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Rare Event Simulation for Highly Dependable Systems

with Fast Repairs1

Daniël Reijsbergena,2, Pieter-Tjerk de Boera, Werner Scheinhardta, Boudewijn Haverkorta,b

aCenter for Telematics & Information Technology, University of Twente, Enschede, The Netherlands
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Abstract

Probabilistic model checking has been used recently to assess, among others, depend-
ability measures for a variety of systems. However, the employed numerical methods, such
as those supported by model checking tools such as PRISM and MRMC, suffer from the
state-space explosion problem. The main alternative is statistical model checking, which
uses standard Monte Carlo simulation, but this performs poorly when small probabilities
need to be estimated. Therefore, we propose a method based on importance sampling to
speed up the simulation process in cases where the failure probabilities are small due to the
high speed of the system’s repair units. This setting arises naturally in Markovian models
of highly dependable systems. We show that our method compares favourably to standard
simulation, to existing importance sampling techniques and to the numerical techniques of
PRISM.

Keywords: Statistical model checking, Rare events, Importance sampling, Dependable
systems.

1. Introduction

The goal of probabilistic model checking is to quantitatively evaluate the validity of
performance and dependability properties of stochastic systems. After the system has been
modelled as a Markov chain, or specified in terms of a higher-level language such as AADL
[23], properties of interest are specified using the logic pCTL [11] or CSL [1]. Then, a model
checker is invoked to determine in which states of the Markov chain these properties are
satisfied.

Two main approaches to probabilistic model checking have emerged in recent years. In
the first (numerical) approach one generates the state space of the Markov model beforehand
and then numerically determines in which states the specified pCTL or CSL formula holds [1,
2]. In the second (statistical) approach, the behaviour of the system over time is repeatedly

1This paper is based on earlier work; see [20].
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simulated in order to draw a conclusion about whether the property is satisfied in a certain
state at a given level of confidence [24, 25].

Both of these approaches can experience problems when the probabilities of interest
become small. For estimating probabilities using simulation it is a well-known rule of thumb
that for a rare event probability p, 100/p simulation runs are needed to obtain a reasonable
estimate [5]. In modern dependable (embedded) computer and communications systems,
interesting probabilities of the order of magnitude of 10−8 are not uncommon, and methods
to speed up the simulation process receive an increasing amount of attention.

Importance sampling [13] is a sophisticated form of simulation that uses information
about the system model to speed up the simulation process. If done correctly, this can
lead to large increases in the efficiency. The price that we pay for such better estimates is
the loss of generality. Any stochastic system can be simulated naively, but an importance
sampling approach that works in one setting will typically fail to perform well in other
settings. For example, a system consisting of components that are prone to failure can be
highly dependable because the individual component failure rates are low or because the
repair rates are high, yet the technique from [22] (called Balanced Failure Biasing) was
proven to work well only in the former setting.

As a consequence, we need to restrict ourselves to certain types of models and rare
events in this paper, and specify how to extract from these models the information that
we need for efficient simulation. The models considered here describe systems consisting
of parallel component types as will be explained in detail in Section 2. We are mainly
interested in the case where the repair rates are high, as this is a common situation in
practical model checking problems for which existing importance sampling approaches have
no fully satisfactory answer, but we will also consider the case where the failure rates of
components are low. We do not need to impose that the component failure and repair rates
remain constant when one or several components have already failed.

We extract the relevant information about the system model from the high-level descrip-
tion using a path-based approach (see Section 4.2). The approach is similar to the one used
in [6], but is more general: the methods of [6] work well in the low failure rate setting but did
not work well in the high repair rate setting, and are in that sense similar to Balanced Failure
Biasing. Our method works well in both settings. Furthermore, as we restrict ourselves to
a certain class of models, the information about these paths is immediately clear, while [6]
needed to run a path-finding algorithm similar to Dijkstra’s method before simulating.

In addition, although we will initially impose that repair starts immediately when a
component fails, we will show in Section 6 how one can drop this assumption. In large-scale
storage or computing systems, multiple hot spares are commonly used to achieve redundancy
and strategies involving deferred repair are then attractive. In Section 6.4, we discuss the
even wider applicability of our method by studying an extension of model of Section 2 in
which repairs for all component types are handled by a single repairman who abides by a
first-come first-serve repair policy.

The properties of interest are expressed using CSL, as we are interested in the continuous
time behaviour of these systems. We will consider both the (transient) unreliability and the
(steady-state) unavailability, also to be described in Section 2. Admittedly, this is still
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considerably different from being able to evaluate whether an arbitrary CSL-formula holds.
However, we view our current method as a first step towards more general probabilistic
model checking procedures.

The rest of this paper is structured as follows. In Section 2 we introduce the distributed
database system that we will use as a case study, specify probabilities of interest and explain
how to estimate those probabilities using simulation. In Section 3 we describe importance
sampling in the general setting. In Section 4 we introduce our approach and analyse its
theoretical strengths and limitations. In Section 5 we evaluate our technique empirically
and compare it to standard statistical model checking, to another, very general importance
sampling scheme and to the numerical techniques of the model checking tool PRISM. In
Section 6 we generalise the results of Section 5 to models in which repair is postponed
until multiple components have failed, and discuss the possibility of further generalisation.
Section 7 concludes the paper.

2. Model & Preliminaries

As said in the introduction, importance sampling methods use information about the
way rare events occur in the model to speed up the simulation. Because this information
depends heavily on the model, we must first specify what type of models we will consider. In
this section we will first describe our case study and use it to specify what kind of models our
method can handle. We will then specify what probabilities we need to estimate and how
to do this using standard simulation, as we will need the ideas behind it for our discussion
of importance sampling in Section 3. In Section 6 we will discuss two generalisations of the
benchmark model and how they impact the efficiency of the simulation method.

2.1. Distributed Database System

The distributed database system is a benchmark problem in the field of dependability
evaluation [21]. It was recently studied in [4], and a variant was studied in [8]. It can be
seen as part of a more general class of systems consisting of parallel component types. In
Section 2.1.1 we will describe the states and transition structure of the system, in Section
2.1.2 we will describe the failure conditions (and, by implication, the labelling of the states)
and in Section 2.1.3 we discuss the precise benchmark setting and an extension that we use
in the results section.

2.1.1. Model Description

The distributed database system consists of 24 disks that are grouped together in 6
clusters of 4 disks, 4 disk controller units divided into two sets that each access three disk
clusters and a processor that accesses the disk controllers. The processor has a spare that
takes over in case of failure. There is one repair facility for each of the six disk clusters,
one for each of the two sets of disk controllers and one for the processor and its spare. The
system is depicted in Figure 1.

We can distinguish 9 component types. Types i = 1, . . . , 6 represent the disks in cluster i,
types 7 and 8 represent the disk controllers in sets 1 and 2 respectively and type 9 represents
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Figure 1: A distributed database system

the processors. The interfailure times and repair durations are assumed to be exponentially
distributed. Let ~x be a vector in N9 in which each element xi denotes how many components
of type i have failed. We call this vector the state of the process. The system will be assumed
to start in an initial state ~x0 at time t0 = 0.

Let D = {1, . . . , 9} be the set of component types. The failure and repair rates of
components of these types may depend on the current state, so let the failure rates be some
nonnegative function λi(~x) for each component type i ∈ D and ~x ∈ N9. Let the repair
rates similarly be given by nonnegative functions µi(~x). The failures and repairs are called
transitions. The repair rate of component type i can only be positive when there is at
least one failed component of type i, and the failure rate can only be positive if there are
components of type i left that are operational. We assume that the system as a whole
is fault-tolerant, and that the probability of system failure is low either because of the
component failure rates being low or because of the repair rates being high.

Figure 2: The distributed database system modelled as a stochastic Petri net. The transition intensities are
marking-dependent functions.

We also note that the system can be modelled as a stochastic Petri net (SPN; see, e.g.,
[3]). In Figure 2 the system of the case study is depicted as an SPN. Each state is then
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a marking, the component types are then places and the number of tokens in place i then
represents the number of failed components of type i.

2.1.2. Operation and Failure

The system is said to be operational if a processor can access all the data in the disks
— this condition is satisfied if each of the following subconditions holds: (1) at least one
processor is up, (2) at least one disk controller in each of the controller clusters is up, and
(3) at least three disks are up in each of the six disk clusters. In general, the method that
we introduce in this paper works when system failures occur if for at least one component
type i, a specified number ni of components has failed. System failure in the benchmark
setting falls into this category.

Using this definition of system failure we can formalise what kind of measures we will
estimate. The unreliability is the probability that the system stops being operational at some
point before a specified time bound τ . The unavailability is the steady-state probability that
at some time point t in steady-state the system is not operational. Unreliability properties
can be expressed using CSL as P./p(♦<τ fail) and steady-state unavailability properties as
S./p(fail), where fail is an atomic property that is assigned to all states which represent
system failure as defined earlier.

2.1.3. The Benchmark Case and Generalisations

The failure and repair rates of the individual components are given in Table 1. In the

unit failure rate repair rate
disks λ µ

disk controllers 3λ µ
processors 3λ µ

Table 1: Failure and repair rates in the benchmark model

benchmark case (see [4]) we have λ = 1/6000 and µ = 1. The rates in the literature are per
hour, and the time bound τ for the unreliability is 5 weeks, so equal to 840 in this setting.
The individual components all have the same failure distribution regardless of how many
other components are up. E.g., the total failure rate λi(·) of type 1 components (the first
disk cluster) is 4λ when no components are down, 3λ when one component has failed, and
so on. The component repair rate of each i is always µ if xi > 0, because there is only repair
facility per type.

We also parameterise the number of spares. We introduce a new parameter n and assume
there are n processors, n disk controllers per set and 2n disks per cluster. For n = 2 we
are back in the benchmark case. Let failure in this more general setting be defined to occur
when either (1) no processor is up, (2) in one disk controller set, no disk controller is up or
(3) in one disk cluster at least n disks are down.

Note that even in this general setting, the state space is to a strong degree lumpable,
meaning that the size of the state space can be reduced to facilitate the use of the numerical
techniques implemented in tools such as PRISM and Arcade. However, if we change the
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single component failure rates such that for they are different for each component type then
these techniques will no longer work. Ffor the simulation-based methods, on the other hand,
it will not matter. Hence, for the empirical results of Section 5 we will not use state space
reduction techniques.

2.2. Discrete Event Simulation

Now that we have modeled the system and specified probabilities that we want to esti-
mate, we will discuss how these probabilities can be estimated. The standard simulation-
based approach is called standard discrete-event simulation or Monte Carlo simulation.

2.2.1. Path Generation

As mentioned in the introduction, we repeatedly simulate the behaviour of the system
in order to come up with an estimate. The result of one simulation procedure is called
a sample run or path. We define a run (timed path) as a (in our setting finite) series of
states and transition times. By a (timeless) path we just refer to the series of states that
we encountered. Let Ω be the set of all runs, then this is the sample space from which we
randomly sample runs ω. We will not further delve into the measure theoretic background
of Ω in this paper.

We generate samples from Ω as follows: we start the run at time t0 = 0 in state x0,
which for the unreliability is given by the ‘all up’ state ~0. Then we consecutively determine
which transition is taken and how long it takes until this transition is taken. This is done
as follows: let, at step k, ~xk be the state and let its exit rate η(~xk) be defined as

η(~xk) =
∑
j′∈D

(a
a
λj′(~xk) + µj′(~xk)

)
. (1)

We pick the transition j of type i as the next transition to be taken with probability

p~xk(j) =


λi(~xk)

η(~xk)
, if j is a failure transition,

µi(~xk)

η(~xk)
, if j is a repair transition.

(2)

Also, let Tk be the time instance at which the k’th step is taken. Then we let the sojourn
time ∆ = Tk+1 − Tk have probability density

f~xk(δ) = η(~xk)e
−η(~xk)δ. (3)

We continue until we can terminate — a condition that depends on the property whose
validity we seek to evaluate.
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2.2.2. Estimating the unreliability

Let Φr be the event that the system hits a failure state before time τ , which we assume
to be a model parameter given before the start of the simulation. Then the unreliability is
given by π = P(Φr) = E(1Φr), where 1Φr(ω) denotes the indicator function which equals
1 if ω satisfies Φr and 0 otherwise. For each sample run we can evaluate whether Φr was
satisfied on that run. So, after having sampled a series of runs {ωi, . . . , ωN} we can estimate
P(Φr) using

π̂ =
1

N

N∑
i=1

1Φr(ωi). (4)

Let σ̂ be the sample standard deviation of our series of runs. The 95%-confidence interval 3

for this estimate is then given by (see [16], page 254)[
π̂ − 1.96

σ̂√
N

, π̂ + 1.96
σ̂√
N

]
.

2.2.3. Estimating the unavailability

Estimating the steady-state unavailability using simulation is a little bit more tricky. To
avoid having to ‘warm-up’ the simulation before it reaches approximate equilibrium we apply
a renewal argument. We partition the behaviour of the system as time progresses into disjoint
busy cycles. A busy cycle starts and ends when we enter state ~0. Let V be the steady-state
unavailability, let Z be the amount of time during which the system is unavailable during a
busy cycle and let D be the duration of a busy cycle. Then E(V ) = E(Z)/E(D). The ratio
estimator v̂ is given by

v̂ =
ẑ

d̂
, (5)

where ẑ and d̂ are the Monte Carlo estimates for E(Z) and E(D) respectively. This estimator
is biased, but strongly consistent (i.e., v̂ → E(V ) as N → ∞; see [16], page 533). We
generate different runs for the estimates ẑ and d̂ to avoid dependence. This becomes even
more necessary when we use importance sampling because techniques that focus on rare
events would lead to a large variance of d̂ (more details will be given in Section 4.4). The
95%-confidence interval (see [16], pages 532–533) is then given by[

v̂ − 1.96
σ̂v

d̂
√
N

, v̂ + 1.96
σ̂v

d̂
√
N

]
,

3The confidence interval given here is based on the central limit theorem, which says that for N ‘large
enough’, the distribution of the sample average can be well approximated by a normal distribution. How large
N really needs to be depends, in this case, on the true probability π. If π gets smaller, the approximation
gets worse for fixed N . In tables such as Table 9, a typical Monte Carlo estimate will be 0, and a confidence
interval based on the normal distribution will be the singleton set containing this point. Instead of giving a
more accurate confidence interval based on the binomial distribution, we simply omit the result.
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where σ̂2
v = σ̂2

z + σ̂2
dv̂

2 and σ̂2
z and σ̂2

d are the sample variances of sequences containing the
V ’s and D’s respectively.

Although the above estimation procedures work in many cases, the downside is that
when the probability that we need to estimate is small the number of runs N that we need
in (4) or (5) is enormous. Finding a solution to this problem will be the focus of the next
two sections.

3. Principles of Importance Sampling

In this section, we will only describe importance sampling for estimating the probability
of failure before time τ , but something similar can be done for the steady-state unavailability.
The problem with small probabilities is that the fraction of runs in which a rare event
happens is very small. When we apply importance sampling, we carry out a similar stepwise
procedure as in Section 2.2.1, but we use a different probability distribution in order to
increase this fraction.

In this section, we will first describe importance sampling in Section 3.2 and then in-
troduce the so-called zero-variance estimator on which we base our method in Section 3.3.
Before we start with the formal definitions of the aforementioned concepts, we first give an
intuitive description in Section 3.1.

3.1. Intuitive Description

Assume that we want to estimate some small probability w. Using standard simulation,
we randomly draw zeroes and ones such that the fraction of ones is expected to be w (see
(4)). Suppose we now somehow make the probability of drawing a non-zero twice as large.
Then, if we multiply the value 1Φr(ωi) of the ith run in (4) by 1

2
, we obtain an estimator

that is unbiased and which has a lower variance than the standard estimator. Now suppose
we already know w and make drawing a non-zero exactly w−1 times as likely. Hence, we
draw a non-zero with probability one and multiply each 1Φr(ωi) by the precise probability
that we wish to estimate, resulting in an estimator with zero variance.

Unfortunately, the systems we study are far too complex to ‘just ’ multiply the probability
of drawing a non-zero by some number and multiply by a constant weighting factor. There
are too many ways in which the event of interest can occur. We will need to tweak the
individual transition probabilities and sojourn time densities, and in order to obtain an
efficient new distribution we need to know enough about our system. The basic way to do
this in complex stochastic systems will be discussed below.

3.2. Basic Setup of Importance Sampling

Recall that we consider systems consisting of parallel component types. Assume that we
can at least divide the transitions into two classes: repair transitions and failure transitions.
Also assume that failure transitions have low rates. One could ask how this makes the
probability of system failure small. A first answer could be that the low component failure
rates cause the failure transitions to rarely ‘win the race’ against the repair transitions.
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So, assume that at some step of the simulation process we are in a state where at least
one repair transition is enabled. The idea is now to use a new probability distribution
p∗, which we call the simulation distribution (also known as a change of measure), for the
simulation such that the component failure probabilities are much higher than under the
old distribution (2). We compensate for this overestimation by weighting the estimate with
the ratio of p and p∗ — like the factor 1

2
in the example in Section 3.1.

Every time a transition is sampled using the new density this weighting factor needs
to be considered. The final weighting factor L of each run ωi, called the likelihood ratio,
is simply the product of the individual ratios p~xk/p

∗
~xk

in the run. Our new estimator then
becomes

π̂ =
1

N

N∑
i=1

L(ωi) · 1Φr(ωi). (6)

It is easy to prove that this estimator is unbiased for any new distribution that assigns
positive probability to transitions that have positive probability under the old distribution.

We do not need to restrict ourselves to changing the transition probabilities. Note that
the system failure probability can also be small because the time interval [0, τ ] is too short
for a sufficient number of component failures to occur. To remedy this, we can replace the
sojourn time density f of (3) by a new density f ∗ with a higher transition rate. If we also
account for the ratios f/f ∗ in the likelihood ratio L then our estimator remains unbiased
and, if done correctly, has an even lower variance.

3.3. Zero Variance

Consider the following ideal situation: for every state ~x and time points t ∈ [0, τ ] we
already know the probability of system failure within τ − t time units. Call this probability
w(~x, t). Let χ(~x, j) be the new state that we obtain if transition j is chosen when we are in
state ~x, and J the set of all transition indices. Then we can introduce a new simultaneous
density of the transition j ∈ J and sojourn time δ, namely

p∗~x(j, δ) =
p~x(j, δ) · w(χ(~x, j), t+ δ)∫ τ−t

0

∑
j′∈J p~x(j

′, δ′) · w(χ(~x, j′), t+ δ′)dδ′
, (7)

where p~x(j, δ) = p~x(j) · f~x(δ). This new simulation density was proven to yield an estimator
with zero-variance in [6]. Of course, we do not explicitly know the function w, or else we
would not need to simulate. However, we might be able to come up with an approximation
ŵ for w. Then, we replace the function w in (7) by this approximation. If the simulation
distribution associated with the approximation ŵ is good enough then we have succeeded
in overcoming the main problem facing standard Monte Carlo simulation of rare events.

4. The New Simulation Distribution

The obvious next question is how to find a good way to find an approximation ŵ that we
can use to replace w in (7). In the following subsection, we will, as a first step, split the joint
distribution of (7) into two distributions for the transitions and sojourn times respectively,
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and explain how to draw sojourn times in an efficient manner. In the remaining subsections
we will find better approximations for w step-by-step.

4.1. Drawing Sojourn Times

If w were known explicitly we would use (7) by first drawing a transition and then
selecting a sojourn time conditional on this transition. The latter step, drawing sojourn
times δ from (7), can be computationally expensive. Typically, the distribution function
of the sojourn time conditioned on a transition j is not invertible, which would force us to
resort to accept-reject schemes (see [12], chapter 18).

To avoid this, we apply our first simplification: we use the old density function of δ
conditional on transition j to occur before time τ − t. This gives us the following density:

f ∗~x(δ) =
η(~x)e−η(~x)δ

1− e−η(~x)(τ−t) .

The failure transitions are then drawn with probability

p∗~x(j) =
p~x(j) · ŵ(χ(~x, j), t+ δ)∑

j′∈J p~x(j
′) · ŵ(χ(~x, j′), t+ δ)

(8)

for some approximation ŵ yet to be determined (remember that J is the set of all transition
indices). The technique of conditioning sojourn times on being smaller than τ − t is called
forcing (see [18] or [19]). We do this for all transitions individually. One could also draw a
whole series of transitions and then condition on the sum of their sojourn times being smaller
than τ − t, but then we would have to deal with general sums of exponentially distributed
random variables and that is something we want to avoid, as the evaluation of distribution
functions of these sums can quickly become computationally expensive.

4.2. Approximating w using Straight Paths

A way of approximating rare event probabilities is to consider only the paths that lead to
system failure of components of a certain type i (that is, xi ≥ ni) without cycles. We define
a cycle as a sequence of states in which the first and last state are the same. It necessarily
contains at least one failure and one repair transition.

Consider any state ~x 6= ~0 and a cycle starting in ~x of which the first transition is
a component failure. For this cycle to occur, the failure transition must have occurred
before a repair transition. When the component failure rates are made smaller or the
repair rates are made higher, the occurrence of paths that contain these cycle becomes less
likely. Accordingly, the straight paths — i.e., those without cycles — become a better
approximation. This motivates the following, most basic, approximation for w.

Let a straight path to failure be a path that ends in a system failure state and which
contains only failure transitions of a single component type. Let d be the number of types.
From each state ~x, we have d straight paths to failure, one for each type k. Let νk failures
remain until the critical level nk is reached, and let the vector of states that are seen along
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this path be denoted by [~xk,0, . . . , ~xk,νk ], with ~xk,0 equal to ~x. The probability of this path
being taken equals

p([~xk,0, . . . , ~xk,νk ]) =

νk−1∏
i=0

λj(~xk,i)

η(~xk,i)
,

where η(~x) is defined as in (1). We can then use

ŵ∗(χ(~x, j), ti) = ŵ∗(χ(~x, j)) =
d∑

k=1

νk−1∏
i=0

λj(~xk,i)

η(~xk,i)
(9)

as a time-independent approximation of w. From now on, the ∗ in ŵ∗ indicates that we only
use the straight paths as an approximation.

4.3. Probability Contribution of Paths with Cycles

Unfortunately, the approximation (9) is too crude. One shortcoming of ŵ∗ is that the
most likely path from a state ~x′ to system failure might not be one of the d straight paths.
In many cases, the most likely path is the path in which the system first returns to state ~0
and then takes one of the straight paths that determine ŵ∗(~0). This can be seen in Figure 3,
which depicts the state space of a simplified model with only two component types. Starting
from state ~x′ in Figure 3, the dashed line path (the one going ‘north’) is, when the rates are
realistic, much less likely to occur than the solid line path because the former contains one
more step where a failure transition needs to win the race from a repair transition.

~0 ~x′

x2 →

x
1
→

Figure 3: A model consisting of two types of components. For one type there are many more spares than
the other, but its components fail more quickly.

Accordingly, we also consider the straight paths from state ~0 for our approximation ŵ(~x′).
From state ~x′, the system returns to state ~0 with probability almost equal to one. Therefore,
for each state ~x we can use the sum of ŵ∗(~x) and ŵ∗(~0) instead of just the former. As a
consequence, the jump from state ~0 to state ~x′ will more often be taken under the new
distribution. This is desirable — paths that contain cycles between state ~0 and the states
where one component has failed are almost equally likely as the straight paths from ~0.

However, the contribution of ŵ∗(~0) needs to be time-dependent — cycles to the ‘all up’
state ~0 are only likely when the ‘all up’ state’s exit rate η(~0) is high enough compared to
the remaining time τ − t. Otherwise, the extra jumps take too much time, which reduces
the likelihood of these paths.
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For finding a time-dependent ŵ(~x, t), a crucial insight is that the time-independent func-
tion ŵ∗(~0) is still a good approximation for the probability of hitting a system failure state
during a busy cycle. For ease of notation, let q , ŵ∗(~0) and λ0 , η(~0). When the failure
rates are low or the repair rates are high, the duration of the busy cycle is almost com-
pletely determined by the time spent in state ~0. Therefore, the time it takes before we reach
a system failure state is the sum of M busy cycle durations Di. Here, the durations Di are
all independent and exponentially distributed approximately with the rates λ0, while the
number M follows a geometric distribution with approximate success parameter q. From
elementary probability theory we know that this sum follows an exponential distribution
with rate λ0 · q, hence the probability that this is completed before τ − t time units has
approximate probability 1− exp(−λ0 · q(τ − t)).

For small x, 1 − e−x approximately equals x. Since q is assumed to be small, we can
approximate w(~0, t) using the time-dependent function qλ0(τ − t). This motivates our final
approximation,

ŵ(~x, t) =

{
q · λ0 · (τ − t) if ~x = ~0,

ŵ∗(~x) + q · λ0 · (τ − t) otherwise.
(10)

Using (10) in (8) keeps the estimator efficient when the rarity of the event of interest is not
caused by the low component failure rates but rather the high recovery rates. Our numerical
results will show that this adaptation is crucial in practical situations.

4.4. Steady State Unavailability

So far, we have described how to estimate the unreliability Φr, but a similar approach
can be used for the unavailability V . Consider the ratio estimator (5). The problem that we
face is that for the vast majority of runs the time fraction Z(ω) will equal zero, regardless
of whether the failure rates were low or the repair rates were high. So, we need to increase
the probability of hitting a system failure during a busy cycle.

The procedure will be as follows: we start in the ‘all up’ state and simulate using (10)
substituted into (8) — since this is a steady-state performance measure we set τ − t ≡ 0 in
(10), thus effectively disabling returns to state ~0. We stop when we reach system failure and
from then on simulate using the old distribution until we reach state ~0 [13]. Meanwhile, we
record the amount of time during which the system was in a failed state.

If we would apply the same distribution as we used for (Z), the paths that immediately
fall back to the ‘all up’ state before reaching a system failure state are never sampled because
ŵ(~0, t) ≡ 0. This has no effect on the unbiasedness of the estimator ẑ because paths that
immediately fall back to ~0 contribute nothing to E(Z). However, they do contribute heavily
to E(D). Therefore, to avoid bias and inconsistency in d̂ we generate two series of runs,
one for Z with importance sampling and one for D without importance sampling [10], and
substitute them into (5).

5. Results

In this section, we demonstrate that our method produces good results in practice. We
compare our method to a few other well-known techniques. The first of these is the standard
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Monte Carlo method. A more efficient method is that of forcing (see Section 4.1) combined
with balanced failure biasing (BFB). Under BFB, the total probability of a component
failure is set to 1

2
, uniformly distributed over the individual component types (and similarly

for the repairs — for more information, see [22]). The third simulation method found in
the result tables of this section are the estimates produced with the new method using the
approximation in (10), abbreviated as Path-IS. Finally, we will compare our method to the
numerical methods of the model checking tool PRISM.

When we display the experimental results in a table, we first give the statistical estimates.
These are either the standard Monte Carlo estimates as in (4) or importance sampling
estimates as in (6), which will be clear from the context, and are given in the form of a
95%-confidence interval. To the right of the estimates, we state the number of simulation
runs used to produce these estimates. The number of simulation runs for each method
was picked such that the computation time was comparable to that of PRISM. In the last
row(s), we display the numerical solutions and the number of states in the PRISM and
Arcade models (the latter tool uses lumping/bisimulation minimisation to reduce the size
of the state space). The exact computation and simulation times are specified in the text.

5.1. Experimental Setup

Next, we will describe how we will test the strength of our method. Of course, there
is a fundamental difference between the numerical approach and the statistical approach in
the sense that numerical methods (if they converge) give an almost perfect (depending on
the stopping criterion) approximation after some fixed time interval. On the other hand,
statistical methods produce confidence intervals that can be made as narrow as one would
like, depending on how much time one is willing to spend. The best way to say something
about the applicability of an approach for the user is to look at the wall-clock time.

We used a computer with a 2.8 GHz Intel® CoreTM 2 Duo processor (32-bit) and 3 GB
of RAM, running Windows XP. All simulations were run with a simple Java program that
generated (pseudo-)random numbers using a fast Mersenne twister [17]. We used version
3.3.1 of PRISM.

5.2. Unavailability

Of the two measures discussed in this paper, the unavailability is the easiest to approxi-
mate. Because it considers the system when it is in equilibrium, no information about the
transient behaviour of the system is needed. Numerical methods to analytically determine
or iteratively approximate it are well-established.

First, we will show in Table 2 that our results are consistent with the other tools and the
literature, namely [4]. The unavailability in [4] was only given in one significant digit, and
the total run time was not specified. When we lower the component failure rate parameter
λ from 1/6000 to 1

6
· 10−6, we get similar results, with the exception of standard Monte

Carlo. This is displayed in Table 3. Increasing µ from 1 to 1000 gives us equivalent results,
as depicted in Table 4 (note that the unavailability values for λ = 1

6
· 10−6 and µ = 1000 are

exactly the same. This is not a coincidence, as the solution depends only on the transition
rates through the ratio λ/µ). In all these cases PRISM does better than the simulation
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v̂ (10−6) # samples
MC 3.677± 0.778 388 196
BFB 3.647± 0.104 169 484

Path-IS 3.511± 0.035 79611
v (10−6) # states

PRISM 3.498 421 875
Arcade 3 2 100

Table 2: Unavailability (v̂) results for the benchmark case. λ = 1/6000, µ = 1, n = 2.

v̂ (10−12) # samples
MC 5.847± 11.460 386 538
BFB 3.532± 0.105 165 943

Path-IS 3.521± 0.036 78179
v (10−12) # states

PRISM 3.500 421 875

Table 3: Unavailability (v̂) results when λ = 1
6 · 10−6;µ = 1, n = 2.

v̂ (10−12) # samples
MC — 384 418
BFB 3.504± 0.102 165 115

Path-IS 3.465± 0.035 76923
v (10−12) # states

PRISM 3.500 421 875

Table 4: Unavailability (v̂) results when µ = 1000; λ = 1/6000, n = 2.

approaches discussed so far — indeed, for models with small state spaces PRISM’s steady-
state techniques can be preferred to simulation, regardless of λ or µ. However, if we increase
the number of spare components n to 3, the size of the state space increases about 18-fold,
as can be seen in Table 5. This causes PRISM’s computation time to increase, from about
3.4 seconds for Tables 2–4 to 113.1 seconds for Table 6. When we increase n even further,

n # states # non-zeros
2 421 875 5 737 500
3 7 529 536 111 329 568
4 66 430 125 1 027 452 600
5 382 657 176 6 087 727 800
6 1 655 595 487 26 853 394 932

Table 5: State space sizes and numbers of non-zero entries in the transition rate matrix of the models built
by PRISM for different values of n.

we hit tougher boundaries on the applicability of numerical methods due to the state space
explosion problem. For n ≥ 4, the amount of memory that our system has available for
“creating [a] vector for diagonals” is insufficient and PRISM terminates without giving a
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v̂ (10−9) # samples
MC 7.235± 6.135 12 977 468
BFB 5.656± 0.151 3 434 986

Path-IS 5.580± 0.015 1315050
v (10−9) # states

PRISM 5.578 7 529 536

Table 6: Unavailability (v̂) results when n = 3; µ = 1, λ = 1/6000.

solution (even after adjusting the memory usage maxima in PRISM’s settings). For n = 6,
Path-IS still produces accurate estimates when we set the simulation time to a mere 60
seconds, as can be seen in Table 7. BFB underestimates the unavailability, a well-known
phenomenon when the change of measure being used is not suitable for the problem [7].

v̂ (10−16) # samples
MC — 6 708 624
BFB 0.148± 0.225 803 752

Path-IS 1.173± 0.016 205654
v (10−16) # states

PRISM — 1 655 595 487

Table 7: Unavailability (v̂) results when n = 6; µ = 1, λ = 1/6000.

5.3. Unreliability

The unreliability is (from a theoretical point of view) a more interesting case than the
unavailability because, unlike the latter, the former is not known in closed form for the
models that we consider [9] — hence, we simply have to use numerical and/or statistical
methods. First, note that we have defined the unreliability to refer to the probability of
system failure before some time point τ (in this case 840 hours), allowing the repair of
components in this time interval. In [4] and [21], component repairs were not allowed to
occur.

In Table 8, we display the results for the benchmark case (no repairs allowed). Because
PRISM’s numerical evaluation was very quick (0.235 seconds), we gave the statistical meth-
ods more time (60 seconds), as the purpose of Table 8 is only to show that our results are
consistent with the literature even when the repair transitions are disabled. Again, no run
time was given for Arcade in [4]. Note that standard Monte Carlo and BFB give the best
results in this setting because their simplicity allows them to sample many more runs within
the (real) time constraint. When we allow repairs to occur the unreliability drops to approx-
imately 0.0029. It takes PRISM little more than 30 seconds to compute this probability.
This computation time does not depend on λ, as it took a comparable amount of time to
generate the results of Table 9, where we lowered λ to 1

6
· 10−6.

However, when we increase µ, the time that PRISM needs to produce a solution increases
along with it. The applied numerical methods require that the transition rate matrix be
uniformised, and the uniformisation rate increases linearly in µ. PRISM’s computation time
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π̂ # samples
MC 0.5981± 0.0003 8 304 940
BFB 0.5976± 0.0003 5 116 887

Path-IS 0.5977± 0.0019 93526
π # states

PRISM 0.5980 421 875
Arcade 0.5980 2 100

Table 8: Unreliability (π̂) results without repair when µ = 0; n = 2, λ = 1/6000.

in turn increases linearly in the product of the uniformisation rate and the mission time
(see [12], chapter 15). Because the uniformisation rate is so much higher than the original
exit rate of the ‘all up’ state, many unnecessary self-loops are taken into account. This
can heavily slow down the computation. On the other hand, the accuracy of the Path-IS

π̂ (10−9) # samples
MC — 18 438 588
BFB 2.936± 0.024 1 042 866

Path-IS 2.937± 0.001 992231
π (10−9) # states

PRISM 2.936 421 875

Table 9: Unreliability (π̂) results when λ = 1
6 · 10−6; n = 2, µ = 1.

estimate remains constant as µ increases since the jumps out of the ‘all up’ state still occur
with the same low rate. A few estimates together with PRISM computation times are given
in Figure 4. Notice that when µ = 100, PRISM takes over half an hour to produce an
approximation, while our simulation method can produce a decent estimate in 10 seconds.

For high µ (and high τ), the confidence intervals of BFB are also noticeably wider than
those of Path-IS. For µ = 1000 (10 second run time), they were 2.943±0.013 and 2.920±0.358
(times 10−6) respectively. Again, discussing why goes beyond the scope of this paper.

For higher n PRISM again starts to suffer from the state-space explosion problem. We
omit results for this scenario as they are comparable to the results for the unavailability
when n is high.

6. General Busy Cycle Durations

Consider again a system that consists of several component types with a dedicated repair
unit for each type. We previously assumed that repair would start immediately after a
component failure, but now assume that, for one or multiple component types, the cost of
having the repairman come over is high. In this setting, it might be more cost-efficient to
initiate repair for a component type only after multiple components of this type have failed.
This repair strategy is called deferred repair. Generalised versions of BFB were proposed in
[14] and [15] for estimating steady-state measures in this model setting.
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Figure 4: Estimates for the probability π (the unreliability) from PRISM (dashed, crosses) and Path-IS
(dashed, circles) on left vertical axis; PRISM run time (solid, crosses) on right vertical axis. The Path-IS
run time was only 10 seconds, but the bounds of the 95%-confidence interval were still not distinguishable
from the estimate at this scale.

We cannot trivially assume that the method described in Section 4 also works well
in this new setting; the analysis in this section relies on the busy cycle durations being
approximately memoryless, but no matter how small λ/µ is in this new scenario, there will
be more than one exponential phase in which a non-negligible amount of time is spent before
system failure. Since µ is very high compared to λ, a non-negligible amount of time is spent
only in states in which no repair transitions are allowed.

In other words, we need to divide the state space into two subsets: a typical set in
which repair transitions are not allowed and in which the system spends the bulk of its time
({~0} in the setting of Sections 2-4, but a larger number of states in the current setting),
and an atypical set outside of it. Therefore, the probability distribution of the time until
system failure will depend on the phase in the typical region, and phase-type distributions
are not memoryless in general. Furthermore a good approximation ŵ(~x, t) will require that
information about a larger set of typical paths is used than just the straight paths of Section
4.2. These paths may ‘turn’ inside the typical region, and are straight only after entering
the atypical region.

In this section we will show how to overcome these problems. In Section 6.1 we will
describe how the loss of the memoryless property can be overcome, by showing that in an
appropriate limiting regime the importance of the current phase will vanish and the time
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until system failure will again have a memoryless distribution. In Section 6.2, we will study
the nature of the larger set of relevant paths, and in Section 6.3 we will demonstrate the
necessity of the analysis in this section by empirically comparing the generalised method
(which we shall call Path-IS-G) to the method of Section 4, standard simulation, BFB (see
Section 5) and the numerical techniques of PRISM.

6.1. Non-Memoryless Busy Cycles

As we will only discuss the problem of non-memorylessness in this section, we consider a
very simple model in which the need for extra paths does not occur. This is the case when
our system consists of only one component type. A model of such a system is depicted in
Figure 5, where the squares represent states in the typical set (i.e. where repair transitions
are not yet allowed) and the circles represent states in the atypical set.

~0

λ

λ

λ λ

µµ

µ
λ

µ

Figure 5: A model with a single component type. The repairman starts work only after the second component
has failed.

For small λ/µ the duration of a busy cycle will be almost completely determined by the
sojourn times in the typical set. Clearly, such a duration approximately has an Erlang(2,λ)
distribution, for which the memoryless property does not hold. In more general situations,
the distribution of the time spent in the typical set could have any phase-type distribution.

Although the time within a busy cycle is no longer memoryless, the distribution of the
number of busy cycles needed before system failure remains geometric and, hence, memo-
ryless. We know that λ/µ is small, so q, the probability of system failure during a single
busy cycle, will also be small. As a consequence, the expected number of busy cycles before
system failure will be large. Interestingly, it can be shown that for small values of q the time
until system failure again approximately has an exponential distribution, with rate q/E(D);
see Theorem 1 in the Appendix. Using the same linear approximation as in Section 4.3 we
obtain an approximation ŵ(~x, t) similar to (10) with λ0 replaced by (E(D))−1.

6.2. Non-Rare Paths

The next step is to extend the result of Section 6.1 to a system with multiple component
types — a model of such a system is depicted in Figure 6(a). It still holds for this system
that the duration of the busy cycle is approximately equal to the time spent in the typical
set. However, when a system has a large number of component types with comparable failure
rates, it is likely that between failures of two components of the same type, a component of
another type fails. The ‘straight ’ paths of Section 4.2 do not account for such behaviour.
As a consequence, the probability q of failure during a busy cycle is underestimated, and
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the resulting change of measure will be inefficient because the probability of falling back to
the origin is made too low.

x2 →

x
1
→

(a)

x2 →
x

1
→

(b)

Figure 6: A model consisting of two types of components, where for each type, repair starts when two
components of that type have failed. The square states represent the typical set, the round states represent
the atypical set. In (a) we display all possible transitions; in the square states none of the repairs are yet
enabled. In (b) we display only the most important transitions; dashed: transitions in a typical successful
busy cycle; dotted: transitions in a typical unsuccessful busy cycle; solid: transitions that occur in both.

Another consequence of the added component types is that the expected duration of
a busy cycle may be very long. Not only does this impact the efficiency with which we
can estimate E(D), it may also imply that the assumption, made in Section 6.1, that the
probability of system failure during a busy cycle q is small while τ is relatively large compared
to E(D), is violated for realistic parameter settings.

Hence, we alter the definition of the busy cycle: we now say that a generalised busy cycle
D′ starts and ends when the system jumps from the atypical to the typical set. Note that
the starting times of the busy cycles are no longer i.i.d., but this has a negligible impact.
Hence, we can still justifiably approximate the time until system failure by a geometrically
distributed number of (generalised) busy cycle durations.

We approximate the probability q of failure in such a generalised busy cycle using the
following strategy: we use simulation using the original probability distribution (see Section
2.2) to estimate E(D′). This means that we choose a number ND a priori or let it depend on
a bound on the run time. Because a fixed time bound leads to strongly varying accuracies of
E(D′) for different n and λ (the number of sample generated per time unit depends strongly
on these model parameters) we fixed ND = 500 for the results of Section 6.3.

Whenever a new generalised busy cycle starts during this first simulation round, we
record the state ~x in which the typical set is entered. We then find all paths that first move
(in any way) through the typical set and then follow a straight path to system failure. In
the example of Figure 6(b), there would be four of those paths from ~0 and three from the
states (0, 1) and (1, 0) in the typical set. Then we use the sum of the probabilities of all
those paths — we denote this value by q̂∗(~x) — as a single sample that is used to find an
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estimate for q. Hence, our approximation for q is a random variable Q whose expected value
we estimate using the same simulation runs as the ones for E(D′). Finally, after having
generated ND samples, we use the sample means as estimates for E(D′) and E(Q), which
leads to our final approximation:

ŵ(~x, t) =

{
E(Q) · (E(D′))−1 · (τ − t), if ~x = ~0,

q̂∗(~x) + E(Q) · (E(D′))−1 · (τ − t), otherwise.
(11)

In Section 6.3 we will only display results for the unreliability, but one could also use the
change of measure in (11) to estimate the steady-state unavailability. One would then again
set (τ − t) to zero and the only change would be the number of paths used for ŵ∗. Note that
for the ratio estimator (5) we still use busy cycle durations D instead of D′ as the latter
ones do not form a renewal process.

6.3. Simulation Results

In this section, we will empirically compare the simulation distribution based on (10)
(Path-IS) to the more general simulation distribution based on (11) (Path-IS-G). We intro-
duce a vector of repair triggers ri, i ∈ {1, . . . , 9}. Repair of component of type i is turned on
when the number of failed components of type i reaches the trigger ri, and then switched
off when all failed components of that type have been repaired. Typically, this will increase
the expected generalised busy cycle duration but also increase the probability q of failure
during such a cycle both due to an increased number of ways failure can occur (more paths
to failure) and the fact that fewer failure transitions need to ‘win the race’ against repair
transitions.

6.3.1. Single Component Type

We will first consider the increase in expected busy cycle duration by considering the
processor set in isolation. We increase τ from the benchmark 840 to 8 400 because in the
new setting the generalised busy cycle will take so long that the assumption that cycles are
completed before system failure is no longer valid. The CTMC that underlies the model will
then look like the one in Figure 5 — there are ri states in the typical set and n states in the
atypical set. For Figure 7, we let ri = n/2 and show the estimates and numerical results of
PRISM for increasing n. The probability of interest can be seen to decrease exponentially.
In this situation, PRISM is still clearly superior as the model size is very small when only
one component type is modeled.

The 95%-confidence intervals in Figure 7 were too narrow to be visible. However, to get
an idea of how broad they are compared to each other, we display the relative error σ̂/(π̂

√
N)

in Figure 8. At n = 2, the two methods are still the same as repair starts immediately after
a component has failed. However, for larger values of n the generalised approximation Path-
IS-G clearly outperforms the original Path-IS. When n (and, hence, all ri) grows higher, the
difference between the two ‘estimates ’ for E(D) and E(D′) increases. As a side note: for
higher τ the efficiency of the change of measure based on (10) will decrease further.
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Figure 7: Unreliability (π̂) results for the model with one component type. λ = 1/6000, µ = 1, τ = 8 400,
r1 = n/2. N = 1000 samples were drawn for each simulation — the run time for each simulation was less
than five seconds. PRISM run time was negligible.

6.3.2. Multiple Component Types

Whereas PRISM is still the most efficient tool for analysing small models such as the
Distributed Database System (DDS) with only one component type, its performance is much
worse for models with larger values of n. For n = 3 and ri = 2 for all i, the size of the state
space is 32 768 000 compared to the 7 529 536 of Table 5 — the number of non-zero entries
in the transition rate matrix increases by a similar factor. PRISM runs out of memory in
this situation, so in order to be able to compare the methods we remove two disk sets from
the model, resulting in seven component types. This model only has 512 000 states and
5 478 400 transitions. It takes PRISM about 44 seconds to find a solution. In Table 10 we
combine this result with the results of simulations with a similar run time.

As expected, Table 10 shows that a change of measure based on (11) outperforms one
based on (10). The difference is not dramatic, however. This is because the longer busy
cycle durations and higher probability of success during a busy cycle cancel to some extent,
causing the rates in the exponential approximation in the two methods to differ by a factor
of only 2.2.

Note that the results produced by Path-IS are still usable; however, once we raise τ , its
performance will again deteriorate. The performance of the two methods does not worsen
for higher µ, which can be seen in Table 11 for which we raised the value of µ from 1 to 1000.
PRISM is still able to produce a result in this situation but only after 10 hours, whereas
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Figure 8: Relative errors σ̂/(π̂
√
N) for the model with one component type. λ = 1/6000, µ = 1, τ = 8 400

r1 = n/2. N = 1000 samples were drawn for each simulation — the run time for each simulation was less
than five seconds.

π̂ (10−4) # samples
MC 9.296± 0.503 1 410 356
BFB 8.691± 0.833 382 539

Path-IS 9.483± 0.183 24 319
Path-IS-G 9.313± 0.105 19197

π (10−4) # states
PRISM 9.366 512 000

Table 10: Unreliability (π̂) results for the model with 7 component types. ri = 2; n = 3, λ = 1/6000, µ = 1,
τ = 840.

the run time of the simulation-based methods was 44 seconds. In Figure 9, the relative
error σ̂/(π̂

√
N) is displayed for increasing values of µ. We can see that the relative error

of Path-IS is not only higher but also much more rugged, which shows that the estimate is
more unreliable. More importantly, the relative error of Path-IS-G remains almost constant;
this implies that, unlike Monte Carlo simulation, the time complexity of Path-IS-G does not
depend on µ and thereby not on p, the probability that we seek to estimate.

6.4. Generalised Repair Strategies

The defining characteristic of the method presented in this paper is that it is path-
based ; it works well if failures mostly occur in a manner that corresponds to one of the

22



π̂ (10−7) # samples
MC 6.696± 13.12 1 413 429
BFB — 301 322

Path-IS 9.458± 0.178 23 872
Path-IS-G 9.350± 0.103 19566

π (10−7) # states
PRISM 9.388 512 000

Table 11: Unreliability (π̂) results for the model with 7 component types. µ = 1000; n = 3, ri = 2,
λ = 1/6000, τ = 840.

Figure 9: Relative errors σ̂/(π̂
√
N) for the model with 7 component types. λ = 1/6000, n = 3, τ = 840,

r1 = . . . = r7 = 2. N = 1000 samples were drawn for each simulation. Note the the peaks are not structural,
but simply evidence of the whimsicality of the estimator.

dominant paths. In Section 2.1, we outlined a model class for which we can guarantee that
this assumption is valid. However, the class of models for which our method (or variations
thereof) works well is much broader and contains other models with large practical relevance.
To be more specific: we formulated two requirements in Section 2.1 that our system model’s
repair strategy had to meet: i) for each component type, repairs had to be handled by a
dedicated repair facility, independent of all other component types and ii) repairs had to
start immediately after the first component of a type had failed. In Sections 6.1-6.3 we have
shown how to drop the latter assumption. Additionally, however, one could also think of
good reasons to deop the former.

23



First of all, it is simply unrealistic to assume that two disk sets have two separate
repair facilities. A single repair facility taking care of all the repairs in the system is often
closer to practice. Secondly, models with dependent component types are more theoretically
appealing. If all component types are independent, we can compute several important
probabilities in the system by first computing them for each component in isolation and
then performing a trivial aggregation step.

Of course, generalising to a single repair facility for all component types means we have
to specify a repair policy that determines how the repair facility decides which component
type to work on whenever components of multiple types are down. From the many policies
that have been studied in the literature (see also Chapter 6 of [12]), we will zoom in on one
policy, namely true FCFS, to illustrate the wider applicability of our method. True FCFS
means that individual components are repaired in the order in which they fail.

The impact of this choice of repair strategy on the state space of our model is such that
each state in which several components have failed must be duplicated such that all possible
orders of failure can be represented, not discriminating between components of the same
type. This has a strong negative effect on the performance of PRISM; not only is expressing
this model in the PRISM modelling language a challenge, there is also a dramatic blow-up
in the size of the state space. In the benchmark setting, the size of the state space goes from
421 875 states to 2 123 047 371 states.

In Table 12, we have displayed simulation results for both the old situation and the
new one. Each simulation was run for 33.609 seconds, which is the amount of time needed
by PRISM to compute the exact probability in the old setting. The difference between
the results of the two repair strategies is marginal: only the path-based IS estimates differ
significantly. The reason is that for the system to reach a state in which the two strategies
result in different outgoing transition structures, a failure transition must win the race from
a repair transition. Since the probability of this happening is assumed to be small for
Path-IS-G to work well, it will be hard to notice a difference.

dedicated repair 1 facility, FCFS
π̂ (10−3) # samples π̂ (10−3) # samples

MC 2.941± 0.106 1 009 973 2.956± 0.138 596 136
BFB 2.975± 0.176 317 989 2.790± 0.222 189 032

Path-IS-G 2.901± 0.020 21508 2.960± 0.027 11311
π # states π # states

PRISM 2.928 421 875 N.A. 2 123 047 371

Table 12: Unavailability (v̂) results when λ = 1/6000, µ = 1, n = 2.

One can check that if we were to switch to deferred repair we would also see that the path-
based methods work well if the assumptions are such that there is little difference between
dedicated repair and a single repairman. However, if we assume that the components of
different types are physically close to each other, this strategy is not only theoretically
unappealing but also unrealistic; if there is a single repairman for all component types who
would come over to fix broken processors, he would most likely also directly repair a failed
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disk even if the repair threshold for disks of its type had not been reached.
So consider the following strategy: we again have deferred repair, but when for any

one component type i a number ri components have failed, the repairman will come over
and begin repair on all broken components and leave when the system is back in the ‘all
up’ state. The repairs are handled in a first-come first-serve fashion irrespective of which
component type triggered the repairman to come over.

µ = 1 µ = 1000
v̂ (10−3) # samples v̂ (10−6) # samples

MC 1.748± 0.061 1 784 962 2.273± 2.228 1 759 644
BFB 1.749± 0.098 602 621 — 479 383

Path-IS 1.779± 0.029 20524 1.800± 0.025 20773

Table 13: Unavailability (v̂) results with one repairman who repairs all broken components of all types
before leaving in a first-come serve fashion; λ = 1/6000, n = 3, ri = 2.

In Table 13, we display the simulation results for this setting with r1 = . . . = r9 = 2,
n = 3 and λ and µ equal to the benchmark values. We would run into problems if we tried
to directly apply the method of Section 6.2 to this situation as even the typical set suffers
from the state space explosion problem. For example, due to the FCFS policy there are
9! = 362 990 states in which one component of each type has failed, and these are all in
the typical set. To circumvent this problem we (incorrectly) assume that for all such states
(that differ only in the queue order), the sum of the straight paths leading out of those
states will be the same. While this will introduce an error, this error does not get worse as
λ gets lower or µ gets smaller, and the resulting estimator remains much better than the
standard Monte Carlo estimator whose performance will degrade sharply. In the end, our
approximation needs not be exact for the estimate to remain unbiased. As can be seen in
Table 13, our method still performs well.

7. Conclusions and Discussion

In this section, we first draw the general conclusions. Then we discuss our method’s
computational complexity and compare it with other methods. Finally, we discuss general-
isations of the method and future work.

7.1. General Conclusions

In this paper we have introduced an efficient simulation technique that is able to estimate
dependability measures in situations were system failure is a rare event due to high repair
rates or low component failure rates. The approach that we used is based on the zero-variance
measure for transient failure probabilities in CTMCs, approximated using the likely paths to
failure. We have shown how to apply this method when a more complicated repair strategy
such as deferred (or, by analogy, group) repair is used.

We have demonstrated that our technique performs well even for large models as long as
the component failure rates are much lower than the repair rates. Also, we have shown that
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our method performs well in comparison to other methods. The method of Balanced Failure
Biasing combined with forcing is only well-suited for the low λ situations and performs
poorly for high µ and n. Numerical techniques, as, e.g., implemented in PRISM, suffer from
large state spaces and high uniformisation rates. Table 14 summarises this comparison by
presenting the best choice of method for given parameter settings.

Performance measure low λ high µ high n
Unreliability PRISM Path−IS Path−IS

Unavailability PRISM PRISM Path−IS

Table 14: Which method performs best depends on parametric regime and performance measure.

Note that the method is not specifically designed for high n. If n is too high, Path-IS will
also start to see worsening performance 4. However, for n not too large and λ/µ sufficiently
small, Path-IS will have good performance in situations where PRISM runs out of memory.
Adapting the simulation for high n situations is part of ongoing research.

7.2. Complexity

In Table 15, the time and space complexities of the methods whose efficiencies are com-
pared in this paper are displayed. For the numerical and standard statistical methods the
values of the complexities were given in [24] — we rewrote these complexities in terms of
the model parameters used in this paper. The expected time complexity of the statistical
methods is inversely proportional to p, the probability that we want to estimate. Using
importance sampling, we lose this dependence on p. However, d paths of maximum length
n need to be evaluated in each step of the simulation for O(d) potential successor states.
Still, Path-IS avoids the two main causes of quickly increasing run time (i.e. the state space
explosion problem for the numerical methods and event rarity for standard simulation).

Method Time Complexity Space Complexity
Numerical O((λ+ µ)τdnd) O(dnd)

Standard Simulation O(λτdp−1) O(d)
Path-IS O(λτd2n) O(d)

Table 15: Time and space complexities for different methods (repairs always enabled).

In the setting of Section 6, the number of paths that needs to be evaluated at each step
increases; there are

∏
ri states in the typical set and there are at most d ·

∏
ri paths inside

the typical set that lead to states on the ‘edge’ of the typical set. These extra paths lead to
an increase in the time complexity of the method. This can be seen by comparing Table 15
with Table 16.

4When the level of redundancy is very high, the rarity of the event may not primarily be caused by the
ratio λ/µ but by the fact that there is not enough time for all of the components to fail during the mission
time. Fortunately, this is not a common scenario in the analysis of multi-component systems, but it might
be encountered in other contexts.
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To speed up Path-IS-G, we used a caching approach: for each state in the typical set
we store the sum of the probabilities of the paths to system failure. This results in a
higher memory complexity but cuts the time complexity in the typical set back to only
O(λτdn) assuming that lookups in the list of stored probabilities do not contribute to the
time complexity (this is possible using cleverly linked lists where each entry points to all
states that can be reached in one transition). Outside the typical set, the time complexity
is again O(λτd2n).

Method Time Complexity Space Complexity
Path-IS-G (no caching) O(λτd3n

∏
r2
i ) O(d)

Path-IS-G (caching) O(λτd2n) O(d
∏
ri)

Table 16: Time and space complexities for Path-IS-G (repair of type i enabled after ri components of that
type have failed).

7.3. Generalisations and Future Work

In this paper, we have only considered system failures caused by the number of failures of
some component type i reaching a critical level ni. The method is also applicable with more
general failure conditions, such as simultaneous failure of at least ni components of each
type i. More paths to failure may then need to be considered for a good approximation ŵ —
perhaps even a number of paths that increases exponentially in the number of component
types — but many of them typically have equal probability which makes accounting for
them easier. Similarly, it is straightforward to generalise the extension of Section 6 to group
repair strategies (see [14]). Another interesting, but more challenging, generalisation is to
allow component interdependence, which occurs, for example, when components share repair
facilities that follow some predefined repair strategy (see also Section 6.4). Still, when an
easily identifiable class of ‘straight ’ paths adequately describes the typical model behaviour
leading up to system failure, the methods presented in this paper can be expected to perform
well.

Furthermore, an interesting extension of the method would be to allow the failure and
repair time distributions to be any phase-type distribution. Part of the work for this is
already done, since the Path-IS-G method discussed in Section 6 already considers phase-
type distributions in the ‘typical’ part of the state-space. For the rest of the state-space, a
change of measure for the phase-type failure and repair times would be needed; the so-called
exponential change of measure [13] can be expected to work well.

Future work includes extending the method to the case of very large n, which is an inter-
esting scenario in which numerical methods suffer from the state space explosion problem.
Finally, we plan to add rewards to the model.

Appendix

The goal of this appendix is to motivate the use of generalised busy cycles by proving that
despite the fact that the duration of each busy cycle is no longer exponentially distributed,
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the sum of a geometrically distributed sum of these durations is approximately exponentially
distributed if the success parameter of the geometric distribution is small. First we will state
the theorem, then we explain why we need the theorem, then we prove the theorem and
conclude with a short discussion on how we use it in this paper.

Theorem 1. Let X1, X2, . . . be a sequence of i.i.d. random variables such that E(X1) <∞,
and let M be a random variable independent of Xi, i ∈ N, that has a geometric distribution
with success parameter q. Let Sn = X1 +X2 + . . .+Xn. Then

lim
q↓0

P(qSM > t) = e−t/E(X1).

The preceding theorem states that for small q, P(qSM > t) ≈ exp(−t · (E(X1))−1), so this
implies that P(SM > t) ≈ exp(−t · q · (E(X1))−1) which is what we used in Section 6.1.

Proof. Since a probability distribution is uniquely characterised by its Laplace-Stieltjes
Transform (LST) we will consider the LST of qSM . For the LST of X1 we know that,
since E(X1) <∞, we can write

E
(
e−sX1

)
= 1− sE(X1) + o(s),

where o(s) stands for a function f(s) satisfying lims↓0
f(s)
s

= 0. Furthermore, it is known that
the probability generating function (PGF) of a geometrically distributed random variable
M with probability q is

E(zM) =
q

1− (1− q)z
,

Then with M geometrically distributed it holds that

E
(
e−sqSM

)
= E

(
E
(
e−sqSM |M

))
= E

([
E
(
e−sqX1

)]M)
=

q

1− (1− q)E (e−sqX1)

=
q

1− (1− q)(1− sqE(X1) + o(sq))

=
q

q + (1− q)sqE(X1) + o(sq)
q↓0−−→ 1

1 + sE(X1)
,

which we recognise as the LST of an exponentially distributed random variable with mean
E(X1).

We note here that in the setting in which we will apply the theorem, not all of its as-
sumptions are satisfied: first of all, even if there is only one state in the typical set, M and
the series X1, X2, . . . are not completely independent. After all, XM has a different prob-
ability distribution than X1, X2, . . . , XM−1 (a busy cycle in which system failure occurred
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went ‘deeper ’ into the state space than a typical busy cycle, so it can be expected to have
lasted longer.) However, we expect this not to have much impact on our conclusions for two
reasons: first of all, when q goes to zero, M will grow larger and the relative influence of
XM with respect to X1, X2, . . . , XM−1 will vanish. Furthermore, in our setting q ↓ 0 because
λ ↓ 0 or µ → ∞, and in exactly these two regimes the difference between the distributions
of XM and the preceding busy cycle durations will vanish as the time needed to go ‘deeper’
into the state space becomes smaller relative to the time spent in the typical set’s only state.

In our situation there is more than one state in the typical set, the point of entry into
the typical set will have influence on the next point of entry (it is less likely that this is the
same state twice in a row). This means that there is correlation between each Xi and Xj,
i, j > 0, but this vanishes as |i − j| gets bigger. The assumption that we make is that in
our limiting regime (i.e. q ↓ 0), the series of busy cycles until system failure becomes so
large that the influence of the correlation between the individual random variables becomes
smaller as well. Judging by our empirically determined estimator variances, this assumption
is justifiable.
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