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Modelling larval movement data from individual bioassays
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We consider modelling the movements of larvae using individual bioassays in which data are collected
at a high-frequency rate of 5 observations per second. The aim is to characterize the behaviour of the
larvae when exposed to attractant and repellent compounds.Mixtures of diffusion processes, as well as
Hidden Markov models, are proposed as models of larval movement. These models account for directed
and localized movements, and successfully distinguish between the behaviour of larvae exposed to attractant
and repellent compounds. A simulation study illustrates the advantage of using a Hidden Markov model
rather than a simpler mixture model. Practical aspects of model estimation and inference are considered on
extensive data collected in a study of novel approaches for the management of cabbage root fly.

Key words: Diffusion; Hidden Markov models; Mixtures; Model comparison.
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1 Introduction

The larva of the cabbage root fly,Delia radicumL. (Diptera: Anthomyiidae), is a serious pest that causes
damage toBrassicahost plants by feeding on their roots. The use of organophosphate insecticide for
controlling larvae is restricted to a single pre-planting application and novel alternative treatments are
currently being investigated. One of these potential treatments is to develop a way of manipulating the
behaviour of the larvae in their attempts to find host plants.Studies suggest that the larvae respond to the
odour ofBrassicaplants, and use the presence of specific chemicals excreted by the roots of these plants
to locate suitable hosts (Ross and Anderson, 1992; Johnson and Gregory, 2006; Deasy, 2011). The larvae
have also been shown to be repelled by sufficiently high concentrations of plant-specific chemicals (Finch,
1977; Koštál, 1992; Ewan, 2011). If these chemicals can beidentified, and their effects upon the behaviour
of the larvae understood, it may be possible to develop a control system using the appropriate plant extracts
as soil amendments to act as deterrents.

Often, studies involve collecting data on locations of larvae after a given time and using standard statis-
tical analysis of circular data, but here we consider the more challenging problem of modelling the tracks
of the larvae. The former method gives only one locational observation per bioassay, whereas the number
of observations obtained by the latter approach is in the thousands and thus new approaches are required
to model these highly correlated data. We investigate suitable models for such data, together with appro-
priate methods of statistical analysis. The aim is then to use the parameters of the models as a way of
summarizing the complex patterns of the tracks, and thus give a greater understanding of the behaviour of
the larvae.

Bioassays were conducted at The James Hutton Institute in a research project concerned with developing
novel approaches to pest management of cabbage root fly. In each bioassay, a newly hatched neonate
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2 McLellan, Worton, Deasy, and Birch: Modelling larval movements

Figure 1 Tracks of cabbage root fly larvae for 3 bioassays. Each track starts at the origin (small dot) and
the location of the larva is recorded every 0.2 seconds for 30minutes usingEthoVision 3.1. Each
bioassay has a nominal 9000 observations. The outer circle is the arena, and the upper solid circle denoted
by a and lower open circle denoted byb are the attractant (repellent for Bioassay 3) and control regions
respectively.

cabbage root fly larva was placed in an arena within a 9 cm diameter Petri dish half filled with solidified
agar, with a zone of host plant roots/chemical compound on one side and a no stimulus/solvent control
zone on the other. The positions of the larva were then detected by infrared camera (Sanyo) and recorded
using theEthoVision 3.1 software system (Noldus et al., 2001) at intervals of 0.2 seconds for 30
minutes, giving a nominal total of 9000 observations for each bioassay. However, if the larva entered
one of the zones, the bioassay was terminated. Figure 1 displays plots of the tracks for 3 bioassays. In
Bioassays 1–2, the upper solid circle referred to in the plots asa corresponds to a zone of damaged broccoli
roots. As a suitable host plant, chemicals released by broccoli roots are hypothesised to act as an attractant.
In Bioassay 3,a corresponds to a zone of allyl isothiocyanate from which thelarva is repelled at the
concentration tested. The lower open circle in each plot referred to asb is the control zone.

The subsequent sections of this article are organized as follows. In Section 2 we review the properties of
a bivariate normal diffusion process for modelling the data. We propose extensions of the process by using
mixture and Hidden Markov models in Section 3, with the nature of the different states chosen to account
for the properties of the bioassay data. In Section 4, properties of the estimation approach for these models
are explored by a simulation study. An application of the methodology to the analysis of larval movements
is considered in Section 5, and the models are compared usingthe Bayesian Information Criterion. Finally,
in Section 6, we conclude with some general remarks on the modelling.

2 Diffusion process modelling

We initially propose a model of larval movement with a general form defined by the conditional distribution
of the position of the larvaXs+t at times + t given its positionXs at times. In particular, we assume a
bivariate normal distribution,

Xs+t|Xs ∼ N {a + Γ(Xs − a),Φ} , (1)

wherea is a known point of attraction or repulsion as indicated in Figure 1, and the matricesΓ andΦ are
defined as

Γ =

(

γ11 γ12

γ21 γ22

)

and Φ =

(

φ11 φ12

φ21 φ22

)

.

Here,Γ is a centralization matrix determining the strength of attraction to, or repulsion from, the pointa,
andΦ is the covariance matrix of the larva’s movement at each observation step. Both of these matrices are
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dependent on the timet between successive observations, but as this is fixed at 0.2 seconds the parameters
are constant throughout each bioassay and thus dependence on time is not explicitly included in the notation
above. We note that in the modelling the observed locations of the larvae are limited to the arena within the
Petri dish, as indicated in Figure 1, and if the larvae were tomove outside the arena then the data collection
would be terminated at the boundary of the arena.

Diffusion process (1) is similar to a bivariate Ornstein-Uhlenbeck diffusion process, which has been
used in a different context to model the movements of radio tracked animals (Dunn and Gipson, 1977;
Worton, 1995; Blackwell, 1997; Nations and Anderson-Sprecher, 2006). However, the latter process as-
sumes thatΓ andΦ are linked by the relationΦ = Λ − ΓΛΓ

T , whereΛ is the covariance matrix of the
bivariate normal equilibrium distribution ofXs. In the current context, an equilibrium distribution may not
exist and we therefore relax this assumption within our modelling framework.

If Γ is a diagonal matrix with positive diagonal elements, a value ofγ11 that is less than unity indicates
that thex-coordinate of the larva’s position is attracted towards thex-coordinate ofa, while a value greater
than unity implies repulsion. The parameterγ22 is similarly related to they-coordinates of the larva’s
position and ofa. Having non-zero values for the non-diagonal elements ofΓ introduce additional com-
plexity, but the above statements remain roughly applicable and still give a guide to presence of attraction
or repulsion provided that the non-diagonal elements are small in comparison to the diagonal elements. In
the case of the larval data sets we are particularly interested in the parameterγ22 as attraction is associated
with movement in they direction towardsa from the initial starting position of the larvae.

In the bioassays, each larva is released at the origin,x0, and generates a subsequent observed sample
path,{x1, . . . ,xn}, with a constant time interval between observations of0.2 seconds. The distribution of
each observation under diffusion process (1) is given by

xi+1|xi ∼ N {a + Γ(xi − a),Φ} , i = 0, . . . , n− 1,

and the log likelihood for the data, up to an additive constant, is given by

−
n

2
ln |Φ| −

1

2

n
∑

i=1

{xi − a− Γ(xi−1 − a)}T
Φ

−1{xi − a− Γ(xi−1 − a)}.

In simple cases such as this it is possible to obtain explicitMLEs of the parameters, but in more complex
mixed processes the likelihood may be difficult to express analytically. As a is known, the MLEs of the
parameters of diffusion process (1) can be shown to be

Γ̂ =

{

n
∑

i=1

(xi − a)(xi−1 − a)T

} {

n
∑

i=1

(xi−1 − a)(xi−1 − a)T

}−1

,

Φ̂ =
1

n

n
∑

i=1

{xi − a− Γ̂(xi−1 − a)}{xi − a− Γ̂(xi−1 − a)}T ,

using a derivation similar to Anderson (1971, pp. 183–184).
While MLEs can be obtained easily for the simple diffusion process above, this is less straightforward

for more complex models. Within a Bayesian framework, it is possible to obtain posterior estimates for
the parameters of diffusion process (1) analytically but again this becomes extremely challenging when
additional components are introduced. However, in general, Markov Chain Monte Carlo (MCMC) methods
can be used to obtain posterior distributions for the parameters in such cases.

We note that the literature on statistical modelling of animal movement, which is related to the current
problem, has been developed beyond (1) into much more flexible approaches (Blackwell, 2003; McClin-
tock et al., 2012; Harris and Blackwell, 2013). However, there are some significant differences between
the current type of bioassay data and wildlife tracking data. In particular, the larvae data are collected
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4 McLellan, Worton, Deasy, and Birch: Modelling larval movements

under controlled experimental conditions and automatic monitoring is at a high-frequency collection rate
of 5 locational observations per second. Each bioassay thusproduces a very fine-scale track of locations
to analyse and model, with thousands of observations collected over a relatively short time period of the
duration of the bioassay.

3 Mixture and Hidden Markov models

3.1 Mixture modelling

We now consider a more flexible and complex model using mixtures of multiple diffusion processes. The
bioassays described in Section 1 contain frequent localized movements, which occur because the position
recorded for each observation is that of the larva’s head, and the larvae move by expansion and contraction
of their bodies. The two distinct types of movement, directed and localized, can be represented by a mixture
consisting of

S1 a component related to diffusion process (1) with attraction towards (or repulsion from)a,

xi+1|xi ∼ N{a + Γ(xi − a),Φ},

and

S2 a component accounting for localized movements resulting from body contractions (without any at-
traction/repulsion involvinga),

xi+1|xi ∼ N(xi,Σ),

where

Σ =

(

σ11 σ12

σ21 σ22

)

,

is a covariance matrix, with a parameter0 < π < 1 representing the probability of an observation being
generated from componentS1; for 0 ≤ i ≤ n− 1.

3.2 Hidden Markov modelling

The mixture model defined in Section 3.1 assumes that the component generating each observation is
independent of previous observations. This may be too much of a simplification if a larva’s movement is
more likely to remain in the same component than to switch. Toallow for such possibilities, we consider the
use of a Hidden Markov model (HMM; Frühwirth-Schnatter, 2006), which may offer a more appropriate
approach for representing the behaviour of the larvae. We consider an HMM with statesS1 andS2 as
defined in Section 3.1, and a2 × 2 probability transition matrix

P =

(

π11 π12

π21 π22

)

,

whereπs1s2
is the probability that an observation belongs to states2 given that the previous one belongs

to states1. The HMM is more computationally intensive than the simplermixture, but can model a wider
range of larval behaviour. We also consider the inclusion offurther states to gain greater flexibility in our
model of larval path movement.

The bioassay data sets introduced in Section 1 include many identical successive points due to the short
time interval between observations. These can be represented by a third state in the HMM in which an
observation is identical to the previous one,
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S3 no observed movement,xi+1 is the same asxi, and the HMM has a3×3 transition matrixP = (πs1s2
).

To account for attraction towards (or repulsion from) the control zoneb in the experiment, we may include
a fourth state,

S4 a diffusion process with point of attraction or repulsionb, xi+1|xi ∼ N{b + Ω(xi − b),Ψ}, where
Ω = (ωkl) andΨ = (ψkl), and in this HMM the matrixP = (πs1s2

) is 4 × 4.

4 Simulation study

A simulation study was conducted to explore the properties of an estimation approach for the two-state
mixture and HMM models given in Sections 3.1 and 3.2. We simulated 100 sets of 1000 observations each
from the mixture model, with the following parameter values

a = (0, 20)T , Γ = 0.95I , Φ = 0.01I , Σ = 0.001I , π = 0.2. (2)

This process has one component which produces comparatively large movements influenced by the posi-
tion of a, and a second component consisting of smaller localized movements. We let the starting point
x0 = (0, 0)T for all simulations. The two-component mixture and two-state HMM were both fitted to the
simulated data sets. The following independent prior distributions were used for both of these models,

γkl ∼ Normal(1, 102), k, l = 1, 2, (3)

Φ ∼ Inverse-Wishart
(

10−5I , 2
)

, (4)

Σ ∼ Inverse-Wishart
(

10−5I , 2
)

, (5)

and represent vague prior information. The Inverse Wishartdistribution is commonly used as a conjugate
prior for the covariance matrix of a multivariate normal distribution (Leonard and Hsu, 1999; Gelman et
al., 2003; Carlin and Louis, 2008). Further discussion of the distribution’s properties can be found in Box
and Tiao (1973) and Press (1982). For the mixture model, the prior distribution used forπ was

(π, 1 − π) ∼ Dirichlet

(

1

2
,
1

2

)

, (6)

i.e. a Beta distribution. The prior distributions used for each row(πs11, . . . , πs1m) of the probability
transition matrixP for the HMMs were

(πs11, . . . , πs1m) ∼ Dirichlet

(

1

2
, . . . ,

1

2

)

, s1 = 1, . . . ,m, (7)

wherem is the number of states, and in the particular case considered in the simulation study we have
m = 2, so are using a Beta prior. Again these represent vague priorinformation.

Posterior distributions for the parameters were estimatedwith a Markov chain Monte Carlo approach
usingWinBUGS (Lunn et al., 2000). Summary statistics for the posterior means of selected parameters for
the mixture and HMM models fitted to the simulated data sets are given in Table 1; note that the Monte
Carlo errors associated with the values in the table are low relative to the values presented. These results
include the mean and standard deviation, as well as the bias and root mean squared error (RMSE). The
non-diagonal elements ofΓ, Φ andΣ are close to 0 and are not displayed.

The means of the posterior means forφ11 andφ22 for the fitted two-component mixture model, dis-
played in Table 1, are lower than the true values, and the corresponding values forσ11 andσ22 are higher.
This indicates that some observations generated by component S1 have been assigned to componentS2
and vice versa. Note thatπ is estimated well, so the overall proportion of observations produced by each
component has been estimated correctly. The means forγ11 andγ22 are close to the true values.
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6 McLellan, Worton, Deasy, and Birch: Modelling larval movements

Table 1 Summary statistics of estimated posterior means of selected parameters obtained when fitting the
two-component mixture model defined in Section 3.1, and the two-state HMM defined in Section 3.2, to
100 data sets of 1000 observations simulated from the two-component mixture model with the parameter
values shown in (2). Presented summary statistics include the mean, standard deviation (SD), bias and root
mean squared error (RMSE). The prior distributions of the parameters are given in (3), (4), (5), (6) and (7).

Mixture HMM
Parameter Mean SD Bias RMSE Mean SD Bias RMSE

γ11 0.9614 0.0147 0.0114 0.0186 0.9378 0.0220−0.0122 0.0252
γ22 0.9700 0.0011 0.0200 0.0200 0.9528 0.0015 0.0028 0.0032
φ11 0.0064 0.0007 −0.0036 0.0037 0.0095 0.0010−0.0005 0.0011
φ22 0.0065 0.0007 −0.0035 0.0036 0.0095 0.0010−0.0005 0.0011
σ11 0.0056 0.0001 0.0046 0.0047 0.0017 0.0001 0.0007 0.0007
σ22 0.0034 0.0043 0.0024 0.0049 0.0006 0.0007−0.0004 0.0008
π 0.2027 0.0021 0.0027 0.0034
π11 0.2412 0.0384 0.0412 0.0563
π22 0.7616 0.0200 0.0616 0.0648

The summary statistics obtained from fitting the two-state HMM to the same simulated data sets are
also presented in Table 1. As for the mixture model, the meansfor γ11 andγ22 are close to the true values.
However, with the HMM the means forφ11 andφ22 are much closer to the true values than in the mixture
model, and the same is true to a lesser extent forσ11 andσ22. It is interesting to note that the HMM
provides a satisfactory model even though the data sets weregenerated from a mixture model. The means
for π11 andπ21 = 1 − π22 are similar, indicating that the probability that an observation is generated
from stateS1 is approximately the same regardless of the state of the previous observation and correctly
reflecting the true stochastic process, i.e. the fitted HMM may be viewed as being equivalent to the simpler
mixture model.

We now present the results of a simulation study that was conducted involving data sets generated from
an HMM. In this study, 100 data sets of 1000 observations weresimulated from the two-state HMM defined
in Section 3.2, with parameter values

a = (0, 20)T , Γ = 0.95I , Φ = 0.01I , Σ = 0.001I , π11 = 0.5, π22 = 0.9, (8)

and the two-component mixture model and two-state HMM were both fitted to the simulated data sets.
Note that the value ofπ, the probability that an observation is generated from state S1, is equal to1/6 as
given by

π =
1 − π22

2 − π11 − π22

. (9)

Summary statistics for the posterior means of selected parameters of the fitted mixtures and HMMs are
shown in Table 2.

The means of posterior means forγ11 andγ22 shown in Table 2 for the mixture model are close to the
true values. The means forφ11 andφ22 are lower than the true values and the means forσ11 andσ22 are
higher, suggesting that some observations have been assigned to the incorrect component of the mixture.
The mean forπ has large bias, indicating that the mixture does not adequately model data sets generated
by the HMM. Clearly, the mixture model has failed to capture certain features of the HMM due to overly
simplistic assumptions made by the former about switching between states. However, as we saw above,
the HMM was able to model the mixture data in a satisfactory manner at the expense of some slight extra
variation.
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Table 2 Summary statistics of estimated posterior means of selected parameters obtained when fitting the
two-component mixture model defined in Section 3.1, and the two-state HMM defined in Section 3.2, to
100 data sets of 1000 observations simulated from the two-state HMM with the parameter values shown in
(8). Presented summary statistics include the mean, standard deviation (SD), bias and root mean squared
error (RMSE). The prior distributions of the parameters aregiven in (3), (4), (5), (6) and (7).

Mixture HMM
Parameter Mean SD Bias RMSE Mean SD Bias RMSE

γ11 0.9560 0.0213 0.0061 0.0221 0.9429 0.0262−0.0071 0.0271
γ22 0.9660 0.0012 0.0160 0.0160 0.9578 0.0015 0.0078 0.0079
φ11 0.0072 0.0011 −0.0028 0.0030 0.0087 0.0014−0.0013 0.0019
φ22 0.0072 0.0012 −0.0028 0.0030 0.0085 0.0014−0.0015 0.0021
σ11 0.0046 0.0007 0.0036 0.0037 0.0027 0.0004 0.0017 0.0017
σ22 0.0048 0.0085 0.0038 0.0093 0.0025 0.0004 0.0015 0.0016
π 0.3553 0.0191 0.1887 0.1897
π11 0.5655 0.0516 0.0655 0.0833
π22 0.8764 0.0168 −0.0236 0.0289

The means of posterior means forγ11 andγ22 in Table 2 for the HMM are close to the true values, while
the means forφ11 andφ22 and forσ11 andσ22 are closer to the true values than for the mixture model in
Tables 1 and 2. This indicates that fewer observations are assigned to the wrong component by the HMM
than by the mixture model. The means forπ11 andπ22 are both quite close to the true values. Overall, the
results of the simulation study indicate that the fitted HMMsare similar to the true models used to generate
the simulated data sets, but the mixture model approach has some limitations with regard to the flexibility
of the models possible.

5 Application to larval movement data

In this section, we apply the methodology outlined in Section 3 to the larval data sets introduced in Sec-
tion 1, and displayed in Figure 1. We initially use our simplest single component model from Section 2,
but then consider the mixture model and HMM to account for thecomplex features of the data. Finally, we
compare the models to assess which is the most appropriate. In the modelling we will use the priors defined
in Section 4 as expert belief is vague. Use of informative prior information would be highly desirable for
this problem but at the moment is difficult to specify.

5.1 Single component model

Diffusion process (1) was applied to the bioassays in Figure1, with the prior distributions ofΓ andΦ

as shown in (3) and (4). Table 3 presents the summary statistics of the posterior distributions of selected
parameters. The parametersγ12 andγ21, which are not displayed, are close to 0 for all bioassays, soγ11

andγ22 describe the strength of attraction to or repulsion froma in thex direction andy direction respec-
tively. The values ofγ12 andγ21 are also close to 0 for the other models used throughout Section 5. For
Bioassays 1 and 2, the posterior means ofγ11 andγ22 are positive but less than unity, signifying attraction
towardsa, which is confirmed by visual inspection of Figure 1. However, the results for Bioassay 3 differ
in that the posterior mean ofγ22 is greater than unity. This corresponds to movement away from a, as is
evident in Figure 1.
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Table 3 Summary statistics of posterior distributions of selectedparameters for diffusion process (1) for
Bioassays 1–3. The prior distributions ofΓ andΦ are as given in (3) and (4).

Posterior summary statistics
Parameter Mean Median SD 2.5% 97.5%

Bioassay 1 γ11 0.9996 0.9996 0.0003 0.9991 1.0001
γ22 0.9997 0.9997 0.0001 0.9996 0.9999
φ†11 4.2576 4.2567 0.0641 4.1354 4.3882
φ†22 4.5144 4.5142 0.0668 4.3875 4.6448

Bioassay 2 γ11 0.9999 0.9999 0.0001 0.9997 1.0002
γ22 0.9999 0.9999 0.0001 0.9998 1.0001
φ†11 4.1360 4.1350 0.0623 4.0174 4.2629
φ†22 3.9608 3.9608 0.0586 3.8481 4.0774

Bioassay 3 γ11 0.9994 0.9994 0.0020 0.9957 1.0035
γ22 1.0002 1.0002 0.0005 0.9993 1.0011
φ†11 3.4986 3.4916 0.1466 3.2313 3.8028
φ†22 5.2357 5.2284 0.2189 4.8198 5.6868

† Values multiplied by105.

5.2 Mixture model

The mixture model described in Section 3.1 was applied to thebioassays, and selected results of the
analysis are presented in Table 4. For Bioassays 1 and 2, the posterior means ofσ11 andσ22 are five
orders of magnitude smaller than those forφ11 andφ22. This means that componentS2 of the mixture
has captured the localized movements of the larva, while state S1 represents larger directed movements.
For both of these bioassays, about20% of movements are assigned to componentS1, and the posterior
means ofγ11 andγ22 are positive but less than unity, indicating attraction towardsa. For Bioassay 3, the
posterior means ofφ11, φ22, σ11 andσ22 indicate that componentS1consists of the larva’s larger directed
movements while stateS2has accounted for localized movements. However, the posterior mean ofγ22 is
greater than unity, and this is consistent with the path in Figure 1, which shows movement away froma.

5.3 Hidden Markov models

The two-state HMM described in Section 3.2 was applied to thebioassays, as it contains desirable features
of attraction to (or repulsion from) the pointa as well as allowing for localized movements due to body
contraction, but also has the transition matrixP. Summary statistics for selected parameters are displayed
in Table 5, and describe a process with some differences fromthe mixture. For Bioassay 1, the posterior
means ofπ11 andπ22 suggest that the larva spends about 13% of the time in stateS1 as given by (9),
considerably less than the 23% obtained for the mixture model. The posterior means ofγ11 and γ22

indicate attraction towardsa, in they direction. However, the smaller proportion of movements assigned
to stateS1means that this influence is weaker than suggested by the mixture model. For Bioassays 2 and 3,
the results are similar to those obtained for the mixture, inthat the posterior means show attraction towards
a for Bioassay 2 and repulsion for Bioassay 3, and the larva spends approximately 22% and 25% of the
time in stateS1respectively for these two bioassays.

The three-state model was fitted to each of the bioassays to investigate whether a third stateS3might
improve on possible inadequacies of the two-state HMM by incorporating a null move state into the HMM.
For Bioassays 1 and 2, as shown in Tables 6 and 7 respectively,the posterior means ofγ11 andγ22 again
imply attraction towardsa. The posterior means ofσ11 andσ22 reveal that stateS2consists almost entirely
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Table 4 Summary statistics of posterior distributions of selectedparameters for the two-component mix-
ture model defined in Section 3.1 for Bioassays 1–3. The priordistributions of the parameters are given in
(3), (4), (5) and (6).

Posterior summary statistics
Parameter Mean Median SD 2.5% 97.5%

Bioassay 1 γ11 0.9984 0.9984 0.0012 0.9959 1.0007
γ22 0.9990 0.9990 0.0003 0.9983 0.9997
φ†11 1.8312 1.8303 0.0558 1.7280 1.9414
φ†22 1.9346 1.9344 0.0618 1.8135 2.0602
σ‡

11 0.1449 0.1449 0.0025 0.1402 0.1496
σ‡

22 0.1447 0.1447 0.0025 0.1399 0.1498
π 0.2328 0.2328 0.0045 0.2237 0.2417

Bioassay 2 γ11 0.9993 0.9993 0.0006 0.9980 1.0005
γ22 0.9994 0.9994 0.0004 0.9986 1.0002
φ†11 1.9181 1.9161 0.0622 1.8007 2.0436
φ†22 1.8430 1.8432 0.0577 1.7305 1.9598
σ‡

11 0.1416 0.1416 0.0024 0.1370 0.1463
σ‡

22 0.1417 0.1417 0.0025 0.1368 0.1465
π 0.2150 0.2151 0.0044 0.2059 0.2234

Bioassay 3 γ11 0.9986 0.9987 0.0081 0.9833 1.0142
γ22 1.0011 1.0012 0.0018 0.9974 1.0043
φ†11 1.3869 1.3834 0.1121 1.1851 1.6284
φ†22 1.8642 1.8524 0.1547 1.5812 2.1985
σ‡

11 1.1583 1.1575 0.0548 1.0549 1.2697
σ‡

22 1.1555 1.1537 0.0566 1.0435 1.2677
π 0.2535 0.2535 0.0127 0.2294 0.2785

† Values multiplied by104.
‡ Values multiplied by108.

of movement in they direction, asσ22 is several orders of magnitude larger thanσ11. The posterior means
of φ11 andφ22 are of roughly the same order of magnitude as that ofσ22, implying that the model consists
of two components with movements in they direction of the same order of magnitude plus the “null” state
S3of stationary observations, whereas the mixture model and two-state HMM only suggested one diffusion
process consisting of larger movements and the other of muchsmaller movements. This difference may be
interpreted as stationary observations that were assignedto one of the two diffusion processes by the two-
state model instead being assigned to the null stateS3by the three-state model. Therefore, the three-state
HMM with account taken for lack of movement at certain steps,appears to provide a more satisfactory
description of the observed data.
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Table 5 Summary statistics of posterior distributions of selectedparameters for the two-state HMM
defined in Section 3.2 for Bioassays 1–3. The prior distributions of the parameters are given in (3), (4), (5)
and (7).

Posterior summary statistics
Parameter Mean Median SD 2.5% 97.5%

Bioassay 1 γ11 1.0001 1.0001 0.0008 0.9985 1.0018
γ22 0.9983 0.9983 0.0006 0.9971 0.9995
φ†11 0.5118 0.5111 0.0213 0.4707 0.5535
φ†22 3.4438 3.4421 0.1408 3.1675 3.7268
σ†

11 0.4131 0.4131 0.0064 0.4012 0.4253
σ‡

22 0.1279 0.1279 0.0020 0.1238 0.1320
π11 0.3929 0.3926 0.0143 0.3647 0.4208
π22 0.9090 0.9090 0.0033 0.9023 0.9154

Bioassay 2 γ11 0.9993 0.9994 0.0006 0.9981 1.0006
γ22 0.9995 0.9994 0.0004 0.9986 1.0004
φ†11 1.9170 1.9146 0.0616 1.8000 2.0420
φ†22 1.8445 1.8421 0.0593 1.7306 1.9660
σ‡

11 0.1416 0.1416 0.0024 0.1370 0.1462
σ‡

22 0.1415 0.1415 0.0024 0.1369 0.1462
π11 0.3916 0.3914 0.0110 0.3707 0.4127
π22 0.8332 0.8331 0.0043 0.8248 0.8419

Bioassay 3 γ11 0.9993 0.9995 0.0070 0.9849 1.0155
γ22 1.0013 1.0012 0.0014 0.9985 1.0042
φ†11 1.3869 1.3791 0.1184 1.1747 1.6289
φ†22 1.8557 1.8460 0.1488 1.5898 2.1567
σ‡

11 1.1553 1.1557 0.0543 1.0493 1.2636
σ‡

22 1.1539 1.1519 0.0568 1.0463 1.2763
π11 0.4439 0.4444 0.0285 0.3888 0.4999
π22 0.8108 0.8107 0.0129 0.7842 0.8351

† Values multiplied by104.
‡ Values multiplied by108.
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Table 6 Summary statistics of posterior distributions of selectedparameters for the three-state HMM
defined in Section 3.2 for Bioassay 1. The prior distributions of the parameters are given in (3), (4), (5)
and (7).

Posterior summary statistics
Parameter Mean Median SD 2.5% 97.5%

γ11 0.9966 0.9966 0.0023 0.9921 1.0011
γ22 0.9996 0.9996 0.0003 0.9991 1.0001
φ†11 3.5111 3.5086 0.1502 3.2375 3.8238
φ†22 0.5403 0.5400 0.0236 0.4961 0.5881
σ‡

11 0.9978 0.9964 0.0448 0.9145 1.0887
σ†

22 3.4700 3.4679 0.1526 3.1766 3.7815
π11 0.4112 0.4107 0.0149 0.3828 0.4407
π12 0.0691 0.0688 0.0077 0.0548 0.0842
π13 0.5197 0.5198 0.0149 0.4902 0.5486
π21 0.0618 0.0616 0.0077 0.0476 0.0774
π22 0.3704 0.3701 0.0152 0.3416 0.4006
π23 0.5678 0.5675 0.0157 0.5363 0.5978
π31 0.0843 0.0843 0.0033 0.0777 0.0908
π32 0.0808 0.0808 0.0034 0.0743 0.0879
π33 0.8349 0.8349 0.0045 0.8260 0.8437

† Values multiplied by104.
‡ Values multiplied by108.

Table 7 Summary statistics of posterior distributions of selectedparameters for the three-state HMM
defined in Section 3.2 for Bioassay 2. The prior distributions of the parameters are given in (3), (4), (5)
and (7).

Posterior summary statistics
Parameter Mean Median SD 2.5% 97.5%

γ11 0.9986 0.9985 0.0012 0.9963 1.0009
γ22 0.9998 0.9998 0.0003 0.9992 1.0004
φ†11 3.4403 3.4376 0.1502 3.1513 3.7494
φ†22 0.5810 0.5805 0.0254 0.5335 0.6334
σ‡

11 0.1167 0.1165 0.0057 0.1063 0.1284
σ†

22 3.4241 3.4196 0.1661 3.1162 3.7734
π11 0.2855 0.2858 0.0139 0.2588 0.3124
π12 0.1008 0.1003 0.0092 0.0840 0.1196
π13 0.6137 0.6136 0.0147 0.5848 0.6431
π21 0.1271 0.1268 0.0116 0.1052 0.1509
π22 0.2710 0.2711 0.0154 0.2413 0.3007
π23 0.6019 0.6012 0.0169 0.5694 0.6372
π31 0.0936 0.0936 0.0034 0.0871 0.1001
π32 0.0732 0.0732 0.0031 0.0672 0.0795
π33 0.8332 0.8333 0.0044 0.8244 0.8417

† Values multiplied by104.
‡ Values multiplied by107.

c© 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.biometrical-journal.com



12 McLellan, Worton, Deasy, and Birch: Modelling larval movements

For Bioassay 3, the results, given in Table 8, are quite different from Bioassays 1 and 2. The posterior
means ofγ11 andγ22 imply repulsion froma, and the posterior means ofφ11 andφ22 indicate that state
S1consists primarily of movement in they direction. This confirms our visual impression from Figure 1,
since the larva moves almost directly away froma, which results in such movement. For all bioassays, the
posterior means ofπ13, π23 andπ33 highlight the importance of including stateS3 in the model.

Table 8 Summary statistics of posterior distributions of selectedparameters for the three-state HMM
defined in Section 3.2 for Bioassay 3. The prior distributions of the parameters are given in (3), (4), (5)
and (7).

Posterior summary statistics
Parameter Mean Median SD 2.5% 97.5%

γ11 1.0000 1.0000 0.0002 0.9995 1.0004
γ22 1.0025 1.0025 0.0035 0.9957 1.0095
φ‡11 0.6227 0.6158 0.0712 0.5014 0.7808
φ†22 2.6030 2.5861 0.2837 2.0932 3.2359
σ†

11 3.1305 3.1064 0.3911 2.4722 3.9923
σ†

22 0.8225 0.8159 0.1017 0.6442 1.0359
π11 0.3308 0.3306 0.0367 0.2609 0.4053
π12 0.1314 0.1299 0.0264 0.0854 0.1859
π13 0.5377 0.5370 0.0389 0.4612 0.6141
π21 0.0615 0.0593 0.0216 0.0260 0.1094
π22 0.3623 0.3620 0.0423 0.2797 0.4491
π23 0.5762 0.5760 0.0431 0.4930 0.6606
π31 0.1183 0.1180 0.0110 0.0972 0.1404
π32 0.0718 0.0715 0.0087 0.0553 0.0901
π33 0.8100 0.8105 0.0131 0.7836 0.8353

† Values multiplied by104.
‡ Values multiplied by107.

The four-state model was applied to the bioassays to incorporate the control zoneb (see Figure 1) into
the model, using the following independent vague priors,

ωkl ∼ Normal(0, 102), k, l = 1, 2,

Ψ ∼ Inverse-Wishart(10−5I , 2),

with priors for the other parameters as shown in (3), (4), (5)and (7). For these fitted models the posterior
means ofγ11 andγ22 indicate attraction towardsa for Bioassays 1 and 2, and repulsion for Bioassay 3,
as was the case for the other models used. However, we found that the inclusion of the fourth state in the
HMM added very little in terms of the feature of the behaviourin which we are primarily interested. In
addition, the four-state model has a possible disadvantagethat it may have some difficulty distinguishing
between stateS1and stateS4as they can be viewed as being similar in nature, i.e. movement towards/away
from the chemical/control zones in they direction. These considerations suggest that the three-state HMM
may be sufficient for our modelling.

5.4 Model comparison

The Bayesian Information Criterion (BIC) was used to give some comparison of the competing models.
BIC values for the models fitted to the bioassays are presented in Table 9. The mixture and the two-state
HMM are improvements over the single diffusion process. However, the three-state HMMs incorporating
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null movement result in much lower BIC values for all three bioassays, and are therefore to be preferred
over both two-component models. The addition of a fourth state describing influence by the control zone
b provides further improvement over the three-state model for Bioassay 1, though the difference in BIC
is not as large as the difference between the two-state and three-state models. For Bioassays 2 and 3, the
three-state model is superior. The BIC values give us a guide, and together with our previous discussion
above, suggest that the three-state model provides a compromise between accounting for the important
features of the larval track data without incorporating unnecessary detail.

Table 9 BIC values of the various models fitted to the bioassays.

Bioassay
Model Number of parameters 1 2 3
Single diffusion process 7 −129469 −130936 −16719
Two-component mixture model 11 −279611 −284020 −31864
Two-state HMM 12 −216830 −284018 −31861
Three-state HMM 16 −581770 −590949 −73338
Four-state HMM 29 −588411 −588236 −73224

5.5 Plots of posterior densities

The strength of the influence that the position ofa has on the larva’s movements is determined by|Γ|.
However, as the position ofa in each bioassay has anx-coordinate very close to thex-coordinate of the
larva’s starting position, the strength of attraction to orrepulsion froma is primarily determined by the
parameterγ22. As noted above, a non-negative value ofγ22 less than unity suggests movement in the
direction ofa, which corresponds to attraction, and a value greater than unity indicates repulsion. As this
is the aspect of movement of primary interest, we focus our attention on the parameterγ22 as well as|Γ|.
Posterior density plots ofγ22 and of|Γ| are shown in Figure 2 for the three-state HMM, and it is apparent
that the majority of the densities of both parameters are below unity for Bioassays 1 and 2 and above it
for Bioassay 3. Furthermore, in the case ofγ22 the dispersion of the density obtained for Bioassay 3 is
clearly different from the other two bioassays, having muchhigher variance. The fitted three-state models
have successfully distinguished between the attraction exhibited by larvae exposed to damaged broccoli
roots and repulsion from allyl isothiocyanate. The difference in variance between Bioassay 3 and the other
two bioassays is less pronounced in the case of|Γ|. We note that aγ22 value of unity corresponds to no
attraction, but not actually repulsion.

5.6 MCMC diagnostics and posterior predictive checks

Care is needed when applying MCMC techniques to ensure the simulations are providing a true picture
of the posterior distribution. With all the models considered in this paper MCMC diagnostics were used
to investigate any problems with model fitting. In addition,particular care is needed with mixture type
problems with regard to potential ‘label switching’ (Stephens, 2000). Fortunately, the MCMC convergence
was excellent for all models considered and also there were no issues with label switching. Figure 3 gives
an illustration of the type of trace plots obtained in the MCMC in the case of the three-state HMM for the
π11 parameter, but trace plots for the other parameters have acceptable properties. Fortunately, the structure
and nature of the components (with/without attraction) aresufficiently different so that the model fitting
does not lead to label switching. Note that even in models with the null state that may have potentially lead
to problems, the trace plots did not show any significant issues.

With regard to sensitivity to the prior information we investigated varying the priors and found that the
results were essentially unchanged unless we used very extreme changes of prior information. This may
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Figure 2 Posterior density plots ofγ22 (left panel) and|Γ| (right panel) for the three-state HMMs fitted
to Bioassay 1 (solid line), Bioassay 2 (dotted line) and Bioassay 3 (dashed line).

reflect the large sample sizes involved in the analyses. As noted at the beginning of Section 5, it would be
desirable to use informative prior information in the Bayesian analysis, if it were available.

Posterior predictive checks were conducted to assess the adequacy of the models (Gelman et al., 2003).
Simulated tracks generated from the three-state HMM using values simulated from the posterior distribu-
tion were compared with the observed track. In particular, we used the final observation as an assessment.
This is the observation that is collected in non-tracking experiments so provides a natural assessment of the
adequacy of the model. Figure 4 shows the estimated posterior predictive distributions of the distance be-
tween the final location of the track and the pointa. For Bioassay 1 the observed value is towards the lower
end of the distribution, but there is no significant evidenceof disagreement with the model. Similarly, for
Bioassays 2 and 3, the three-state HMM seems adequate for ourmodelling.

6 Conclusions

We have seen that diffusion based processes may be used to model the tracks of cabbage root fly larvae.
By doing this we can gain a greater understanding of the processes that govern their movements. It is clear,
even from the plots of the bioassay data in Figure 1, that behaviour of the larvae in the presence of allyl
isothiocyanate (Bioassay 3) is very different from that in the case of damaged broccoli roots (Bioassays 1
and 2), but we can use the modelling to characterize the movements more quantitatively. The mixture of
bivariate normal diffusion processes successfully indicates that the larvae in Bioassays 1 and 2 are moving
towards the zone of damaged broccoli roots, and that the larva in Bioassay 3 is repelled from the allyl
isothiocyanate. However, we found that there are advantages of using an HMM approach, and due to their
increased complexity the HMMs produced more biologically realistic descriptions.

Although it is possible to collect extensive sets of data with the currently available experimental equip-
ment and software, care is needed to incorporate important features of the movement into our models of
larvae paths. The two-state HMM captures the salient features of the data and clearly differentiates be-
tween the attraction towardsa present in Bioassays 1 and 2 and the repulsion in Bioassay 3. The addition
of a third “null” state, representing no movement, results in a more appropriate model that accounts for
the successive identical observations present in the data.Model comparison using BIC indicates that the
three-state model is far superior to the two-state HMM and mixture, and it is also preferred to the four-state
model for two of three bioassays.

While the models used here are successful at identifying attraction to and repulsion froma and pro-
vide a suitable model for the bioassays, we conclude the article by considering possible alternatives and
refinements. Further improvement to the models might involve modification to include more pronounced
directional persistence. The data plot for Bioassay 3 in particular, presented in Figure 1, suggests that the

c© 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.biometrical-journal.com



Biometrical Journal00 (2014) 00 15

Figure 3 MCMC trace plots for the parameterπ11 for the three-state HMMs: Bioassay 1 (upper panel),
Bioassay 2 (middle panel) and Bioassay 3 (lower panel).

movements of the larva are highly dependent on the current direction of movement, whereas the HMM
used here only involves first-order dependence and so is fairly limited in its ability to model this behaviour.
As such, a natural development would be to incorporate higher-order dependence. This may result in mod-
els even more appropriate for the bioassay data, and allow further inference to be made about the behaviour
of the larvae. Nevertheless, the models we consider in this paper have worked well in extracting important
behavioural responses with regard to the study of novel approaches for the management of cabbage root
fly.

In this paper we have investigated modelling a small number of tracks from individual bioassays so that
although the number of observations per bioassay is very large the sample size in terms of tracks is very
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Figure 4 Posterior predictive distributions of the distance between final location of the track and pointa
with the vertical line indicating the observed value: Bioassay 1 (left panel), Bioassay 2 (middle panel) and
Bioassay 3 (right panel).

small. As more data become available there will be the opportunity to extend the modelling to simultane-
ously model a large number of larvae tracks. However, we might expect to have to include in such models
individual variation with regard to each larva. By increasing the sample size it will be possible to obtain a
fuller understanding of the population behaviour of the larvae with regard to the attraction/repulsion.
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