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Pattern graphs and rule-based models:

the semantics of Kappa

Jonathan Hayman1,3? and Tobias Heindel2??

1 DIENS (INRIA/ÉNS/CNRS), Paris, France
2 CEA, LIST, Gif sur Yvette, France

3 Computer Laboratory, University of Cambridge, UK

Abstract. Domain-speci�c rule-based languages to represent the sys-
tems of reactions that occur inside cells, such as Kappa and BioNetGen,
have attracted signi�cant recent interest. For these models, powerful sim-
ulation and static analysis techniques have been developed to understand
the behaviour of the systems that they represent, and these techniques
can be transferred to other �elds. The languages can be understood intu-
itively as transforming graph-like structures, but due to their expressivity
these are di�cult to model in `traditional' graph rewriting frameworks.
In this paper, we introduce pattern graphs and closed morphisms as a
more abstract graph-like model and show how Kappa can be encoded
in them by connecting its single-pushout semantics to that for Kappa.
This level of abstraction elucidates the earlier single-pushout result for
Kappa, teasing apart the proof and guiding the way to richer languages,
for example the introduction of compartments within cells.

1 Introduction

Rule-based models such as Kappa [6] and BioNetGen [2] have attracted signif-
icant recent attention as languages for modelling the systems of reactions that
occur inside cells. Supported by powerful simulation and static analysis tools, the
rule-based approach to modelling in biochemistry o�ers powerful new techniques
for understanding these complex systems [1].

Many of the ideas emerging from rule-based modelling have the potential to
be applied much more widely. Towards this goal, in this paper we frame the
semantics of Kappa developed in [4] in a more general setting. In [4], an SPO
semantics [10] is described by showing that speci�c pushouts in categories of
partial maps between structures speci�cally de�ned for Kappa called Σ-graphs
correspond to rewriting as performed by Kappa. The richness of the Kappa
language means that this construction is highly subtle: it cannot be understood
in the more widely studied DPO approach to graph rewriting.

? JH gratefully acknowledges the support of the ANR AbstractCell Chair of Excellence
and the ERC Advanced Grant ECSYM.
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Fig. 1: Example Σ-graph, rule and rule application

In this paper, we study pushouts in categories of simpler, more general struc-
tures called pattern graphs. Via an encoding of Σ-graphs into pattern graphs,
we determine precisely when pushouts exist and what they are. The original
motivation for this work was to tease-apart and generalise the pushout con-
struction in [4]; the more abstract structures certainly provide new insight here
by revealing the subtlety of the previous categories, for example in their not ad-
mitting all pushouts. But additionally, the study of pattern graphs both exports
the fundamentals of Kappa rewriting to a more general setting and provides a
uniform target for encodings of other rule-based models. The intention is to use
this framework to obtain directly a categorical semantics for BioNetGen and for
the enhancement of Kappa with regions.

Overview: In Section 2, we give an overview of Kappa and implicit deletion
(called side-e�ects in [4]) using closed partial maps. In Section 3, we introduce
pattern graphs as an expressive form of graph into which the encoding of Kappa
proceeds in Section 4. In Section 5, we isolate the role of coherent graphs and
determine when they have pushouts. Finally, we show in Section 6 that pushouts
in the category of Σ-graphs and pushouts in the category of coherent pattern
graphs correspond: the pushout of the encoding is the encoding of the pushout.

2 Kappa and implicit deletion

We shall give a formal account of the semantics of Kappa in Section 4, but
essentially we wish to characterise Kappa rewriting as a pushout in a category
of special forms of graph called Σ-graphs. A rule α : L→ R can be applied to a
Σ-graph S if there is a matching of the pattern L in S and there is a pushout
as follows, generating a rule application β : S → T :

L
α
//

m
��

R

m′

��
S

β // T

An example Σ-graph is drawn in Figure 1(a). Squares represent entities called
agents which have circles attached called sites. The signature Σ describes the



labels that can occur on agents and sites. Links can be drawn between sites, and
additionally, for use in patterns which will be used to describe transformation
rules, we allow anonymous links. The anonymous link drawn at the site c on
the A-agent, for example, will represent the existence of a link to some site on
a C-agent. Finally, sites can have internal properties attached to them; in this
case, the site a on the B-agent has an internal property p, perhaps to represent
that the site is phosphorylated.

Homomorphisms express how the structure of one Σ-graph embeds into that
of another. They are functions on the components of the graph sending agents
to agents, sites to sites and links to links, that preserve structure in the sense of
preserving the source and target of links and preserving the labels on agents and
sites. They allow anonymous links to be sent either to proper links that satisfy
any requirements on the target, such as that it is on a C-agent, or to other
anonymous links that are at least as speci�c in their description of the target,
for example allowing the link drawn to be sent to another anonymous link that
speci�es a connection to a site with a particular label on an agent labelled C.

To allow rules to represent the deletion of structure, we consider pushouts of
partial maps. Partial maps generalise homomorphisms by allowing unde�nedness.
Formally, we view a partial map f : L ⇀ R to be a span consisting of an inclusion
def(f) ↪→ L, where def(f) is the domain of de�nition of the partial map, and a
homomorphism f0 : def(f)→ R. The interpretation of partial maps as describing
transformations is that the rule can be applied if the pattern L is matched; if so,
the elements of L that are in the domain of de�nition indicate what is preserved
and the elements of L outside the domain of de�nition indicate what is to be
deleted. Anything in R outside the image of the domain of de�nition is created
by application of the rule.

An example rule is presented in Figure 1(b), showing the deletion of an agent
labelled B in the presence of an agent labelled A. Note that the rule does not
include any sites, so the state of the sites on agents matched by those in the
left-hand side does not determine whether the rule can be applied. This is an
instance of the �don't care; don't write� principle in Kappa. Consequently, the
rule can be applied to give the application drawn in Figure 1(c). Importantly
for capturing the semantics of Kappa, the fact that the B-agent cannot be in
the pushout forces the sites on B and the link to A also to be absent from the
pushout: the link cannot be in the domain of de�nition of the rule application
since, otherwise, the domain of de�nition and the produced Σ-graph would not
be well-formed. We say that the sites and links are implicitly deleted as a side-
e�ect of the deletion of B.

Rewriting is abstractly characterised as taking a pushout in the category
Σ-graphs with partial maps between them. In the construction of the pushout
described in [4], as in the pushout for containment structures in [8], there is a
close relationship to the construction in the category of sets and partial functions.
For example, in generating the pushout in Figure 1c, we cannot have the B-
labelled agent preserved by the rule application due to the morphism α being
unde�ned on the B-agent matching it. On top of this, however, we have implicit



deletion: as remarked, we are additionally forced to remove the link connecting
the A-agent and the site a on B since the domain of de�nition has to be a well-
formed Σ-graph. A natural abstraction that captures both the set-like features of
the pushout and implicit deletion is to encode the structures as labelled graphs,
the nodes of which are the agents, sites and links and internal properties in the
Σ-graph. In this way, we simplify the analysis by treating all elements of the
Σ-graph uniformly. We represent using links the dependencies of the Σ-graph:
sites depend on agents, links on the sites that they connect, and so on. Links are
labelled to indicate the role of the dependency, such as a site being the source
of a link. The construction is described more fully in Section 4.1.

Before proceeding into detail, we demonstrate in the simplest possible setting
how closed morphisms allow implicit deletion as described above to be captured.

De�nition 1. Let Λ be a �xed set of labels. A basic graph is a tuple G = (V,E)
where V is the set of nodes (or vertices) and E ⊆ V ×Λ×V is the set of edges.

We adopt the convention of adding subscripts to indicate the components of a
structure. For example, we write VG for the vertices of a graph G.

De�nition 2. A graph homomorphism f : G → H is a function on nodes
f : VG → VH such that if (v, λ, v′) ∈ EG then (f(v), λ, f(v′)) ∈ VH .

We write bG for the category of basic graphs with homomorphisms between
them. When considering partial maps, a critical feature will be the following
condition called closure, which ensures that any partial map will be de�ned on
any node reachable from any de�ned node. For example, if a partial map is
de�ned on a link of a Σ-graph, which will be encoded as a node, it will be
de�ned on both the sites and agents that the link connects since they shall be
reachable from the node representing the link.

De�nition 3. A partial map f : G ⇀ H is a span G ←↩ def(f)
f0−→ H of

homomorphisms such that def(f) is a subgraph of G, i.e. Vdef(f) ⊆ VG and
Edef(f) ⊆ EG, and the following closure property holds:

if v ∈ Vdef(f) and (v, λ, v′) ∈ EG then v′ ∈ Vdef(f) and (v, λ, v′) ∈ Edef(f).

Write bG∗ for the category of basic graphs with partial maps between them.
Partial maps f : G ⇀ H and g : H ⇀ K compose as partial functions, with the
domain of de�nition of g ◦ f obtained as the inverse image of def(g) along f0. It
consists of vertices v of G such that f(v) is in the domain of de�nition of g and
edges to satisfy the closure condition, and can be shown to be a pullback of f0
against the inclusion def(g) ↪→ H in bG.

Using the category-theoretical account of existence of pushouts of partial
maps mentioned in the conclusion or directly, it can be shown that bG∗ has
pushouts of all spans of partial maps; we do not present the details here since
they shall be subsumed by those in the following section for pattern graphs.
In Figure 2, we give an example of a pushout in bG∗. The pushout shows in a
simpli�ed way how pushing out against a partial map representing deletion of an
agent (the node w2) requires the implicit deletion of a link (the node `). The key
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Fig. 2: An example pushout in bG∗. Horizontal spans represent partial maps.
Vertical maps m,m′ are total and send vi to wi for i ∈ {1, 2}.

is that, following the argument for pushouts in the category of sets and partial
functions, we cannot have the node w2 in the domain of de�nition of the lower
partial map and hence, by the closure condition, we therefore cannot have ` in
the domain of de�nition of the rule application represented by the lower span.

We wish to use the fact that the category bG∗ has pushouts of all spans to
consider, via the encoding described above and to be formalised in Section 4.1,
pushouts in the category of Σ-graphs. Before we can do so, there are two im-
portant details to consider.

The �rst is that we must ensure that maps between the encoded structures
correspond to maps in the category of Σ-graphs: that they send agents to agents,
sites to sites and links to links. The standard trick of encoding the types of
elements as labelled loops can deal with these aspects, but the presence in Kappa
of anonymous links that can be mapped either to proper links or to more speci�c
anonymous links will necessitate a richer structure than basic graphs. There are
alternatives, for example recording the type of nodes, but in this paper an elegant
treatment is provided by the use of pattern graphs.

The second detail is that we will wish the pushout in the category of pattern
graphs to correspond to the encoding of some Σ-graph. Certain aspects will
follow from the nature of the pushout, but it turns out that a pivotal issue will
be coherence. The graphs that we form as encodings will be coherent in the
sense that any node will have at most one edge with any given label from it.
For example, the encoding of a Kappa link will have at most one source and at
most one target; Kappa does not have hyper-edges. However, as we shall see, the
graphs that we form by taking pushouts in the category of pattern graphs might
fail to be coherent, so we desire an operation that forms a coherent pushout from
the non-coherent one. This operation can fail: it is not always possible to form a
pushout of an arbitrary span of morphisms in the category of coherent pattern
graphs with partial morphisms between them, and critically this will inform us
that there is no pushout of the given span in the category of Σ-graphs.

3 Pattern graphs

Pattern graphs add to basic graphs the ability to express, via homomorphisms,
the existence of an labelled edge from a node to some node satisfying a speci�-



cation. Speci�cations are just pre�x-closed sets of sequences of labels to indicate
paths that must exist from the speci�ed node. Assuming a set of link labels Λ,
let Λ∗ denote the set of all �nite sequences of elements of Λ. For sequences p
and q, write p ≤ q if p is a pre�x of q. For a set of sequences φ ⊆ Λ∗, we write
↓ φ for the set of sequences p such that there exists q ∈ φ satisfying p ≤ q.

De�nition 4. Let P≤(Λ∗) be the set of all pre�x-closed �nite sets of sequences
of elements of Λ. A tuple (V,E) is a pattern graph if V and E are disjoint �nite
sets and E ⊆ V × Λ× (V ∪ P≤(Λ∗)), where V is disjoint from P≤(Λ∗).

The sets V and E represent the sets of vertices and edges of a pattern graph.
Edges can either be normal (i.e. between vertices) or be speci�cations, being of
the form (v, λ, φ): the intention is that speci�cations are used in patterns when
we wish to specify, via homomorphisms, the structure that some other perhaps
more re�ned graph possesses.

De�nition 5. A vertex v ∈ V in a pattern graph G satis�es p ∈ Λ∗, written
v |=G p, if either p is empty or p = λ.p0 and either:

� there exists v′ such that (v, λ, v′) ∈ EG and v′ |=G p0, or
� there exists ψ ∈ P≤(Λ∗) such that (v, λ, ψ) ∈ EG and p0 ∈ ψ.

A vertex v ∈ VG satis�es φ ∈ P≤(Λ∗), written v |=G φ, if v |=G p for all p ∈ φ.

Homomorphisms embed the structure of one pattern graph into that of an-
other: they preserve the presence of normal links between vertices and, if a
vertex has a speci�cation, the image of the vertex satis�es the speci�cation.
Importantly, they do not record exactly how the speci�cation is satis�ed.

De�nition 6. A homomorphism of pattern graphs f : G→ H is a function on
vertices f : VG → VH such that, for all v, v′ ∈ VG, λ ∈ Λ and φ ∈ P≤(Λ∗):

� if (v, λ, v′) ∈ EG then (f(v), λ, f(v′)) ∈ EH , and
� if (v, λ, φ) ∈ EG then there exists x ∈ VH ∪ P≤(Λ∗) such that (f(v), λ, x) ∈
EH and x |=G φ if x ∈ VH and φ ⊆ x if x ∈ P≤(Λ∗).

We write PG for the category of pattern graphs connected by homomorphisms.
For any pattern graph τ , denote by PG/τ the slice category above τ . The ob-
jects of PG/τ are pairs (G, γ) where G is a pattern graph and γ : G → τ is a
homomorphism, and a morphism h : (G, γ) → (G′, γ′) in PG/τ is a homomor-
phism such that γ = γ′ ◦ h. We can regard τ as representing the structure that
the pattern graphs being considered are allowed to possess. Where no ambiguity
arises, we shall simply write G for the pair (G, γ) and τG for γ.

Partial maps extend homomorphisms by allowing them to be unde�ned on
vertices and edges. Again, we require the closure condition of Section 2.

De�nition 7. Let G and H be objects of PG/τ . A partial map f : G ⇀ H
consists of a pattern graph def(f) = (V0, E0) and a homomorphism f0 : def(f)→
H in PG/τ where:



� def(f) is a pattern graph satisfying V0 ⊆ VG and E0 ⊆ EG;
� τdef(f) : def(f)→ τ is the restriction of τG to def(f); and
� def(f) is closed: for all (v, λ, x) ∈ EG, if v ∈ V0 then (v, λ, x) ∈ E0 (and

hence x ∈ V0 if x ∈ VG).

We write (PG/τ)∗ for the category of pattern graphs with partial maps between
them. As it was for basic graphs, composition is obtained using the inverse image
construction and can be shown to be a pullback in PG/τ .

The category (PG/τ)∗ can be shown to have pushouts of all spans. However,
as we shall see in Section 5, the existence conditions for pushouts of coherent
typed pattern graphs will be much more subtle and involve considerable addi-
tional work.

Theorem 1. The category (PG/τ)∗ has pushouts.

The above result can be proved either by using the category-theoretical condi-
tions for existence of pushouts of partial maps mentioned in the conclusion or
directly by showing that the following construction yields a pushout of any span.

Given a span S Lgoo f // R , we de�ne a cospan S p // T Rqoo

that forms a pushout in (PG/τ)∗. Let V = VL ∪ VR ∪ VS . We de�ne ∼ to be
the least equivalence relation on V such that v0 ∼ f(v0) for all v0 ∈ Vdef(f) and
w0 ∼ g(w0) for all w0 ∈ Vdef(g). For any v ∈ V , we denote by [v] its ∼-equivalence
class; these equivalence classes will be used to form the vertices of the pushout
object T .

Write [v]
λ−→ [v′] i� there exist v0 ∈ [v] and v′0 ∈ [v′] such that (v0, λ, v

′
0) ∈

EL ∪ER ∪ES . The unlabelled transitive closure of this relation, written [v1] −→∗

[vn], relates [v1] to [vn] if there exist λ1, . . . , λn−1 such that [v1]
λ1−→ . . .

λn−1−−−→
[vn]. Now de�ne del0([v]) i� there exists v0 ∈ [v] ∩ VL such that v0 6∈ Vdef(f) ∩
Vdef(g) and de�ne del([v]) i� there exists v′ ∈ V such that [v] −→∗ [v′] and
del0([v

′]). The vertices and edges of the pushout object are given as:

VT = {[v] | v ∈ V & ¬del([v])}
ET = {([v], λ, [v′]) | [v], [v′] ∈ VT & [v]

λ−→ [v′]}
∪ {([v], λ, φ) | [v] ∈ VT & ∃v0 ∈ [v].(v0, λ, φ) ∈ EL ∪ ER ∪ ES}

The domain of de�nition of the pushout morphism p is the closed subgraph of S
containing all vertices v ∈ VS such that ¬del([v]). Where de�ned, p sends vertices
of S to their ∼-equivalence classes. The partial map q is de�ned similarly. The
type map τT : T → τ sends an equivalence class [v] to τL(v) if v ∈ VL, to τR(v)
if v ∈ VR and τS(v) if v ∈ VS ; well-de�nedness of this follows from the maps f
and g being type-preserving.

4 Kappa and Σ-graphs

We begin this section by brie�y describing the semantics given to Kappa in [4],
where a fuller explanation and examples can be found. The semantics of Kappa is



given over graphs with a given signature Σ, specifying the labels that can occur
on agents Σag, sites Σst and internal properties Σprop, and, for any agent label
A, the set of sites Σag−st(A) that are permitted to occur on an agent labelled A.

De�nition 8. A signature is a 4-tuple Σ = (Σag, Σst, Σag−st, Σprop), where Σag

is a �nite set of agent types, Σst is a �nite set of site identi�ers, Σag−st : Σag →
Pfin(Σst) is a site map, and Σprop is a �nite set of internal property identi�ers.

As described in Section 2, Σ-graphs consist of sites on agents; sites can have
internal properties indicated and be linked to each other. Sites can also have
anonymous links attached to them, typically used when the Σ-graph represents
a pattern, so the anonymous link represents that a link is required to exist at the
image of the site under a homomorphism. There are three types of anonymous
link; the �rst is represented by a dash `−' and indicates that the link connects to
any site on any agent, the second by A for A ∈ Σag which indicates that the link
connects to some site on an agent of type A, and the �nal kind of anonymous link
is (A, i) which indicates that the link connects to site i on some agent labelled
A. These form the set Anon = {−} ∪Σag ∪ {(A, i) |A ∈ Σag & i ∈ Σag−st(A)}.

De�nition 9. A Σ-graph comprises a �nite set A of agents, an agent type
assignment type : A → Σag, a set S of link sites satisfying S ⊆ {(n, i) : n ∈
A & i ∈ Σag−st(type(n))}, a symmetric link relation L ⊆ (S ∪ Anon)2 \ Anon2,
and a property set P ⊆ {(n, i, k) | n ∈ A & i ∈ Σag−st(type(n)) & k ∈ Σprop}.

We shall conventionally assume that the sets described above are pairwise-
disjoint. A normal link is a pair of sites ((n, i), (m, j)) and an anonymous link is
of the form ((n, i), x) where (n, i) is a site and x ∈ Anon. We use x to range over
both sites and Anon. Note that (n, i, k) ∈ P does not imply (n, i) ∈ S: as ex-
plained in [4], this is to allow Σ-graphs to represent patterns where we represent
a property holding at some site but do not specify anything about its linkage.

Homomorphisms between Σ-graphs are structure-preserving functions from
the agents, sites, links and internal properties of one Σ-graph to those of another.
They preserve structure by preserving the presence of sites on agents, preserving
properties held on sites, preserving the source and target of links and ensuring
that the source and target of the image of any link is at least as high in the link
information order as those of the original link. Given a typing function type,
this order is the least re�exive, transitive relation ≤type s.t. for all A ∈ Σag and
i ∈ Σag−st(A) and n s.t. typeG(n) = A: − ≤type A ≤type (A, i) ≤type (n, i).

De�nition 10. A homomorphism of Σ-graphs h : G→ H consists of a function
on agents hag : AG → AH , a function on sites hst : SG → SH , a function on
links hln : LG → LH and a function on internal properties hprop : PG → PH ,
satisfying:

� typeG(n) = typeH(hag(n)) for all n ∈ AG
� hst(n, i) = (hag(n), i) and hprop(n, i, k) = (hag(n), i, k)

� hln((n, i), x) = (hst(n, i), y) for some y such that ĥ(x) ≤typeH y, where we take

ĥ(m, j) = hst(m, j) for any (m, j) ∈ SG and ĥ(x) = x for any x ∈ Anon.



We write ΣG for the category of Σ-graphs with homomorphisms between them.
Note that in [4], attention was restricted to graphs with only one link to or from
any site, allowing a less general form of homomorphism to be used.

De�nition 11. A partial map f : G ⇀ H between Σ-graphs G and H is a span

G ←↩ def(f) f0−→ H where f0 is a homomorphism and def(f) is a Σ-graph that
is a subgraph of G, i.e.: Adef(f) ⊆ AG and Sdef(f) ⊆ SG and Ldef(f) ⊆ LG and
Pdef(f) ⊆ PG.

Partial maps between Σ-graphs form a category denoted ΣG∗, where partial
maps f : G ⇀ H and g : H ⇀ K compose in the usual way, with the domain
of de�nition of their composition def(g ◦ f) containing elements of def(f) such
that their image under f is in def(g). This corresponds to taking a pullback of
the homomorphism f0 : def(f)→ H against def(g) ↪→ H in ΣG.

4.1 Encoding Σ-graphs as pattern graphs

We now show how Σ-graphs can be interpreted as pattern graphs. As stated
before, the idea behind the encoding of a Σ-graph G is to build a pattern graph
JGK with vertices that are the agents, sites, links and properties of G. Labelled
edges in JGK indicate the dependencies between elements of the graph, so for
example that deletion of an agent causes the deletion of any edge connecting to
that agent. There will be edges from links to their source and target, labelled src
or tgt respectively, and edges labelled ag from sites to agents and internal proper-
ties to agents (not to sites since, as mentioned, we use the set of sites speci�cally
to represent link state). There will also be an edge labelled symm between ev-
ery link and its symmetric counterpart to ensure that morphisms preserve the
symmetry of the link relation. Speci�cations are used in the representation of
anonymous links.

The starting point is to de�ne a pattern graph Σ̂ to represent the structure
of encodings, so that the encoding of a Σ-graph will be an object of (PG/Σ̂)∗.

De�nition 12. With respect to signature Σ, the pattern graph Σ̂ is

VΣ̂ = {link} ∪ Σag ∪ {(A, i) |A ∈ Σag & i ∈ Σag−st(A)}
∪ {(A, i, p) |A ∈ Σag & i ∈ Σag−st(A) & p ∈ Σprop}

EΣ̂ = {(link, symm, link)}
∪ {(link, src, (A, i)), (link, tgt, (A, i)) | A ∈ Σag & i ∈ Σag−st(A)}
∪ {((A, i), ag, A) |A ∈ Σag & i ∈ Σag−st(A)}
∪ {((A, i, p), ag, A) |A ∈ Σag & i ∈ Σag−st(A) & p ∈ Σprop}
∪ {((A, i, p), (i, p), (A, i, p)) |A ∈ Σag & i ∈ Σag−st(A) & p ∈ Σprop}
∪ {(A,A,A) |A ∈ Σag} ∪ {(A, i), i, (A, i) |A ∈ Σag & i ∈ Σag−st(A)}

Example 1. Given Σ as follows, the graph Σ̂ is:



Σag = {A,B}
Σst = {i, j}

Σprop = ∅
Σag−st = {A 7→ {i, j}, B 7→ {i}}

A

jj

ag ag

B

i
ag

src
tgt tgt

tgt
src

src

symm

A

(A,j) (A,j) (B,i)

B

link

The loops on the vertices for agents and sites will be used in patterns for anony-
mous links. We now de�ne a functor J·K : ΣG∗ → (PG/Σ̂)∗ that embeds the
category of Σ-graphs into the category of pattern graphs over Σ̂.

De�nition 13. For a Σ-graph G, the pattern graph JGK is:

VJGK = AG ∪ SG ∪ LG ∪ PG
EJGK = {(n, typeG(n), n) | n ∈ A} ∪ {((n, i), i, (n, i)) | (n, i) ∈ S}

∪ {((n, i, p), (i, p), (n, i, p)) | (n, i, p) ∈ PG}
∪ {((n, i), ag, n) | (n, i) ∈ SG} ∪ {((n, i, p), ag, n) | (n, i, p) ∈ PG}
∪ {(((n, i), x), src, (n, i)) | ((n, i), x) ∈ LG}
∪ {((x, (n, i)), tgt, (n, i)) | (x, (n, i)) ∈ LG}
∪ {((x, (n, i)), src, anon(x) | x ∈ Anon & (x, (n, i)) ∈ LG}
∪ {(((n, i), x), tgt, anon(x) | x ∈ Anon & ((n, i), x) ∈ LG}

where anon gives a speci�cation for anonymous links:

anon(−) = ∅ anon(A) =↓ {ag.A} anon(A, i) =↓ {i.ag.A}

The function τJGK : JGK→ Σ̂ sends links to link, agents n to typeG(n), sites
(n, i) to (typeG(n), i) and properties (n, i, p) to (typeG(n), i, p).

The encoding JgK : JGK ⇀ JHK of a partial map g : G ⇀ H in ΣG∗ has
domain of de�nition Jdef(g)K and sends a vertex v ∈ VJdef(g)K to gag(v) if v ∈ AG,
or gst(v) if v ∈ SG, or glnk(v) if v ∈ LG, or gprop(v) if v ∈ PG.

It is straightforward to check that the encoding de�nes a functor. The key is
that the partial map JfK satis�es the closure condition due to the domain of
de�nition of f being a well-formed Σ-graph.

Example 2. The encoding of the unique homomorphism from G to H as drawn
is the unique homomorphism from JGK to JHK. Speci�cations are drawn as kites.
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Lemma 1. The encoding J·K is an embedding: it is a full and faithful functor
and is injective on objects.

As such, the image of J·K is a full subcategory of (PG/Σ̂)∗ isomorphic to ΣG∗.



5 Coherence

The pushout in (PG/Σ̂)∗ of the encoding of a span of morphisms in ΣG∗ can fail
to be an encoding of a Σ-graph. For example, in (PG/Σ̂)∗ the pushout against
itself of the morphism JfK : JGK→ JHK drawn in Example 2 is:
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The encodings of Σ-graphs have links with at most one source and at most
one target: we say that they are coherent.

De�nition 14. A pattern graph G is coherent if (v, λ, x1) ∈ EG and (v, λ, x2) ∈
EG implies x1 = x2 for all v ∈ VG, all λ ∈ Λ and all x1, x2 ∈ VG ∪ P≤(Λ∗).

Lemma 2. For any Σ-graph G, the encoding JGK is coherent.

We now characterise pushouts in the category (PG/τ)c∗, the full subcategory of
(PG/τ)∗ with coherent pattern graphs over τ as objects. By restricting ourselves
to coherent graphs, remarkably we lose the property that all spans of partial
(and even total) maps have pushouts. It is not hard, for example, to verify that
there is no pushout in (PG/Σ̂)c∗ of the morphism JfK : JGK→ JHK in Example 2
against itself. The signi�cance of this is that exactly the same phenomenon occurs
in the category of Σ-graphs, which fails to have pushouts of all spans for the
same reason. For example, analogously there is no pushout of the morphism of
Σ-graphs f : G→ H drawn in Example 2 against itself in ΣG∗ (noting that the
form of homomorphism in this paper includes a component to give the target of
links, unlike in [4] where the less general form of homomorphism could be used).

We shall see in Section 6 that pushouts of encodings in (PG/Σ̂)c∗ will corre-
spond to those in ΣG∗. We now study when pushouts in (PG/τ)c∗ exist. We do
so by characterising the largest full subcategory C of (PG/τ)∗ for which (PG/τ)c∗
is a re�ective subcategory of C. When the pushout in (PG/τ)∗ lies in the cat-
egory C, the pushout in coherent graphs will be obtained by applying the left
adjoint of the re�ection. Otherwise, if the pushout in (PG/τ)∗ is outside C, there
is no pushout of the span in (PG/τ)c∗.

The process for determining if a pattern graph G in (PG/τ)∗ lies in C is
somewhat intricate. We begin by removing from G vertices on which any par-
tial map to any coherent graph in (PG/τ)∗ must be unde�ned due to the type
constraint τ ; we go through this in more detail below. We then successively
merge joinable edges, continuing until there is no joinable pair of edges. If the
result is a coherent graph, then G lies in C and the left adjoint applied to G is
the constructed graph; otherwise, G is not in C. It is convenient to begin the
formalisation of this with the merging operation.



De�nition 15. Given a pattern graph G, a distinct pair of edges e1 = (v1, λ1, x1)
and e2 = (v2, λ2, x2) ∈ EG is engaged if v1 = v2 and λ1 = λ2.

De�nition 16. Let e1 = (v, λ, x1) and e2 = (v, λ, x2) be an engaged pair of
edges in a graph G. The graph obtained by merging them, denoted G[e1 ./ e2],
and homomorphism (e1 ./ e2) : G→ G[e1 ./ e2] is de�ned as follows:

� if x1 and x2 are vertices,

G[e1 ./ e2] = (VG \ {x2}, EG[x2 7→ x1]) (e1 ./ e2)(w) =

{
w if w 6= x2
x1 if w = x2

where EG[x2 7→ x1] = {((e1 ./ e2)w, λ′, (e1 ./ e2)w′) | (w, λ′, w′) ∈ EG}
� if x1 is a speci�cation and x2 is a vertex,

G[e1 ./ e2] = (V,E\{e1}∪{(x2, λ1, {p1})|λ1.p1 ∈ x1}) (e1 ./ e2)(w) = w

� if x2 is a speci�cation and x1 is a vertex,

G[e1 ./ e2] = (V,E\{e2}∪{(x1, λ2, {p2})|λ2.p2 ∈ x2}) (e1 ./ e2)(w) = w

� if x1 and x2 are speci�cations,

G[e1 ./ e2] = (VG, EG \ {e1, e2} ∪ {(v, λ, x1 ∪ x2)}) (e1 ./ e2)(w) = w

The process of merging engaged pairs of edges is locally con�uent up to
isomorphism.

Lemma 3. Let G be a graph containing engaged pairs of edges e1, e2 and f1, f2.
Either G[e1 ./ e2] ∼= G[f1 ./ f2] or there exist engaged pairs of edges e′1, e

′
2 and

f ′1, f
′
2 such that G[e1 ./ e2][f

′
1 ./ f

′
2]
∼= G[f1 ./ f2][e

′
1 ./ e

′
2].

Repeatedly joining engaged nodes, we obtain (up to isomorphism) a coherent
graph denoted collapse(G) and a homomorphism collapseG : G→ collapse(G).

For a vertex v of G, let dveG denote the pattern graph obtained by restricting
G to vertices and edges reachable from v.

De�nition 17. Let e1 = (v1, λ1, x1) and e2 = (v2, λ2, x2) be an engaged pair
of edges. They are joinable if for all i, j ∈ {1, 2} such that i 6= j, if xi is a
vertex then either xi −→∗ v or xj is a speci�cation and collapsedxieG(xi) |= xj in
collapse(dxieG), where −→∗ denotes reachability in G.

We now return to the initial stage, deleting vertices on grounds of the `type' τ .
As an example, let G = τ be the non-coherent graph with VG = {v, w1, w2} and
EG = {(v, a, w1), (v, a, w2), (w1, b, w1), (w2, c, w2)}. Let C be any coherent graph
with a homomorphism τC : C → τ and f : G → C be a morphism in (PG/τ)∗.
We cannot have v ∈ def(f) since, if it were, by closure and coherence there
would have to exist a vertex f(w1) = f(w2) with outgoing edges labelled b and
c, contradicting the assumption of a homomomorphism from C to τ . The graph
remaining after removal of vertices that cannot be in the domain of de�nition of
any partial map to any coherent graph is de�ned as follows. Let τdveG : dveG → τ
be the restriction of the homomorphism τG : G→ τ to dveG.



De�nition 18. For a pattern graph G and homomorphism τG : G → τ , de�ne
the graph td(G, τG) = (V0, E0) to have vertices v ∈ VG such that there exists a
homomorphism τ ′ : collapse(dveG) → τ such that τdveG = τ ′ ◦ collapsedveG and
E0 = {(v, λ, x) ∈ EG | v ∈ V0}.

Write v 6∈ td(G, τG) if v ∈ VG \ Vtd(G,τG); it is the predicate that determines
if the vertex v is deleted on grounds of type.

Note that for each v, the morphism τ ′, if it exists, must be the unique such
morphism since collapsedveG is an epimorphism (it is surjective on vertices).

Lemma 4. Let G be a pattern graph and τG : G→ τ and td(G, τG) = (V0, E0).
Let τtd(G,τG) : td(G, τG) → τ be the restriction of τG to V0. The span tdG =

(G←↩ td(G, τG)
idtd(G,τG)−−−−−−→ td(G, τG)) is a partial map in (PG/τ)∗. Furthermore,

for any coherent pattern graph C and morphism f : G→ C in (PG/τ)∗, there is
a unique morphism f ] : td(G, τG)→ C such that f = f ] ◦ tdG.

The process for determining if a pattern graph lies in the category C begins
by forming the graph td(G, τG). We then repeatedly merge joinable pairs of
vertices. If the resulting graph is coherent, the graph is in C. Otherwise, if we
obtain a graph with no joinable pair of edges but some engaged pair of edges, the
graph cannot be in the category C. Importantly, as we merge vertices we never
re-introduce grounds for removal of other vertices due to type incompatibility.

Lemma 5. Let G be in (PG/τ)∗ and there be no v ∈ VG such that v 6∈ td(G, τG).
For any joinable pair of edges e, e′ in EG, there is a unique homomorphism
τG[e./e′] such that the following diagram commutes:

G

τG

��

e./e′ // G[e ./ e′]

τG[e./e′]
zz

τ

Furthermore, there is no v ∈ VG[e./e′] such that v 6∈ td(G[e ./ e′], τG[e./e′]).

The following lemma represents one step of proving that the constructed
graph lies in the subcategory in re�ection with coherent graphs.

Lemma 6. Let G in (PG/τ)∗ contain no vertex v such that v 6∈ td(G, τG). Let
e, e′ be any joinable pair of edges in G. For any C in (PG/τ)∗ such that C is
coherent and morphism f : G → C in (PG/τ)∗, there is a unique morphism
f ′ : G[e ./ e′]→ C such that f = f ′ ◦ (e ./ e′).
Conversely, the following lemma is used to show that if the process of merging
joinable nodes from td(G, τG) fails, leaving a non-coherent graph with no joinable
pair of edges, the graph G lies outside the category C.
Lemma 7. Let G in (PG/τ)∗ contain no vertex v such that v 6∈ td(G, τG) and
no pair of joinable edges. If G is not coherent, there is no P in (PG/τ)∗ and
morphism φ : G → P in (PG/τ)∗ such that P is coherent and any morphism
f : G→ C in (PG/τ)∗ to a coherent graph C factors uniquely through φ.



For a sequence of pairs of edges E and pattern graph G, let Gbe ./ e′cE denote
G with all pairs up to but not including (e, e′) in E merged as in De�nition 16
in sequence. Let G[E ] denote G with all pairs in E merged in sequence.

Theorem 2. The largest full subcategory C of (PG/τ)∗ for which there is a
re�ection

(PG/τ)c∗
# � ++> C

F

mm

consists of pattern graphs G for which there exists a sequence of pairs of edges E
such that collapse(G0) = G0[E ], where G0 = td(G, τG), and e and e′ are joinable
in G0be ./ e′cE for all (e, e′) ∈ E. The functor F sends G to collapse(G0).

It follows categorically that this is su�cient to show the key required character-
isation of pushouts:

Theorem 3. Let R
f←− L

g−→ S be a span in (PG/τ)c∗ and let the cospan R
g′−→

T
f ′←− S be its pushout in (PG/τ)∗.

� If T is not in C then the span R
f←− L g−→ S has no pushout in (PG/τ)c∗.

� If T is in C then the cospan R
collapseT0◦tdT ◦g′
−−−−−−−−−−−→ collapse(T0)

collapseT0◦tdT ◦f ′
←−−−−−−−−−−− S

is a pushout of the span R
f←− L g−→ S in (PG/τ)c∗, where T0 = td(T, τT ).

6 Pushouts of Σ-graphs

In the previous section, we saw a necessary and su�cient condition for the ex-
istence of pushouts in the category (PG/τ)c∗. We now tie the result back to the
category of Σ-graphs. The aim is that this should involve a minimal amount of
e�ort speci�c to Σ-graphs since similar analyses will be required when consid-
ering other models, for example Σ-graphs equipped with regions. In fact, the
only requirement that has to be proved speci�cally for Kappa is Lemma 10,
which establishes that if there is a regular epi from the encoding of a Σ-graph
to a coherent pattern graph C then C is isomorphic to the encoding of some
Σ-graph.

Lemma 8. Let C be a full subcategory of D and suppose that every morphism in
D is equal to a regular epi followed by a mono, C has �nite coproducts preserved
by the inclusion and any regular epi e : C → D in D from some C in C implies
that D ∼= C ′ for some C ′ in C. For a span of morphisms in C, any pushout in D
is also a pushout in C and any pushout in C is also a pushout in D.

Following the remark after Lemma 1, we regard the category ΣG∗ as a full sub-
category of (PG/Σ̂)c∗. Firstly, note that ΣG∗ has coproducts obtained by taking
the disjoint union of Σ-graphs and that these are preserved by the inclusion. For
any τ , the regular epis of (PG/τ)c∗ are characterised as follows:

Lemma 9. A morphism f : G→ H in (PG/τ)c∗ is a regular epi if, and only if:



� for all w ∈ VH there exists v ∈ VG such that f(v) = w,
� if (w, λ,w′) ∈ EH then there exist v, v′ ∈ VG such that (v, λ, v′) ∈ EG and
f(v) = w (and hence f(v′) = w′), and

� if (w, λ, φ) ∈ EH for φ ∈ P≤(Λ∗) then S = {ψ | (v, λ, ψ) ∈ EG & f(v) = w}
is non-empty and φ =

⋃
S.

Monos in (PG/τ)c∗ are total, injective functions on vertices. It is easy to see
that any morphism in (PG/τ)c∗ factors as a regular epi followed by a mono. All
that remains before we can apply Lemma 8 to obtain the required result about
pushouts in ΣG∗ is the following straightforward result:

Lemma 10. For any Σ-graph S and regular epi e : JSK→ G in (PG/Σ̂)c∗, there
exists a Σ-graph T such that G ∼= JT K.

We conclude by applying Lemmas 8 and 10 to characterise pushouts in ΣG∗.

Theorem 4. If there is no pushout in ΣG∗ of a span S
g←− L

f−→ R then

there is no pushout in (PG/Σ̂)c∗ of JSK
JgK←−− JLK

JfK−−→ JRK. If there is a pushout

L
f //

g

��

R

g′

��
S

f ′
// T

in ΣG∗ then there is a pushout JLK
JfK //

JgK
��

JRK

Jg′K
��

JSK
Jf ′K
// JT K

in (PG/Σ̂)c∗.

In summary, we have the following chain of functors:

ΣG∗
J·K // (PG/Σ̂)c∗

# � ++> C
collapse

mm
� � // (PG/Σ̂)∗

To determine the pushout of a span in ΣG∗, we take the pushout in (PG/Σ̂)∗
of its encoding. If this is outside C as characterised in Theorem 2, there is no
pushout of the span in ΣG∗. Otherwise, the pushout is the cospan in ΣG∗ that is
isomorphic under the encoding to the collapse of the pushout taken in (PG/Σ̂)∗.

7 Conclusion

This paper has begun the work of placing Kappa in a more general graph rewrit-
ing setting, abstracting away features of Σ-graphs that are tailored to the ef-
�cient representation of biochemical signalling pathways to arrive at rewriting
based on pattern graphs. The central features are the capture of implicit deletion
through the use of closed partial maps and the characterisation of pushouts for
categories of pattern graphs.

Alongside the work presented in this paper, we have studied categorical con-
ditions for the existence of pushouts in categories of partial maps, that for ex-
ample can show that (PG/τ)∗ has pushouts. In this paper, we have focused on
the encoding of Σ-graphs, showing how pushouts in ΣG∗ can be obtained in



(PG/Σ̂)∗. At the core of this was the intricate consideration of pushouts in the
subcategory of coherent pattern graphs.

Though there has not been space to present it here, we expect that this work
applies without complications to a wide range of biochemical models. For ex-
ample, categories for Kappa with regions [8] can be encoded in pattern graphs,
resulting in a simpler characterisation of their pushouts. We also intend to give
the BioNetGen Language [2] its �rst categorical interpretation using the frame-
work developed. Another area for further research is to translate the work on
dynamic restriction by type in Kappa presented in [5] to the current setting.

On rewriting, there are areas where further generalisation would be of inter-
est. A more expressive logical formalism for patterns could be adopted, connected
to the work on application conditions for rules in graph transformation [7]. It
would also be interesting to consider the role of negative application conditions,
perhaps speci�ed as open maps [9], in this setting; in [4], these were used to
constrain matchings. Finally, and more speculatively, by studying bi-pushouts
in bi-categories of spans, a new perspective on span-based rewriting approaches
(see, e.g. [11, 3]) that allows duplication of entities might be obtained.

More abstractly, the restriction to �nite structures in this paper can be lifted
fairly straightforwardly; we intend to present the details in a journal version of
this paper. However, for modelling biochemical pathways, the restriction to �nite
structures is no limitation.
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