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We consider modelling the movements of larvae using ind&icdioassays in which data are collected
at a high-frequency rate of 5 observations per second. Theisato characterize the behaviour of the
larvae when exposed to attractant and repellent compouidures of diffusion processes, as well as
Hidden Markov models, are proposed as models of larval memtnirhese models account for directed
and localized movements, and successfully distinguishés the behaviour of larvae exposed to attractant
and repellent compounds. A simulation study illustratesabvantage of using a Hidden Markov model
rather than a simpler mixture model. Practical aspects afahestimation and inference are considered on
extensive data collected in a study of novel approachehéonmanagement of cabbage root fly.
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1 Introduction

The larva of the cabbage root felia radicumL. (Diptera: Anthomyiidae), is a serious pest that causes
damage tdBrassicahost plants by feeding on their roots. The use of organoptaisgnsecticide for
controlling larvae is restricted to a single pre-plantimgpléication and novel alternative treatments are
currently being investigated. One of these potential tneaitts is to develop a way of manipulating the
behaviour of the larvae in their attempts to find host plaStsidies suggest that the larvae respond to the
odour ofBrassicaplants, and use the presence of specific chemicals excretind oots of these plants
to locate suitable hosts (Ross and Anderson, 1992; Johmsb&egory, 2006; Deasy, 2011). The larvae
have also been shown to be repelled by sufficiently high aanggons of plant-specific chemicals (Finch,
1977; Kostal, 1992; Ewan, 2011). If these chemicals caddmtified, and their effects upon the behaviour
of the larvae understood, it may be possible to develop acksystem using the appropriate plant extracts
as soil amendments to act as deterrents.

Often, studies involve collecting data on locations of éerafter a given time and using standard statis-
tical analysis of circular data, but here we consider theenobiallenging problem of modelling the tracks
of the larvae. The former method gives only one locationakobation per bioassay, whereas the number
of observations obtained by the latter approach is in thaghods and thus new approaches are required
to model these highly correlated data. We investigate Isleitanodels for such data, together with appro-
priate methods of statistical analysis. The aim is then ®the parameters of the models as a way of
summarizing the complex patterns of the tracks, and thusaiyreater understanding of the behaviour of
the larvae.

Bioassays were conducted at The James Hutton Instituteesearch project concerned with developing
novel approaches to pest management of cabbage root fly. cmtdaassay, a newly hatched neonate
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Figure 1 Tracks of cabbage root fly larvae for 3 bioassays. Each triactssat the origin (small dot) and
the location of the larva is recorded every 0.2 seconds fanButes using=t hoVi si on 3. 1. Each
bioassay has a nominal 9000 observations. The outer cirtheiarena, and the upper solid circle denoted
by a and lower open circle denoted lware the attractant (repellent for Bioassay 3) and contigibres
respectively.

cabbage root fly larva was placed in an arena within a 9 cm damRetri dish half filled with solidified
agar, with a zone of host plant roots/chemical compound @nsithe and a no stimulus/solvent control
zone on the other. The positions of the larva were then detdnt infrared camera (Sanyo) and recorded
using theEt hoVi si on 3. 1 software system (Noldus et al., 2001) at intervals of 0.2sds for 30
minutes, giving a nominal total of 9000 observations forhebimassay. However, if the larva entered
one of the zones, the bioassay was terminated. Figure laglisplots of the tracks for 3 bioassays. In
Bioassays 1-2, the upper solid circle referred to in thespsh corresponds to a zone of damaged broccoli
roots. As a suitable host plant, chemicals released by blidoots are hypothesised to act as an attractant.
In Bioassay 3a corresponds to a zone of allyl isothiocyanate from which lthvea is repelled at the
concentration tested. The lower open circle in each pletrrefl to ad is the control zone.

The subsequent sections of this article are organizedlasvilIn Section 2 we review the properties of
a bivariate normal diffusion process for modelling the d&lYa propose extensions of the process by using
mixture and Hidden Markov models in Section 3, with the naifrthe different states chosen to account
for the properties of the bioassay data. In Section 4, ptigsasf the estimation approach for these models
are explored by a simulation study. An application of thehrodblogy to the analysis of larval movements
is considered in Section 5, and the models are comparedtingipyesian Information Criterion. Finally,
in Section 6, we conclude with some general remarks on thestirogl

2 Diffusion process modelling

We initially propose a model of larval movement with a gethfman defined by the conditional distribution
of the position of the larvX,; at times + ¢ given its positionX s at times. In particular, we assume a
bivariate normal distribution,

Xsit|Xs ~N{a+T'(X; —a), P}, 1)

wherea is a known point of attraction or repulsion as indicated igufe 1, and the matricdsand® are
defined as

r—( M e and & — d11 P12 .
Y21 Vo2 ¢21  Po2
Here,I' is a centralization matrix determining the strength ofaattion to, or repulsion from, the poiat
and® is the covariance matrix of the larva’s movement at eachrebtien step. Both of these matrices are
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dependent on the timegbetween successive observations, but as this is fixed at6dhds the parameters
are constant throughout each bioassay and thus dependetimeds not explicitly included in the notation
above. We note that in the modelling the observed locatibtiseedarvae are limited to the arena within the
Petri dish, as indicated in Figure 1, and if the larvae weradoe outside the arena then the data collection
would be terminated at the boundary of the arena.

Diffusion process (1) is similar to a bivariate Ornsteinkkitbeck diffusion process, which has been
used in a different context to model the movements of radiokied animals (Dunn and Gipson, 1977;
Worton, 1995; Blackwell, 1997; Nations and Anderson-Spheec2006). However, the latter process as-
sumes thal® and® are linked by the relatio® = A — TAT'", whereA is the covariance matrix of the
bivariate normal equilibrium distribution o€;. In the current context, an equilibrium distribution may no
exist and we therefore relax this assumption within our iodgframework.

If T is a diagonal matrix with positive diagonal elements, a @alfry;; that is less than unity indicates
that thex-coordinate of the larva’s position is attracted towardsititoordinate of, while a value greater
than unity implies repulsion. The parametgs is similarly related to thej-coordinates of the larva’s
position and ofa. Having non-zero values for the non-diagonal elemenfg oftroduce additional com-
plexity, but the above statements remain roughly appleah still give a guide to presence of attraction
or repulsion provided that the non-diagonal elements aalsmcomparison to the diagonal elements. In
the case of the larval data sets we are particularly inteddstthe parametey,, as attraction is associated
with movement in the direction towards from the initial starting position of the larvae.

In the bioassays, each larva is released at the onginand generates a subsequent observed sample
path,{x1,...,x,}, with a constant time interval between observationd®teconds. The distribution of
each observation under diffusion process (1) is given by

Xi+1|XiNN{a+I‘(Xi_a)3¢}7 i:O,...,TL—l,

and the log likelihood for the data, up to an additive constargiven by

n 1 < _
—5n|®| -5 Y {xi—a-T(xi1 —a)} @ {x;—a—T(x; 1 —a)}.

=1

In simple cases such as this it is possible to obtain exptiEs of the parameters, but in more complex
mixed processes the likelihood may be difficult to expresdaitally. Asa is known, the MLEs of the
parameters of diffusion process (1) can be shown to be

n n -1
r= {Z(xi —a)(xj_1 — a)T} {Z(xi1 —a)(xi_1 — a)T} ,

=1 =1

b= fxi-a-Pix - a){x-a-Tlx1 - )",
=1

using a derivation similar to Anderson (1971, pp. 183-184).

While MLEs can be obtained easily for the simple diffusiongess above, this is less straightforward
for more complex models. Within a Bayesian framework, it@sgible to obtain posterior estimates for
the parameters of diffusion process (1) analytically bugiadghis becomes extremely challenging when
additional components are introduced. However, in gepktadkov Chain Monte Carlo (MCMC) methods
can be used to obtain posterior distributions for the pataraén such cases.

We note that the literature on statistical modelling of asimovement, which is related to the current
problem, has been developed beyond (1) into much more feeziproaches (Blackwell, 2003; McClin-
tock et al., 2012; Harris and Blackwell, 2013). Howeverr¢hare some significant differences between
the current type of bioassay data and wildlife tracking ddtaparticular, the larvae data are collected
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4 McLellan, Worton, Deasy, and Birch: Modelling larval movents

under controlled experimental conditions and automatiaitoang is at a high-frequency collection rate
of 5 locational observations per second. Each bioassayptitogkices a very fine-scale track of locations
to analyse and model, with thousands of observations t¢etleaver a relatively short time period of the
duration of the bioassay.

3 Mixture and Hidden Markov models

3.1 Mixture modelling

We now consider a more flexible and complex model using mestaf multiple diffusion processes. The
bioassays described in Section 1 contain frequent lochtizevements, which occur because the position
recorded for each observation is that of the larva’s heatiftanlarvae move by expansion and contraction
of their bodies. The two distinct types of movement, dirdetad localized, can be represented by a mixture
consisting of

S1 a component related to diffusion process (1) with attractiwvards (or repulsion frong,
Xi+1|X1‘ ~ N{a+ I‘(Xl — a), q)},
and

S2 a component accounting for localized movements resultioign foody contractions (without any at-
traction/repulsion involving),

Xit1|x; ~ N(x;, %),

where

5 < o1 o12 ) ’
021 022
is a covariance matrix, with a parametex 7 < 1 representing the probability of an observation being
generated from compone®f; for0 < i <n — 1.

3.2 Hidden Markov modelling

The mixture model defined in Section 3.1 assumes that the acoemp generating each observation is
independent of previous observations. This may be too mtiahsonplification if a larva’s movement is
more likely to remain in the same component than to switchalltov for such possibilities, we consider the
use of a Hidden Markov model (HMM; Frithwirth-SchnatterQ8) which may offer a more appropriate
approach for representing the behaviour of the larvae. Wisider an HMM with state§1 andS2 as
defined in Section 3.1, and2ax 2 probability transition matrix

P ( T T2 ) ’
21 T22
wherery, s, is the probability that an observation belongs to statgiven that the previous one belongs
to states;. The HMM is more computationally intensive than the simphéxture, but can model a wider
range of larval behaviour. We also consider the inclusiofudher states to gain greater flexibility in our
model of larval path movement.
The bioassay data sets introduced in Section 1 include nagmyical successive points due to the short
time interval between observations. These can be repegbénta third state in the HMM in which an
observation is identical to the previous one,
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S3 no observed movement;; is the same as;, and the HMM has 8 x 3 transition matrix = (75, s, )-

To account for attraction towards (or repulsion from) thatecol zoneb in the experiment, we may include
a fourth state,

S4 a diffusion process with point of attraction or repulstorx;1|x; ~ N{b + Q(x; — b), ¥}, where
Q = (wi) and® = (¢y;), and in this HMM the matriP = (7g,5,) iS4 x 4.

4 Simulation study

A simulation study was conducted to explore the propertieanoestimation approach for the two-state
mixture and HMM models given in Sections 3.1 and 3.2. We satad 100 sets of 1000 observations each
from the mixture model, with the following parameter values

a=(0,20)", T =0.95, ® = 0.01l, £ = 0.001I, 7 = 0.2. )

This process has one component which produces compaydtvge movements influenced by the posi-
tion of a, and a second component consisting of smaller localizecemewnts. We let the starting point
Xo = (0,0)7 for all simulations. The two-component mixture and twotestdMM were both fitted to the
simulated data sets. The following independent prior ilistions were used for both of these models,

Ykt ~ Normal1,10%), k,1 = 1,2, (3)
@ ~ Inverse-Wisharf10~°1,2) , (4)
¥ ~ Inverse-Wisharf10~°1,2) (5)

and represent vague prior information. The Inverse Widthiattibution is commonly used as a conjugate
prior for the covariance matrix of a multivariate normaltdisution (Leonard and Hsu, 1999; Gelman et
al., 2003; Carlin and Louis, 2008). Further discussion efdrstribution’s properties can be found in Box
and Tiao (1973) and Press (1982). For the mixture model, ttioe gistribution used forr was

11
1 —7) ~ Dirichlet =, = 6
(.1~ ) (33): ©
i.e. a Beta distribution. The prior distributions used facle row (7,1, ..., 7s,m) Of the probability
transition matrixP for the HMMs were
. 1 1
(Tsy1y-ee s Tsym) ~ D|r|chlet(§,...,§) ,s1=1,...,m, @)

wherem is the number of states, and in the particular case considerthe simulation study we have
m = 2, SO are using a Beta prior. Again these represent vagueipfaymation.

Posterior distributions for the parameters were estimaftida Markov chain Monte Carlo approach
usingW nBUGS (Lunn et al., 2000). Summary statistics for the posterioanseof selected parameters for
the mixture and HMM models fitted to the simulated data set¢sgaren in Table 1; note that the Monte
Carlo errors associated with the values in the table are ébative to the values presented. These results
include the mean and standard deviation, as well as the hisct mean squared error (RMSE). The
non-diagonal elements &f, ® andX are close to 0 and are not displayed.

The means of the posterior means fgr and¢,. for the fitted two-component mixture model, dis-
played in Table 1, are lower than the true values, and thesponding values far;; andos, are higher.
This indicates that some observations generated by comp8iddave been assigned to compon8at
and vice versa. Note thatis estimated well, so the overall proportion of observatiproduced by each
component has been estimated correctly. The meang fand~s are close to the true values.

(© 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.biometrical-journal.com



6 McLellan, Worton, Deasy, and Birch: Modelling larval movents

Table1 Summary statistics of estimated posterior means of sel@eteameters obtained when fitting the
two-component mixture model defined in Section 3.1, andwestate HMM defined in Section 3.2, to
100 data sets of 1000 observations simulated from the twigpoment mixture model with the parameter
values shown in (2). Presented summary statistics incheeean, standard deviation (SD), bias and root
mean squared error (RMSE). The prior distributions of thapeeters are givenin (3), (4), (5), (6) and (7).

Mixture HMM

Parameter Mean SD Bias RMSE Mean SD Bias RMSE
Y11 0.9614 0.0147 0.0114 0.0186 0.9378 0.0226-0.0122 0.0252
Y22 0.9700 0.0011 0.0200 0.0200 0.9528 0.0015 0.0028 0.0032
P11 0.0064 0.0007 —0.0036 0.0037 0.0095 0.0010-0.0005 0.0011
$22 0.0065 0.0007 —0.0035 0.0036 0.0095 0.0010-0.0005 0.0011
o11 0.0056 0.0001 0.0046 0.0047 0.0017 0.0001 0.0007 0.0007
0929 0.0034 0.0043 0.0024 0.0049 0.0006 0.000#0.0004 0.0008

™ 0.2027 0.0021 0.0027 0.0034
1 0.2412 0.0384 0.0412 0.0563
T2 0.7616 0.0200 0.0616 0.0648

The summary statistics obtained from fitting the two-staldNHto the same simulated data sets are
also presented in Table 1. As for the mixture model, the méang; and~,, are close to the true values.
However, with the HMM the means far;; andg,, are much closer to the true values than in the mixture
model, and the same is true to a lesser extentferandos,. It is interesting to note that the HMM
provides a satisfactory model even though the data setsgesierated from a mixture model. The means
for 11 andmy; = 1 — oo are similar, indicating that the probability that an obsgion is generated
from stateS1is approximately the same regardless of the state of thequewbservation and correctly
reflecting the true stochastic process, i.e. the fitted HMN beviewed as being equivalent to the simpler
mixture model.

We now present the results of a simulation study that wasweted involving data sets generated from
an HMM. In this study, 100 data sets of 1000 observations sienalated from the two-state HMM defined
in Section 3.2, with parameter values

a=(0,20)T, T =0.95, ® = 0.01l, ¥ = 0.001I, m; = 0.5, T2 = 0.9, (8)

and the two-component mixture model and two-state HMM wenth liitted to the simulated data sets.
Note that the value of, the probability that an observation is generated frones4t is equal tol /6 as
given by

1-— vy

(9)

Summary statistics for the posterior means of selectedpeteas of the fitted mixtures and HMMs are
shown in Table 2.

The means of posterior means far and~,2 shown in Table 2 for the mixture model are close to the
true values. The means fér; and¢., are lower than the true values and the meangfgrando,s are
higher, suggesting that some observations have been addigithe incorrect component of the mixture.
The mean fotr has large bias, indicating that the mixture does not adetyuatodel data sets generated
by the HMM. Clearly, the mixture model has failed to captueetain features of the HMM due to overly
simplistic assumptions made by the former about switchiegvben states. However, as we saw above,
the HMM was able to model the mixture data in a satisfactorpmea at the expense of some slight extra
variation.

m= ————.
2 — 1 — o2
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Table 2 Summary statistics of estimated posterior means of sel@eteameters obtained when fitting the
two-component mixture model defined in Section 3.1, andwestate HMM defined in Section 3.2, to
100 data sets of 1000 observations simulated from the tate-stMM with the parameter values shown in
(8). Presented summary statistics include the mean, stadésiation (SD), bias and root mean squared
error (RMSE). The prior distributions of the parametersgiven in (3), (4), (5), (6) and (7).

Mixture HMM
Parameter Mean SD Bias RMSE Mean SD Bias RMSE
Y11 0.9560 0.0213 0.0061 0.0221 0.9429 0.02620.0071 0.0271
Y22 0.9660 0.0012 0.0160 0.0160 0.9578 0.0015 0.0078 0.0079
P11 0.0072 0.0011 —-0.0028 0.0030 0.0087 0.0014-0.0013 0.0019
$22 0.0072 0.0012 —-0.0028 0.0030 0.0085 0.0014-0.0015 0.0021

o011 0.0046 0.0007 0.0036 0.0037 0.0027 0.0004 0.0017 0.0017
022 0.0048 0.0085 0.0038 0.0093 0.0025 0.0004 0.0015 0.0016
0 0.3553 0.0191 0.1887 0.1897

T 0.5655 0.0516 0.0655 0.0833
T2 0.8764 0.0168 —0.0236 0.0289

The means of posterior means f@r and~»s in Table 2 for the HMM are close to the true values, while
the means for,; andg¢,s and foro;; andoss are closer to the true values than for the mixture model in
Tables 1 and 2. This indicates that fewer observations aigreesd to the wrong component by the HMM
than by the mixture model. The means fqQr andry, are both quite close to the true values. Overall, the
results of the simulation study indicate that the fitted HMg\ls similar to the true models used to generate
the simulated data sets, but the mixture model approachdmas Emitations with regard to the flexibility
of the models possible.

5 Application to larval movement data

In this section, we apply the methodology outlined in SetBao the larval data sets introduced in Sec-
tion 1, and displayed in Figure 1. We initially use our singplsingle component model from Section 2,
but then consider the mixture model and HMM to account forctmplex features of the data. Finally, we
compare the models to assess which is the most appropndte inodelling we will use the priors defined
in Section 4 as expert belief is vague. Use of informativerpnformation would be highly desirable for
this problem but at the moment is difficult to specify.

5.1 Single component model

Diffusion process (1) was applied to the bioassays in Figureith the prior distributions of® and ®

as shown in (3) and (4). Table 3 presents the summary statistithe posterior distributions of selected
parameters. The parametesis and-~,;, which are not displayed, are close to O for all bioassays; so
and~»s describe the strength of attraction to or repulsion fi@im the x direction andy direction respec-
tively. The values ofy;» and~,; are also close to O for the other models used throughoutd®esti For
Bioassays 1 and 2, the posterior means;@fand~,, are positive but less than unity, signifying attraction
towardsa, which is confirmed by visual inspection of Figure 1. Howetlee results for Bioassay 3 differ
in that the posterior mean ah; is greater than unity. This corresponds to movement away &oas is
evidentin Figure 1.
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Table 3 Summary statistics of posterior distributions of selegachmeters for diffusion process (1) for
Bioassays 1-3. The prior distributionsbfand® are as givenin (3) and (4).

Posterior summary statistics
Parameter Mean Median SD %5 97.5%
Bioassay 1 Y11 0.9996 0.9996 0.0003 0.9991 1.0001
~o2 0.9997 0.9997 0.0001 0.9996 0.9999
gﬂl 4.2576 4.2567 0.0641 4.1354 4.3882
¢§2 45144 45142 0.0668 4.3875 4.6448
Bioassay 2 Y11 0.9999 0.9999 0.0001 0.9997 1.0002
Vo2 0.9999 0.9999 0.0001 0.9998 1.0001
q&{l 41360 4.1350 0.0623 4.0174 4.2629
¢§2 3.9608 3.9608 0.0586 3.8481 4.0774
Bioassay 3 Y11 0.9994 0.9994 0.0020 0.9957 1.0035
o2 1.0002 1.0002 0.0005 0.9993 1.0011
gﬂl 3.4986 3.4916 0.1466 3.2313 3.8028
¢§2 5.2357 5.2284 0.2189 4.8198 5.6868

T Values multiplied by10°.

5.2 Mixture model

The mixture model described in Section 3.1 was applied tobibassays, and selected results of the
analysis are presented in Table 4. For Bioassays 1 and 208terfpr means of1; and o, are five
orders of magnitude smaller than those #gf and ¢22. This means that compone8® of the mixture
has captured the localized movements of the larva, white Starepresents larger directed movements.
For both of these bioassays, ab@0ts of movements are assigned to compor@htand the posterior
means ofy;; and~ys,2 are positive but less than unity, indicating attractiondotga. For Bioassay 3, the
posterior means af11, ¢22, 011 andos, indicate that compone®1 consists of the larva’s larger directed
movements while stat82 has accounted for localized movements. However, the postaean ofy,s is
greater than unity, and this is consistent with the path gufé 1, which shows movement away fram

5.3 Hidden Markov models

The two-state HMM described in Section 3.2 was applied tdtbassays, as it contains desirable features
of attraction to (or repulsion from) the poiatas well as allowing for localized movements due to body
contraction, but also has the transition maPbxSummary statistics for selected parameters are displayed
in Table 5, and describe a process with some differences tinermixture. For Bioassay 1, the posterior
means ofr; andmyy suggest that the larva spends aboufl® the time in stateS1 as given by (9),
considerably less than the Z3obtained for the mixture model. The posterior means/af and s
indicate attraction towards in they direction. However, the smaller proportion of movementsgrsed

to stateS1means that this influence is weaker than suggested by themaixiodel. For Bioassays 2 and 3,
the results are similar to those obtained for the mixturéha the posterior means show attraction towards
a for Bioassay 2 and repulsion for Bioassay 3, and the larvadgpapproximately 22 and 2%; of the
time in stateS1respectively for these two bioassays.

The three-state model was fitted to each of the bioassayséstigate whether a third sta&3 might
improve on possible inadequacies of the two-state HMM bygiiporating a null move state into the HMM.
For Bioassays 1 and 2, as shown in Tables 6 and 7 respectivelgpsterior means of;; and~s2 again
imply attraction towards. The posterior means of; andos, reveal that stat&2consists almost entirely
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Table 4 Summary statistics of posterior distributions of selegathmeters for the two-component mix-
ture model defined in Section 3.1 for Bioassays 1-3. The piatributions of the parameters are given in
(3). (4), (5) and (6).

Posterior summary statistics
Parameter Mean Median SD %25 97.5%
Bioassay 1 Y11 0.9984 0.9984 0.0012 0.9959 1.0007
o2 0.9990 0.9990 0.0003 0.9983 0.9997

gbh 1.8312 1.8303 0.0558 1.7280 1.9414

¢£2 1.9346 1.9344 0.0618 1.8135 2.0602

of, 01449 01449 00025 01402 0.1496

ob, 01447 0.1447 00025 01399 0.1498

T 0.2328 0.2328 0.0045 0.2237 0.2417

Bioassay 2 Y11 0.9993 0.9993 0.0006 0.9980 1.0005

Y22 0.9994 0.9994 0.0004 0.9986 1.0002

ol, 19181 1.9161 0.0622 1.8007 2.0436

;2 1.8430 1.8432 0.0577 1.7305 1.9598

cr%1 0.1416 0.1416 0.0024 0.1370 0.1463

032 0.1417 0.1417 0.0025 0.1368 0.1465

0 0.2150 0.2151 0.0044 0.2059 0.2234

Bioassay 3 Y11 0.9986 0.9987 0.0081 0.9833 1.0142

Y22 1.0011 1.0012 0.0018 0.9974 1.0043

(b{l 1.3869 1.3834 0.1121 1.1851 1.6284

¢l,  1.8642 1.8524 0.1547 15812 2.1985

of, 11583 1.1575 0.0548 1.0549 1.2697

ok,  1.1555 1.1537 0.0566 1.0435 1.2677

0 0.2535 0.2535 0.0127 0.2294 0.2785
1 Values multiplied byl 0.
1 Values multiplied by108.

of movement in the direction, asro is several orders of magnitude larger than. The posterior means

of ¢11 andgos are of roughly the same order of magnitude as thatef implying that the model consists

of two components with movements in thelirection of the same order of magnitude plus the “null”stat
S3of stationary observations, whereas the mixture modehaoestate HMM only suggested one diffusion
process consisting of larger movements and the other of smelier movements. This difference may be
interpreted as stationary observations that were assignatk of the two diffusion processes by the two-
state model instead being assigned to the null Satey the three-state model. Therefore, the three-state
HMM with account taken for lack of movement at certain stegygpears to provide a more satisfactory
description of the observed data.

(© 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.biometrical-journal.com
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Table 5 Summary statistics of posterior distributions of selegbagdameters for the two-state HMM
defined in Section 3.2 for Bioassays 1-3. The prior distiding of the parameters are given in (3), (4), (5)
and (7).

Posterior summary statistics
Parameter Mean Median SD %5 97.5%

Bioassay 1 Y11 1.0001 1.0001 0.0008 0.9985 1.0018

Y22 0.9983 0.9983 0.0006 0.9971 0.9995

qﬂl 0.5118 0.5111 0.0213 0.4707 0.5535

¢§2 3.4438 3.4421 0.1408 3.1675 3.7268

UL 0.4131 0.4131 0.0064 0.4012 0.4253

aég 0.1279 0.1279 0.0020 0.1238 0.1320

11 0.3929 0.3926 0.0143 0.3647 0.4208

a2 0.9090 0.9090 0.0033 0.9023 0.9154

Bioassay 2 Y11 0.9993 0.9994 0.0006 0.9981 1.0006

Y22 0.9995 0.9994 0.0004 0.9986 1.0004

qﬂl 1.9170 1.9146 0.0616 1.8000 2.0420

32 1.8445 1.8421 0.0593 1.7306 1.9660

crf1 0.1416 0.1416 0.0024 0.1370 0.1462

032 0.1415 0.1415 0.0024 0.1369 0.1462

11 0.3916 0.3914 0.0110 0.3707 0.4127

22 0.8332 0.8331 0.0043 0.8248 0.8419

Bioassay 3 Y11 0.9993 0.9995 0.0070 0.9849 1.0155

Y22 1.0013 1.0012 0.0014 0.9985 1.0042

qﬂl 1.3869 1.3791 0.1184 1.1747 1.6289

32 1.8557 1.8460 0.1488 1.5898 2.1567

crf1 1.1553 1.1557 0.0543 1.0493 1.2636

032 1.1539 1.1519 0.0568 1.0463 1.2763

1 0.4439 0.4444 0.0285 0.3888 0.4999

a2 0.8108 0.8107 0.0129 0.7842 0.8351
1 Values multiplied by10%.
1 Values multiplied by102.
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Table 6 Summary statistics of posterior distributions of seleqtedameters for the three-state HMM
defined in Section 3.2 for Bioassay 1. The prior distributiof the parameters are given in (3), (4), (5)
and (7).

Posterior summary statistics
Parameter Mean Median SD %5 97.5%
11 0.9966 0.9966 0.0023 0.9921 1.0011
Vo2 0.9996 0.9996 0.0003 0.9991 1.0001
ﬂl 3.5111 3.5086 0.1502 3.2375 3.8238
¢12'2 0.5403 0.5400 0.0236 0.4961 0.5881
afl 0.9978 0.9964 0.0448 0.9145 1.0887
032 3.4700 3.4679 0.1526 3.1766 3.7815
11 0.4112 0.4107 0.0149 0.3828 0.4407
12 0.0691 0.0688 0.0077 0.0548 0.0842
T3 0.5197 0.5198 0.0149 0.4902 0.5486
21 0.0618 0.0616 0.0077 0.0476 0.0774
T2 0.3704 0.3701 0.0152 0.3416 0.4006
a3 0.5678 0.5675 0.0157 0.5363 0.5978
31 0.0843 0.0843 0.0033 0.0777 0.0908
32 0.0808 0.0808 0.0034 0.0743 0.0879
33 0.8349 0.8349 0.0045 0.8260 0.8437

+ Values multiplied byl 0.
1 Values multiplied by108.

Table 7 Summary statistics of posterior distributions of seleqtedameters for the three-state HMM
defined in Section 3.2 for Bioassay 2. The prior distributiof the parameters are given in (3), (4), (5)
and (7).

Posterior summary statistics
Parameter Mean Median SD %5 97.5%
11 0.9986 0.9985 0.0012 0.9963 1.0009
o2 0.9998 0.9998 0.0003 0.9992 1.0004
d)J{l 3.4403 3.4376 0.1502 3.1513 3.7494
¢12'2 0.5810 0.5805 0.0254 0.5335 0.6334
afl 0.1167 0.1165 0.0057 0.1063 0.1284
052 3.4241 3.4196 0.1661 3.1162 3.7734
1 0.2855 0.2858 0.0139 0.2588 0.3124
12 0.1008 0.1003 0.0092 0.0840 0.1196
T3 0.6137 0.6136 0.0147 0.5848 0.6431
a1 0.1271 0.1268 0.0116 0.1052 0.1509
T2 0.2710 0.2711 0.0154 0.2413 0.3007
a3 0.6019 0.6012 0.0169 0.5694 0.6372
31 0.0936 0.0936 0.0034 0.0871 0.1001
32 0.0732 0.0732 0.0031 0.0672 0.0795
33 0.8332 0.8333 0.0044 0.8244 0.8417

+ Values multiplied byl0%.
1 Values multiplied by107.
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For Bioassay 3, the results, given in Table 8, are quite iffefrom Bioassays 1 and 2. The posterior
means ofy;; and~ss imply repulsion froma, and the posterior means ¢f; and¢». indicate that state
S1consists primarily of movement in thedirection. This confirms our visual impression from Figure 1
since the larva moves almost directly away frapwhich results in such movement. For all bioassays, the
posterior means af; 3, mo3 andmss highlight the importance of including stag3in the model.

Table 8 Summary statistics of posterior distributions of seleqtedameters for the three-state HMM
defined in Section 3.2 for Bioassay 3. The prior distributiof the parameters are given in (3), (4), (5)
and (7).

Posterior summary statistics
Parameter Mean Median SD %5 97.5%
11 1.0000 1.0000 0.0002 0.9995 1.0004
a2 1.0025 1.0025 0.0035 0.9957 1.0095
gzﬁl 0.6227 0.6158 0.0712 0.5014 0.7808
¢>12'2 2.6030 2.5861 0.2837 2.0932 3.2359
aL 3.1305 3.1064 0.3911 2.4722 3.9923
032 0.8225 0.8159 0.1017 0.6442 1.0359
1 0.3308 0.3306 0.0367 0.2609 0.4053
12 0.1314 0.1299 0.0264 0.0854 0.1859
T3 0.5377 0.5370 0.0389 0.4612 0.6141
a1 0.0615 0.0593 0.0216 0.0260 0.1094
T2 0.3623 0.3620 0.0423 0.2797 0.4491
a3 0.5762 0.5760 0.0431 0.4930 0.6606
31 0.1183 0.1180 0.0110 0.0972 0.1404
32 0.0718 0.0715 0.0087 0.0553 0.0901
33 0.8100 0.8105 0.0131 0.7836 0.8353

+ Values multiplied byl0%.
1 Values multiplied by107.

The four-state model was applied to the bioassays to incatpthe control zonb (see Figure 1) into
the model, using the following independent vague priors,

wrr ~ Normal0, 10%), k,1=1,2,
¥ ~ Inverse-Wishart0~°1,2),

with priors for the other parameters as shown in (3), (4)at® (7). For these fitted models the posterior
means ofy;; and~.. indicate attraction towards for Bioassays 1 and 2, and repulsion for Bioassay 3,
as was the case for the other models used. However, we foahththinclusion of the fourth state in the
HMM added very little in terms of the feature of the behaviouwhich we are primarily interested. In
addition, the four-state model has a possible disadvartkeget may have some difficulty distinguishing
between stat€land stat&4as they can be viewed as being similar in nature, i.e. moverowards/away
from the chemical/control zones in thalirection. These considerations suggest that the thege{stMM
may be sufficient for our modelling.

5.4 Model comparison

The Bayesian Information Criterion (BIC) was used to givensccomparison of the competing models.
BIC values for the models fitted to the bioassays are predeémf€able 9. The mixture and the two-state
HMM are improvements over the single diffusion process. Elsy, the three-state HMMs incorporating
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null movement result in much lower BIC values for all threedsisays, and are therefore to be preferred
over both two-component models. The addition of a fourttesti@scribing influence by the control zone
b provides further improvement over the three-state modeBfoassay 1, though the difference in BIC
is not as large as the difference between the two-state aed-#tate models. For Bioassays 2 and 3, the
three-state model is superior. The BIC values give us a gaide together with our previous discussion
above, suggest that the three-state model provides a comgwdoetween accounting for the important
features of the larval track data without incorporatingecessary detail.

Table 9 BIC values of the various models fitted to the bioassays.

Bioassay
Model Number of parameters 1 2 3
Single diffusion process 7 —129469 -—-130936 -—-16719
Two-component mixture model 11 —279611 —-284020 -—-31864
Two-state HMM 12 —216830 —284018 -—31861
Three-state HMM 16 —581770 —590949 73338
Four-state HMM 29 —588411 588236 —-73224

5.5 Plots of posterior densities

The strength of the influence that the positionadfias on the larva’s movements is determinedBly
However, as the position @ in each bioassay has anrcoordinate very close to the-coordinate of the
larva’s starting position, the strength of attraction tar@pulsion froma is primarily determined by the
parameterys. As noted above, a non-negative valueyes less than unity suggests movement in the
direction ofa, which corresponds to attraction, and a value greater thiy imdicates repulsion. As this

is the aspect of movement of primary interest, we focus dention on the parametes, as well agT|.
Posterior density plots ofs2 and of|T'| are shown in Figure 2 for the three-state HMM, and it is appiare
that the majority of the densities of both parameters arevbelnity for Bioassays 1 and 2 and above it
for Bioassay 3. Furthermore, in the caseygf the dispersion of the density obtained for Bioassay 3 is
clearly different from the other two bioassays, having mhigfher variance. The fitted three-state models
have successfully distinguished between the attractitwbérd by larvae exposed to damaged broccoli
roots and repulsion from allyl isothiocyanate. The differe in variance between Bioassay 3 and the other
two bioassays is less pronounced in the cas@pfWe note that a2 value of unity corresponds to no
attraction, but not actually repulsion.

5.6 MCMC diagnostics and posterior predictive checks

Care is needed when applying MCMC techniques to ensure thalaions are providing a true picture
of the posterior distribution. With all the models conskldin this paper MCMC diagnostics were used
to investigate any problems with model fitting. In additig@ayticular care is needed with mixture type
problems with regard to potential ‘label switching’ (Stepis, 2000). Fortunately, the MCMC convergence
was excellent for all models considered and also there weissues with label switching. Figure 3 gives
an illustration of the type of trace plots obtained in the MChh the case of the three-state HMM for the
w11 parameter, but trace plots for the other parameters haeptadie properties. Fortunately, the structure
and nature of the components (with/without attraction)sarfficiently different so that the model fitting
does not lead to label switching. Note that even in models thi¢ null state that may have potentially lead
to problems, the trace plots did not show any significantissu

With regard to sensitivity to the prior information we intiggited varying the priors and found that the
results were essentially unchanged unless we used vegnextthanges of prior information. This may
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Figure 2 Posterior density plots ofz. (left panel) andT'| (right panel) for the three-state HMMs fitted
to Bioassay 1 (solid line), Bioassay 2 (dotted line) and B#zgy 3 (dashed line).

reflect the large sample sizes involved in the analyses. fedrat the beginning of Section 5, it would be
desirable to use informative prior information in the Bagasanalysis, if it were available.

Posterior predictive checks were conducted to assess dugiady of the models (Gelman et al., 2003).
Simulated tracks generated from the three-state HMM usahges simulated from the posterior distribu-
tion were compared with the observed track. In particulased the final observation as an assessment.
This is the observation that is collected in non-trackingesiments so provides a natural assessment of the
adequacy of the model. Figure 4 shows the estimated paspeadictive distributions of the distance be-
tween the final location of the track and the p@nfor Bioassay 1 the observed value is towards the lower
end of the distribution, but there is no significant evideotdisagreement with the model. Similarly, for
Bioassays 2 and 3, the three-state HMM seems adequate forazlelling.

6 Conclusions

We have seen that diffusion based processes may be used & tedracks of cabbage root fly larvae.
By doing this we can gain a greater understanding of the geasethat govern their movements. Itis clear,
even from the plots of the bioassay data in Figure 1, thatwietaof the larvae in the presence of allyl
isothiocyanate (Bioassay 3) is very different from thatha tase of damaged broccoli roots (Bioassays 1
and 2), but we can use the modelling to characterize the mentnmore quantitatively. The mixture of
bivariate normal diffusion processes successfully ingisshat the larvae in Bioassays 1 and 2 are moving
towards the zone of damaged broccoli roots, and that tha larBioassay 3 is repelled from the allyl
isothiocyanate. However, we found that there are advastafgesing an HMM approach, and due to their
increased complexity the HMMs produced more biologicatiglistic descriptions.

Although it is possible to collect extensive sets of datdnlite currently available experimental equip-
ment and software, care is needed to incorporate imporamtfes of the movement into our models of
larvae paths. The two-state HMM captures the salient feataf the data and clearly differentiates be-
tween the attraction towardspresent in Bioassays 1 and 2 and the repulsion in Bioassaheaddition
of a third “null” state, representing no movement, resuitgimore appropriate model that accounts for
the successive identical observations present in the dédael comparison using BIC indicates that the
three-state model is far superior to the two-state HMM anduné, and it is also preferred to the four-state
model for two of three bioassays.

While the models used here are successful at identifyimgaibn to and repulsion frora and pro-
vide a suitable model for the bioassays, we conclude thelaitly considering possible alternatives and
refinements. Further improvement to the models might irevaiodification to include more pronounced
directional persistence. The data plot for Bioassay 3 itiqadar, presented in Figure 1, suggests that the
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Figure 3 MCMC trace plots for the parametey for the three-state HMMs: Bioassay 1 (upper panel),
Bioassay 2 (middle panel) and Bioassay 3 (lower panel).

movements of the larva are highly dependent on the curreattibn of movement, whereas the HMM
used here only involves first-order dependence and so Ig fiaiited in its ability to model this behaviour.
As such, a natural development would be to incorporate highger dependence. This may result in mod-
els even more appropriate for the bioassay data, and alldkeftinference to be made about the behaviour
of the larvae. Nevertheless, the models we consider in #pgiphave worked well in extracting important
behavioural responses with regard to the study of novelagmtres for the management of cabbage root
fly.

In this paper we have investigated modelling a small numb&aoks from individual bioassays so that
although the number of observations per bioassay is vegg ldre sample size in terms of tracks is very
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Figure 4 Posterior predictive distributions of the distance betwieal location of the track and poiat
with the vertical line indicating the observed value: Biemg 1 (left panel), Bioassay 2 (middle panel) and
Bioassay 3 (right panel).

small. As more data become available there will be the oppdstto extend the modelling to simultane-

ously model a large number of larvae tracks. However, we tr@gpect to have to include in such models
individual variation with regard to each larva. By increagsthe sample size it will be possible to obtain a
fuller understanding of the population behaviour of thedarwith regard to the attraction/repulsion.
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