:

• Let uGu

S
be the unfolding of Gu

S obtained as it is defined for the MS.

24

• Update uGu

S
such that for any n P NuGu

S

, for any a P Σ, let ta the subtree having as

root the child of n labeled by a. Next, add copies of ta as children of n until n has
min nbpRSplabuGu

S

pnqq, aq children labeled with a.

Note that a consequence of this new definition is that the unfolding of the universal dependency
graph of a disjunction-free DTD belongs to its language (modulo the order of the elements). The
order imposed by the DTD on the elements is not important because in the sequel we work with
twig queries, which ignore this order.

Corollary 4.18 IMPLdisj -free-DTD,Twig is in PTIME and CNTdisj -free-DTD,Twig is coNP-complete.

Proof [sketch] We claim that a query q is implied by a disjunction-free DTD S iff Gu

S ď q

and since the embedding of a query in a graph can be computed in polynomial time, this im-
plies that IMPLdisj -free-DTD,Twig is in PTIME. The proof follows immediately from the proof of
Lemma 4.15(2), taking into account the new definition of the unfolding. Theorem 4 from [17]
implies that CNTdisj -free-DTD,Twig is coNP-hard. The membership of CNTdisj -free-DTD,Twig to
coNP follows from the proof of Theorem 4.17, while taking into account the new definition of
the unfolding. ˝

5 Expressiveness of DMS

We compare the expressive power of DMS and DTDs with focus on schemas used in real-life
applications. First, we introduce a simple tool for comparing regular expressions with disjunctive
multiplicity expressions, and by extension, DTDs with DMS. For a regular expression R, the
language LpRq of unordered words is obtained by removing the relative order of symbols from
every ordered word defined by R. A disjunctive multiplicity expression E captures R if LpEq “
LpRq. A DMS S captures a DTD D if for every symbol the disjunctive multiplicity expression
on the rhs of a rule in S captures the regular expression on the rhs of the corresponding rule
in D. We believe that this simple comparison is adequate because if a DTD is to be used in a
data-centric application, then supposedly the order between siblings is not important. Therefore,
a DMS that captures a given DTD defines basically the same type of admissible documents,
without imposing any order among siblings. Naturally, if we use the above notion to compare
the expressive powers of DTDs and DMS, DTDs are strictly more expressive than DMS.

We use the comparison on the XMark [20] benchmark and the University of Amsterdam
XML Web Collection [13]. We find that all 77 regular expressions of the XMark benchmark
are captured by DMS rules, and among them 76 by MS rules. As for the DTDs found in the
University of Amsterdam XML Web Collection, 84% of regular expressions (with repetitions
discarded) are captured by DMS rules and among them 74.6% by MS rules. Moreover, 55.5% of
full DTDs in the collection are captured by DMS and among them 45.8% by MS. Note that these
figures should be interpreted with caution, as we do not know which of the considered DTDs
were indeed intended for data-centric applications. We believe, however, that these numbers give
a generally positive answer to the question of how much of the expressive power of DTDs the
proposed schema formalisms, DMS and MS, retain.

6 Conclusions and future work

We have studied the computational properties and the expressive power of new schema for-
malisms, designed for unordered XML: the disjunctive multiplicity schema (DMS) and its re-
striction, the disjunction-free multiplicity schema (MS). DMS and MS can be seen as DTDs

25

using restricted classes of regular expressions and interpreted under commutative closure to de-
fine unordered content models. These restrictions allow on the one hand to maintain a relatively
low computational complexity of basic static analysis problems while retaining a significant part
of expressive power of DTDs.

An interesting question remains open: are these the most general restrictions that allow to
maintain a low complexity profile? We believe that the answer to this question is negative and
intend to identify new practical features that could be added to DMS and MS. One such feature
are numeric occurrences [14] of the form arn,ms that generalize multiplicities by requiring the
presence of at least n and no more than m elements a. It would also be interesting to see to what
extent our results can be used to propose hybrid schemas that allow to define ordered content
for some elements and unordered model for others.

References

[1] S. Abiteboul, P. Bourhis, and V. Vianu. Highly expressive query languages for unordered
data trees. In ICDT, pages 46–60, 2012.

[2] S. Amer-Yahia, S. Cho, L. V. S. Lakshmanan, and D. Srivastava. Tree pattern query
minimization. VLDB J., 11(4):315–331, 2002.

[3] C. Beeri and T. Milo. Schemas for integration and translation of structured and semi-
structured data. In ICDT, pages 296–313, 1999.

[4] M. Benedikt, W. Fan, and F. Geerts. XPath satisfiability in the presence of DTDs. J. ACM,
55(2), 2008.

[5] M. Berglund, H. Björklund, and J. Högberg. Recognizing shuffled languages. In LATA,
pages 142–154, 2011.

[6] G. Bex, F. Neven, and J. Van den Bussche. DTDs versus XML Schema: A practical study.
In WebDB, pages 79–84, 2004.

[7] I. Boneva and J. Talbot. Automata and logics for unranked and unordered trees. In RTA,
pages 500–515, 2005.

[8] I. Boneva, J. Talbot, and S. Tison. Expressiveness of a spatial logic for trees. In LICS, pages
280–289, 2005.

[9] A. Brüggemann-Klein and D. Wood. One-unambiguous regular languages. Inf. Comput.,
142(2):182–206, 1998.

[10] L. Cardelli and G. Ghelli. TQL: a query language for semistructured data based on the
ambient logic. Mathematical Structures in Computer Science, 14(3):285–327, 2004.

[11] S. Dal-Zilio and D. Lugiez. XML schema, tree logic and sheaves automata. In RTA, pages
246–263, 2003.

[12] W. Gelade, W. Martens, and F. Neven. Optimizing schema languages for XML: Numerical
constraints and interleaving. SIAM J. Comput., 38(5):2021–2043, 2009.

[13] S. Grijzenhout and M. Marx. The quality of the XML web. In CIKM, pages 1719–1724,
2011.

26

[14] P. Kilpeläinen and R. Tuhkanen. One-unambiguity of regular expressions with numeric
occurrence indicators. Inf. Comput., 205(6):890–916, 2007.

[15] E. Kopczynski and A. To. Parikh images of grammars: Complexity and applications. In
LICS, pages 80–89, 2010.

[16] W. Martens, F. Neven, and T. Schwentick. Complexity of decision problems for XML
schemas and chain regular expressions. SIAM J. Comput., 39(4):1486–1530, 2009.

[17] G. Miklau and D. Suciu. Containment and equivalence for a fragment of XPath. J. ACM,
51(1):2–45, 2004.

[18] F. Neven and T. Schwentick. XML schemas without order. 1999.

[19] F. Neven and T. Schwentick. On the complexity of XPath containment in the presence of
disjunction, DTDs, and variables. Logical Methods in Computer Science, 2(3), 2006.

[20] A. Schmidt, F. Waas, M. Kersten, M. Carey, I. Manolescu, and R. Busse. XMark: A
benchmark for XML data management. In VLDB, pages 974–985, 2002.

[21] T. Schwentick. Trees, automata and XML. In PODS, page 222, 2004.

[22] L. Segoufin and C. Sirangelo. Constant-memory validation of streaming XML documents
against DTDs. In ICDT, pages 299–313, 2007.

[23] L. Segoufin and V. Vianu. Validating streaming XML documents. In PODS, pages 53–64,
2002.

[24] H. Seidl, T. Schwentick, and A. Muscholl. Numerical document queries. In PODS, pages
155–166, 2003.

[25] W3C. XML Path language (XPath) 1.0, 1999.

27

	1 Introduction
	2 Preliminaries
	3 Multiplicity schemas
	4 Static analysis
	4.1 Disjunctive multiplicity schema
	4.1.1 Normalized disjunctive multiplicity expressions
	4.1.2 Alternative definition with characterizing triples
	4.1.3 Complexity results

	4.2 Disjunction-free multiplicity schema
	4.2.1 Dependency graphs
	4.2.2 Graph simulation
	4.2.3 Graph unfolding
	4.2.4 Extending the definition of embedding
	4.2.5 Fuse and add operations
	4.2.6 Family of characteristic graphs
	4.2.7 Complexity results
	4.2.8 Extending the complexity results to disjunction-free DTDs

	5 Expressiveness of DMS
	6 Conclusions and future work

