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On Pushouts of Partial Maps?

Jonathan Hayman1 and Tobias Heindel2

1 Computer Laboratory, University of Cambridge, Cambridge, United Kingdom
2 School of Informatics, University of Edinburgh, Edinburgh, United Kingdom

Abstract. The paper gives a sufficient condition for the existence of all
pushouts in an arbitrary category of partial maps C∗M that is necessary
whenever the category of total maps C ⊆ C∗M has cocones of spans; the
latter is the case in all slice categories of C and thus the condition is
necessary locally. The main theorem is that, given an admissible class
of monos M in a category C that has cocones of spans, the category of
partial maps C∗M has pushouts if and only if the category of total maps
C has hereditary pushouts and right adjoints to inverse image functors
(where both properties are w.r.t. M). This result clarifies previous work by
Kennaway on graph rewriting in categories of partial maps that implicitly
assumed existence of cocones of spans in the category of total maps.

Introduction

The best-known approaches to algebraic graph transformation are single [1] and
double [2] pushout rewriting (see also [3]). While the double pushout (DPO)
approach has been studied extensively in a variety of categorical frameworks [4],
all of which are variants of adhesive categories [5], the relation of single pushout
(SPO) rewriting to adhesive categories has been much less extensively studied [6].
This is despite the fact that the work of Kennaway [7] has discussed the central
concept of hereditary pushout, which is closely related to adhesive categories [8].

Kenneway’s work [7] does not settle the question of what exactly is missing on
top of hereditary pushouts to have all pushouts of partial maps. The answer to
this question is the main contribution of this paper. Additionally, we identify the
missing (implicit) assumption of cocones of spans in the statement of Theorem 3.2
of [7]3 which, taken literally, has a natural counterexample (see Example 3).

Motivated by the main theorem (stated in the abstract), we propose categories
with hereditary pushouts and right adjoints to inverse image functors as the
paradigmatic categorical framework for SPO rewriting, which is a class of cate-
gories that share key properties of the category of graphs (or of any quasi-topos)
and provide enough structure to reason about the existence of pushouts of partial
maps. This class includes most of the common categories of graph-like structures.
? This research was funded by the European Research Council (ERC) under grants
320823 “RULE” and Advanced Grant “ECSYM” and the Agence Nationale de la
Recherche (ANR) under grant “AbstractCell”.

3 In the proof of Theorem 3.2(iii) in Ref. [7] on page 495, we can read “forming a
commutative square in C with some arrows N ′ D′ and O′ D′”.
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Finally, we describe how the encoding given in [9] of the Kappa Language [10]

fits into this framework, making the connection to our motivating application
for this work. We describe the categorical structure of the construction, which
is reasonably easy (Lemma 4), mitigating the complexity on the concrete level
of the category of so-called pattern graphs, which were introduced in [9] for the
purpose of encoding. We reuse the category of pattern graphs as a key example,
though, in principle, the usual category of hypergraphs (with term graphs as full
subcategory [11, 12]) would be very similar; however, the concrete conditions for
pushouts of partial maps of term graphs (with regular domains of definition) are
non-trivial, and thus, the objective advantage of pattern graphs (with coherent
pattern graphs as full subcategory) is the full treatment of all details in [9] –
leaving the treatment of term graphs as future work.

Structure of the Paper We begin with a review of preliminary notions of category
theory that are used to define categories of partial maps in Section 1, where
we also define the category of pattern graphs [9], which we use as running
example to illustrate the most important concepts. In Section 2, we develop and
summarise results concerning pushouts of partial maps that will not only be
essential to develop our main theorem but also serve to clarify our contribution.
The main theorem itself is developed in Section 3; under a mild assumption,
namely existence of cocones of spans, it gives a necessary and sufficient condition
for the existence of pushouts of partial maps. Section 4 explains how the main
theorem applies to the actual encoding of the Kappa language using pattern
graphs, and we discuss further related work in Section 5 before we conclude.

1 Preliminaries

Assuming familiarity with basic concepts of category theory, we recall categories
of partial maps based on admissible classes of monos [13]; we also define inverse
and direct image functors. We shall reuse the authors’ pattern graphs from
Ref. [9] as running example category to illustrate the central concepts.

We use C,D,X, etc. to range over categories, and SET is the category of sets
and functions. We write A ∈ C if A is an object of the category C and f : A B
in C or A f B in C if f is a morphism in C with domain A and codomain
B; finally, the identity on an object A ∈ C is denoted by idA and g ◦ f is the
composition of morphisms f : A B and g : B C in C; we write A′ m A if m
is a mono. As usual, C(A,B) is the homset of morphisms with domain A and
codomain B (assuming that C is locally small). We fix a category C to which all
objects and morphisms belong, unless stated otherwise.

1.1 Pattern Graphs

A pattern graph is an edge labelled graph in which the targets of edges can
be placeholders for nodes that satisfy a certain specification, represented by
words over the set of edge labels; the idea is that a word p = λ1 . . . λn of edge
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labels λi (i = 1, . . . , n) stands for some node v that is at the start of a path
v = v0, e1, v1 . . . vn−1, en, vn where each edge ei is labelled by λi (i = 1, . . . , n).
Example 1 shows an example and the formal definition is as follows.
Definition 1 (Pattern Graph (PG)). Let Λ be a fixed set of labels. We
denote the set of prefix-closed languages over Λ by ℘≤(Λ∗) = {φ ⊆ Λ∗ | pq ∈
φ implies p ∈ φ} where Λ∗ is the monoid of words over Λ and ε ∈ Λ∗ is the
empty word; elements of ℘≤(Λ∗) are specifications.

A pattern graph (pg) is a pair G = (VG, EG) where VG is a set of nodes
such that VG ∩℘≤(Λ∗) = ∅ and EG ⊆ VG×Λ× (VG ∪℘≤(Λ∗)) is a set of edges.
A basic graph is a pattern graph (VG, EG) such that EG ⊆ VG × Λ× VG.

Example 1 (Pattern Graph). In the middle of (1),

d

c

a b

d

?

c

a b

d

c
a

b (1)

we have illustrated a pattern graph with two nodes (drawn as white circles) and
two edges (rendered as labelled kites) with labels c and d; the c-edge has the
specification {ε, a, ab} as target, which is drawn as a question mark with two
consecutive kites with labels a and b. We can think of this pattern graph as a
collection of basic graphs, including the ones shown on the left and the right.

Definition 2 (Semantics of Specifications). Let G = (V,E) be a pattern
graph. A node v ∈ V satisfies p ∈ Λ∗, written v |=G p, if either p is the empty
word ε or p = λp′ (for some λ ∈ Λ and p′ ∈ Λ∗) and there exists (v, λ, x) ∈ E
such that either (i) x |=G p′ and x ∈ V or (ii) p′ ∈ x and x ∈ ℘≤(Λ∗). A node
v ∈ V satisfies φ ∈ ℘≤(Λ∗), written v |=G φ, if v |=G p for all p ∈ φ.

Pattern graphs congregate into a category where morphisms are functions
between node sets that preserve the structure (w.r.t. suitable “instances” of
specifications).

Definition 3 (Category of Pattern Graphs). A homomorphism from a
pattern graph G to a pattern graph H, denoted by f : G H, is a function
f : VG VH such that

(i) (f(u), λ, f(v)) ∈ EH holds whenever (u, λ, v) ∈ EG and v ∈ VG; and
(ii) for all edges (u, λ, ψ) ∈ EG with ψ ∈ ℘≤(Λ∗), there exists x ∈ VH ∪ ℘≤(Λ∗)

such that (f(u), λ, x) ∈ EH and one of the following hold:
(i) x ∈ VH and x |= ψ;
(ii) x ∈ ℘≤(Λ∗) and ψ ⊆ x.

A homomorphism f : G H is an inclusion if f(v) = v holds for all v ∈ VG, in
which case we write G ⊆ H and call G a subgraph of H.

The category of pattern graphs, denoted by PG, has pgs as objects, homo-
morphisms as morphisms, the identity on a pg G is the function idVG

, and
composition of morphisms is function composition. Finally, BG ⊆ PG is the full
subcategory of basic graphs.
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1.2 Categories of Partial Maps

If C has pullbacks (along monos), we have an associated category of partial maps,
which we denote by C∗. It has the same objects as C and each homset C∗(A,B)
contains partial maps, which are essentially pairs of a mono A m A′ in C and a
morphism A′ f B in C (quotiented up to isomorphism at A′).

Definition 4 (Spans and Partial Maps). A span is a diagram of the form
A m X f B in C; such a span is a partial map span if m is a mono. A
partial map from A to B, denoted by (m,X, f〉) : A B, (m, f〉), or (〈f,m), is an
isomorphism class of a partial map span, i.e.

(m,X, f〉) =

A Y B
n g

∣∣∣∣∣∣∣
There exists an isomorphism i : Y ∼= X

such that A
X

Y
B

m f

n g
i commutes.


for some representative partial map span A m X f B. A partial map (m, f〉)
is a total map if m is an isomorphism.

Partial maps in SET are essentially partial functions and a partial map from a pg
G to a pg H corresponds to a pair of a subgraph G′ ⊆ G and a morphism from G′

to H (where G′ is the domain of definition); both correspondences amount to
the standard choice of a representative span for each partial map.

Often one wants to restrict the class of monos that can be used in partial
maps. For example, in [9], for the encoding of the Kappa language, it is crucial
that the domains of definition in partial maps are closed.

Definition 5 (Closed Mono). An inclusion i : G ⊆ H in PG is closed if
(v, λ, x) ∈ EH and v ∈ VG imply (v, λ, x) ∈ EG (for all v ∈ VH , λ ∈ Λ, and
x ∈ VH ∪ ℘≤(Λ∗)); in this situation G is a closed subgraph of H. A mono
m : G′ � H is closed if it is isomorphic to a closed inclusion i : G ⊆ H (in
PG/H). The class of closed monos is denoted by Cl.

Thus, each node v in a closed subgraph G ⊆ H has the same successors as v
in H, where a successor of v is any node w for which (v, λ, w) ∈ EH holds for
some λ ∈ Λ.

To obtain categories of partial maps where the left legs of all partial map
spans belong to a certain class M (as detailed in Definition 7), one has to ensure
that M is admissible [13].

Definition 6 (Admissible Classes of Monos). Let M be a class of monos
in C, the elements of which are called M-morphisms, and we write A′ m A if
m ∈ M. The class M is stable (under pullback) if for each pair of morphisms
B f A m C with m ∈M and each pullback B m′ D f ′ C of B f A m C,
the mono m′ belongs to M.

The class M of monos is admissible, if

(i) the category C has pullbacks along M-morphisms;
(ii) the class M is stable under pullback;
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(iii) the class M contains all identities;
(iv) the class M is closed under composition: if (A m B), (B n C) ∈M then

(A n◦m C) ∈M.

We now fix an admissible class M in C. Examples of admissible classes (in any
category) are regular monos and isomorphisms; open subspaces of topological
spaces and downward closed subsets of partial orders induce more interesting
examples, insofar as they are nontrivial proper subclasses of all monos, which we
shall refer to as Mono. Finally, closed monos are admissible.

Lemma 1 (Closed Monos are Admissible). The class Cl is an admissible
class of monos in PG.

The definition of admissible classes of monos exactly captures the conditions
of a well-defined category of M-partial maps [13].

Definition 7 (Partial Map Categories). The category of M-partial maps,
denoted by C∗M, has the same objects as the category C and the morphisms
between two objects A,B ∈ C∗M are the elements of

C∗M(A,B) =
{

(m,X, f〉) : A B | A m X f B & m ∈M
}

which contains all M-partial maps from A to B.4

A X

B

U

Z C
m

f k

h

p q
The identity on an object A is (idA, A, idA〉);

given two M-partial maps (m,X, f〉) : A B and
(k, Z, h〉) : B C, their composition is (k, Z, h〉) ◦
(m,X, f〉) = (m ◦ p, U, h ◦ q〉) where X p U q Z
is some arbitrary5 pullback of X f B k Z.

The covariant embedding of C, denoted by Γ : C C∗M, is the unique functor
from C to C∗M that maps each morphism f : A B in C to the total map
Γf = (idA, f〉) : A B in C∗M (and thus satisfies Γ (A) = A for all A ∈ C).

We shall call arrows in C morphisms and reserve ‘map’ for arrows of C∗M.
We conclude this section with the definition of inverse image functions between

meet-semilattices of M-subobjects and a review of direct image functions. For this,
recall that each M-morphism m : M m A is a representative of the subobject
[m], i.e. its isomorphism class in the slice category C/A. Note that a Mono-
subobject in SET is essentially a subset and closed subgraphs correspond to
Cl-subobjects in PG. We denote the poset of M-subobjects over any object A ∈ C
by SubMA; given M-subobjects [m], [n] ∈ SubMA, the subobject [m] is included
in [n], written m v n, if there exists a morphism i : m n in C/A. For A ∈ SET,
SubMonoA is isomorphic to the powerset ℘(A) and the relation v is just the
appropriate generalisation of inclusions of subsets. The meet [m]u [n] is given by
4 This implies that the left leg of each representative partial map span is an M-
morphism.

5 Arbitrary pullbacks suffice as they are unique up to isomorphism, thus avoiding
unnecessary choices.
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the diagonal of the pullback of m along n. Finally, inverse images are obtained
by pulling back representatives of subobjects along morphisms, and for a partial
map (n, f〉), its domain of definition is the subobject [n].

Definition 8 (Inverse Images). Let f : A B in C be a morphism. The
inverse image function f−1 : SubMB SubMA maps each [M m B] ∈ SubMB
to the subobject f−1([m]) such that for all pullbacks A m′ M ′ fm M of
A f B m M we have f−1([m]) = [m′].

For each M-morphism m : Y X, post-composition with m, which maps [y] ∈
SubMY to [m◦y], is a monotone function; it is denoted by ∃m : SubMY SubMX
(as it is the lower adjoint to m−1).

2 Pushouts of Partial Maps: the State of the Art

Pushouts of partial maps are at the heart of SPO rewriting [3], one of the standard
approaches to graph rewriting; rules of rewriting can be arbitrary partial maps
and applying rewriting rules amounts to taking pushouts of rules along a class of
matching morphisms, which often are assumed to be total. Thus, the existence
of pushouts of partial maps (along total maps) is pivotal. In this section, we
therefore discuss results on the existence of certain pushouts in C∗M and their
corresponding diagrams in our fixed category C with its admissible class of
monos M. We have not found the following results formulated anywhere in the
literature (despite closely related work [14, 15, 7]).

2.1 A Necessary Condition for Pushouts of Partial Maps

We begin with a discussion of the crucial role of right adjoints to inverse image
functors, which appears to have been neglected in the literature; we use termi-
nology from Galois connections as subobjects form posets to make clear that we
are not discussing right adjoints to pullback functors.

Definition 9 (Upper Adjoints to Inverse Images). Let f : A B in C,
and let f−1 : SubMB SubMA be its inverse image function. A v-monotone
function U : SubMA SubMB is an upper adjoint of f−1 if for all n ∈ SubMB
and all m ∈ SubMA, we have f−1(n) v m if and only if n v U(m); if an upper
adjoint of f−1 exists, it is denoted by ∀f and we write f−1 a ∀f or ∀f ` f−1.6

An example of how the upper adjoint of a morphism in PG can act on subobjects
is given in Example 2.

Proposition 1 (Necessity of Upper Adjoints to Inverse Images). If C∗M
has all pushouts (along total maps), i.e. if for every morphism f : A B in C
and every map φ : A C in C∗M, there is a pushout of C φ A (id,f〉) B in
C∗M, then the upper adjoint ∀f ` f−1 exists for any morphism f in C.
6 Recall that upper adjoints are actually unique if they exist.
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Thus, if we want C∗M to have pushouts along total maps, we need upper adjoints of
inverse image functions of M-subobjects in C. It is typically easy to check whether
the latter exist; it suffices to show that for all morphisms f : A B in C and
every subobject [m] ∈ SubMA, the join [m′] :=

⊔
{[n] ∈ SubMB | f−1([n]) v m}

exists and that setting ∀f ([m]) := [m′] yields ∀f ` f−1.
Lemma 2 (Upper Adjoint for Inverse Images of Closed Monos). In PG,
for all f : A B, the upper adjoint ∀f : SubClA SubClB exists.

Example 2 (Implicit Deletion in SPO Rewriting). In (2), we have a closed
subgraph m : K L, a morphism f : L G, and ∀f ([m]) yields the re-
sult of applying the rule (m, idK〉) at f using the SPO approach, i.e. the
pushout of G (〈f,id) L (m,idK〉) K in PG∗Cl is G (m′,idD〉) D (〈f ′,id) K
where [m′] = ∀f ([m]) and f ′ : K D in PG is the unique morphism satis-
fying f ◦ m = m′ ◦ f ′ (cf. Proposition 1, Theorem 2). Roughly, to obtain
∀f ([m]) ∈ SubClG, we remove from G everything that is in L but not in K.
Due to the choice of closed monos, removal of the node 3 forces the removal of
the node 1 , which would leave the “dangling edge” 2d , which is therefore
also removed.

1 2d

4 5b

K
[m]

1 2d

3 4 5a b

L
f

1 2d

3

c

4 5a b

G
∀f ([m])

2

4 5b

D
(2)

We now turn to our second condition for the existence of pushouts in C∗M,
which is necessary if C is a slice category C = D/T .

2.2 A Locally Necessary Condition

One might expect that taking a pushout of a span of total maps in C∗M yields
a cospan of total maps; however, this is only true if spans in C have cocones,
as implicitly assumed in [7]. This assumption implies that all pushouts in C are
hereditary if C∗M has pushouts.
Definition 10 (Hereditary Pushouts). A pushout B b D c C of a span
B f A g C in C is hereditary if B Γb D Γc C is a pushout of the span
B Γf A Γg C in C∗M.

Proposition 2 (Pushouts of Total Maps). Suppose the category C has
cocones of spans, i.e. for each span C g A f B, there exists a cospan
C f ′ D g′ B such that g′ ◦ f = f ′ ◦ g. If C∗M has pushouts of partial
maps (along total maps), then C has pushouts and the latter are hereditary.

Proof. Let C g A f B be a span in C with cocone C f ′ D g′ B; moreover
let C (m,M,h〉) E (〈k,N,n) B be a pushout of C Γg A Γf B. By the universal
property of the pushout in C∗M, there is a unique map φ : E D such that
Γ (f ′) = φ ◦ (m,h〉) and Γ (g′) = φ ◦ (n, k〉). The latter implies that idC v m
and idB v n and thus both of n and m are isomorphisms. Now one can show
that C h◦m−1 E k◦n−1 B is a pushout of C g A f B in C and that it is
hereditary follows from Γ (h ◦m−1) = (m,h〉) and Γ (k ◦ n−1) = (n, k〉). ut
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Remark 1. As is well-known, pushouts are not hereditary, in general. The category
of jungles [7] is one example; a very similar example occurs naturally for pattern
graphs, namely Γ : PG PG∗Mono does not preserve pushouts. To see why, consider
the span 1 2a ı 1 2 ı 1 2a where the morphism ı is the inclusion; this span
has the pushout 1 2a id 1 2a id 1 2a in PG. However, the embedding
of this pushout into PG∗Mono is not a pushout. To see this, note that the cospan
1 2a (ı,ı〉) 1 2a id 1 2a is a cocone in PG∗Mono; moreover it is easy to
show that there is no mediating morphism, making a case distinction on whether
the edge is in the domain of definition or not. Thus, even if all pushouts exist,
they need not be hereditary; the class of monos is crucial.

Thus, under mild assumptions on C, having pushouts of partial maps (along total
ones) implies that C has hereditary pushouts. The latter condition is often easy
to check using the theorem that left adjoint functors preserve all colimits. Thus,
to show that all pushouts (that exist) are hereditary, it suffices to establish a
right adjoint to the covariant embedding Γ : C C∗M.
Proposition 3 (Hereditary Pushouts of Pattern Graphs). Pushouts of
spans in the category PG are hereditary w.r.t. Γ : PG PG∗Cl.

Proof. Spelling out the definition of a right adjoint to Γ leads to the fact that it
is enough to give, for each pg G, a closed inclusion g̃ : G G′ such that for each
partial map (n,H ′, f〉) : H G there is a unique morphism f ′ : H G′ satisfying
[n] = f ′−1([g̃]). In fact, taking G′ =

(
VG ∪ {⊥}, EG ∪ {⊥} × Λ × (VG ∪ {⊥} ∪

℘≤(Λ∗))
)
we obtain the desired inclusion (cf. [8, Section 3.3]). ut

Our main result will show that the discussed two conditions for the existence of
pushouts of partial maps (which are necessary in the presence of cocones of spans)
are in fact sufficient. To understand the main difficulty of this result, we discuss
a peculiar fact about pushouts in C∗M in terms of the underlying diagrams in C.

2.3 Challenge for a Sufficient Condition
Our main theorem will establish that upper adjoints of inverse image functions
and hereditary pushouts together are sufficient to obtain pushouts of all spans of
partial maps. The crucial point in the proof is the construction of the domain of
definition of the diagonal of a pushout candidate. The main difficulty is showing
the existence of the join of subobjects illustrated in Figure 1 and spelled-out in
the next proposition (following the proof idea of Theorem 3.2 of [7]).
Proposition 4 (Pushout Diagonal). Assuming that C has cocones of spans,
let C (〈g,N,n) A (m,M,f〉) B be a span in C∗M, let C (m′,M ′,f ′〉) X (〈g′,N ′,n′) B
be the pushout of the latter span in C∗M, and let (k, h〉) = (n′, g′〉) ◦ (m, f〉) be
the diagonal of the resulting pushout square. Then [k] ∈ SubMA is the join of
all those subobjects [x] ∈ SubMA for which there are morphisms i′ : x m and
j′ : x n in C/A that are representatives of inverse images of subobjects of B and
C, respectively, i.e. i′ and j′ are subject to the additional condition that there exist
[ñ] ∈ SubMB and [m̃] ∈ SubMC satisfying [i′] = f−1([ñ]) and [j′] = g−1([m̃])
(cf. Figure 1).
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In previous work, the existence of the join [k] in Figure 1 was either trivial [1] or
assumed implicitly [7]; related assumptions are used for span-based rewriting,
namely limits of small diagrams in [15] and the rather unwieldy final triple
diagrams in [14]. In contrast, we shall show how existence of [k] follows from
upper adjoints to inverse image functions and hereditary pushouts. Interestingly,
this will involve the following characterisation of hereditary pushouts from [8]
(see also Theorem B.4 of [16]).

Theorem 1 (Hereditary Pushout Characterisation [8]). Let C be a cate-
gory with pushouts and let M be an admissible class of monos in C; let B A C
be a span with pushout B D C.
The pushout is hereditary if and only if for every comple-
tion to a commutative cube as shown to the right, where
the morphisms B′ B and C ′ C are M-morphisms
and the back faces are pullback squares, the top face is a
pushout if and only if the front faces are pullbacks and
d : D′ D is an M-morphism.

A

B

C

D

A′

B′

C ′

D′

d

In the proof of our main theorem, we also shall use the following consequence
from [8], generalising Lemma 2.3 of [5].

Lemma 3 (Pushouts along MMM-morphisms [5, 8]). Let C m A f B be
a span with m ∈ M and let C g D n B be a pushout that is hereditary
and assume C has pushouts. Then n is an M-morphism, [m] = f−1[n], and
[n] = ∀f ([m]).

In particular, M is pushout stable and pushouts along M yield pullback squares.

3 Partial Map Pushouts by Inheritance

We now present our main contribution: a construction of pushouts of partial
maps that uses only hereditary pushouts and upper adjoints of inverse image
functions. Thus, the conditions from the previous section, which are necessary
locally, turn out to be sufficient. As a direct consequence, our construction of
partial map pushouts directly transfers to slice categories, which turns out to be
surprisingly useful in practice [9].

A M B

N

C

m

n

f

g

K

M ′

N ′

X

ḡ′
f̄ ′

g′

f ′

i

j
n′

m′

k

[k] =
⊔{

x ∈ SubMA

∣∣∣∣∃b ∈ SubMB.∃c ∈ SubMC.
∃m(f−1(b)) = x = ∃n(g−1(c))

}

Fig. 1. The domain of definition of the diagonal of a pushout of partial maps
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Theorem 2 (Existence of Pushouts of Partial Maps). Let C be a category
with cocones of spans with an admissible class of monos M. The partial map
category C∗M has pushouts if and only if C has hereditary pushouts and inverse
image functions between M-subobject posets have upper adjoints.

Proof. The only if -part follows from Proposition 1 and Proposition 2.
For the converse, let C (〈g,N,n) A (m,M,f〉) B be a span in C∗M, assume

that C has hereditary pushouts, and that for any morphism h : Y Z in C, the
upper adjoint ∀h of the inverse image function h−1 : SubMZ SubMY exists.
We shall first construct a suitable subobject [k] ∈ SubMA (cf. Figure 1).

The Domain of Definition of the Diagonal Working in C, we start by constructing
the diagram on the left in (3).

A M

B

NC

m

n

f

g

G

F

ḡ

n̄

f̄

m̄
W

u

v
l

K

k
i

j

[k] = l−1
(
∀l(m u n)

) A M B

N

C

m

n

f

g

K

Q

P

X

u′

v′

i
j

p

q

g′

f ′

[q] = ∀g([j])
[p] = ∀f ([i])

(3)
Thus, C n̄ G ḡ A is the pushout of C g N n A and A f̄ F m̄ B is
the pushout of A m M f B; moreover, G v W u F is the pushout of
G ḡ A f̄ F and l = v ◦ ḡ = u ◦ f̄ , which is the diagonal of the latter pushout
in C. Finally, we put [k] := l−1(∀l(m u n)

)
.

Note that [k] = l−1(∀l(mun)
)
v (num). Hence, there are unique morphisms

j : k n and i : k m (in C/A), witnessing the respective inclusions k v n and
k v m (which follow from k v (m u n) v n and k v (m u n) v m).

The Construction of a Pushout Candidate Let [q] = ∀g([j]) and [p] = ∀f ([i]). As
illustrated in (3) on the right, we claim that there exist arrows g′ : (g ◦ j) q
in C/C and f ′ : (f ◦ i) p in C/B, which then let us construct a pushout
Q v′ X u′ P of Q g′ K f ′ P (in C) to obtain C (q,v′〉) X (〈u′,p) B as a
pushout candidate, i.e. (q, v′〉) ◦ (n, g〉) = (p, u′〉) ◦ (m, f〉) in C∗M. Thus, we first
have to prove the following claim.

Claim. The equations g−1 ◦ ∀g([j]) = [j] and f−1 ◦ ∀f ([i]) = [i] hold.

The relevant steps are two: first, we verify that (ḡ)−1(∀ḡ([k])
)

= [k], and thus
∀ḡ([k]) v [n̄] (using Lemma 3); second, we show that ∀ḡ([k]) = [n̄ ◦ q], whence
the desired result follows.

Finally, one can verify the universal property of the pushout candidate. ut

Corollary 1. If a category has cocones of spans of morphisms and pushouts of
partial maps, the same is true for all of its slice categories.

We give a name to categories that “inherit” partial map pushouts.
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Definition 11 (Inherited Partial Map Pushouts). A category C with an
admissible class of monos M has inherited M-partial map pushouts or is a
Mipmap category if C has hereditary pushouts and upper adjoints to inverse
image functions.

Note that Mipmap-categories are in particular vertical weak adhesive High Level
Replacement Categories (cf. [4]) and partial map adhesive [8]. The category PG
belongs to this class as does every (quasi-)topos (which directly follows from the
definition of quasi-topos given in [17]).

4 On Pushouts in Full Subcategories

Mipmap-categories share many properties with adhesive categories [5], are a
development of recent generalisations [16, 8], and fit well with the theory of
categorical frameworks for rewriting, surveyed in Ref. [4]. In particular, they
allow the development of standard results of graph rewriting [3] that can be
applied to a wide range of graph-like structures. However, some applications
require restriction to a full subcategory of a Mipmap-category: the case of
coherent pattern graphs [9] is the motivation for the present section, but term
graphs (being a full subcategory of hypergraphs [11, 12]) are another important
example.

The approach taken in [9] to reason about existence of pushouts in a full
subcategory D ⊆ C∗M of the partial map category of a Mipmap-category C
amounts to characterising the largest full subcategory X ⊆ C∗M that has D as
reflective subcategory; then, all pushouts that exist in D can be lifted from X
using the reflection. Finding a concrete description for the objects of X is usually
non-trivial, and the full details for the case of coherent pattern graphs are quite
involved (see [9]). We use a simplified example to illustrate the type of phenomena
that have to be taken care of in the encoding of Kappa [9].

Example 3 (Branching-Free Graphs I). Let B ⊆ BG be the full subcategory of all
basic graphs that have at most one outgoing edge per node, i.e. in every graph
G ∈ B, any two edges (v, λ, u) and (v, λ′, u′) that share the same source node v
are identical, i.e. λ = λ′ and u = u′. In this full subcategory B ⊆ BG, we have
the following example of a span without cocone.

1 2a
⊇←− 1 2

⊆−→ 1 2b

Note that if a cocone of this span would exist in B, the image of node 1 in the
“tip” of the cocone would be the source of two different edges, namely one labelled
a and one labelled b – a contradiction to branching-freeness.

1 2 1 2a

1 2b 2

In contrast, the embedding of this span into B∗Cl has
not only a cocone but we even have the pushout that is
shown to the right. Note that both partial maps of the
pushout cocone have { 2} as domain of definition and thus
are properly partial (cf. Proposition 2). To see that this square actually is a
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pushout square, we first observe that the maps of any cocone cannot have node 1

in the domain of definition as then both maps would also have the outgoing edge
in the domain of definition, which in turn would imply that the “tip” of the
cocone is not branching-free. The only remaining choice for a cocone is to either
not contain node 2 in the domains of definition or that it is mapped to the same
node by both morphisms. There is an obvious unique mediating morphism for
both cases.
This example shows that pushouts in partial map categories are even more
intricate if the category of total maps is not a Mipmap-category. The concrete
details of conditions for spans of partial maps that ensure the existence of a
pushout can be rather complex; the motivating example is the situation of [9],
but the same issues arise for term graphs [11, 12].7 In general, we can show (non-
constructively) that all pushouts that do exist in a full subcategory D ⊆ C∗M can
be lifted from a canonical subcategory X ⊆ C∗M.
Lemma 4 (Pushout via Reflection). Let D ⊆ E be a full subcategory of an
arbitrary category E. There exists a greatest full subcategory X ⊆ E such that
D ⊆ X is a reflective subcategory.

Proof. Clearly, D is a reflective subcategory of itself. Moreover, a subcategory
X ⊆ E contains D as reflective subcategory if and only if for each object X ∈ X
there exists a morphism ηX : X X̄ in E with X̄ ∈ D such that for every other
morphism f : X D in E with D ∈ D, there is a unique arrow f ] : X̄ D in
E satisfying f = f ] ◦ ηX . Now, X is just the category that contains all objects
X ∈ X for which there exist ηX as above, because these ηX define the unit of
the reflection D ⊆ X. ut

This result allows to characterise when pushouts in D exist: a span B f A g C
in D has a pushout in D if, and only if, it has a pushout B g′ X f ′ C in E
such that X ∈ X. If such a pushout exists, then it can be lifted from X to D, using
the left adjoint L to the inclusion D ⊆ X, namely B L(g′) L(X) L(f ′) C is the
pushout of B f A g C; finally we have L(g′) = ηX ◦ g and L(f ′) = ηX ◦ f .

The category X of Lemma 4 can be non-trivial, i.e. D 6= X 6= E, as in the
example of branching-free graphs.
Example 4 (Branching-Free Graphs II). The greatest subcategory of X ⊆ BG
that contains the category of branching-free graphs B as reflective category is
non-trivial. To see this, we first consider the fork graph F , below on the left.

F = 1 23 aa ηF : 1 23 aa 1 5a

While F is clearly branching and F /∈ B, it is easy to verify that the map ηF
above on the right is the universal way to make F branching-free, i.e. for any
other f : F F ′ such that F ′ is branching-free, there exists a unique f ] : F̄ F ′

such that f = f ] ◦ ηF .
In contrast, consider the situation in the lollipop L, below one the left.

7 The illustration in Example 3 could equally well be seen as a pushout of partial maps
of term graphs (requiring regular monos for the left legs of partial map spans).
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L = 1 23 a

a

a

g1 : 1 23 a

a

a

1

5

a
a

g2 : 1 23 a

a

a

2

There are essentially two ways to remedy the branching at node 1 : either 1

is in the domain of definition, or not; the above partial maps g1 and g2 are
examples for the respective cases. Now, suppose there was a universal arrow
ηL : L L̄ with L ∈ B. If 1 is in the domain of definition, then ηL( 2 ) = ηL( 3 ) by
branching-freeness and closure of domains of definition; as a consequence, there
does not exist any g]2 such that g2 = g]2 ◦ ηL. Thus, the only possibility would
be that 1 is not in the domain of definition. However, in the latter case, there
is no g]1 such that g1 = g]1 ◦ ηL. In the end, we see that also L /∈ X, and thus
B 6= X 6= BG.

The encoding of the Kappa calculus into pattern graphs from Ref. [9] fits the
situation of Lemma 4, using a full subcategory of a suitable slice category of
pattern graphs (as discussed further in the next section). Similar situations arise
for the category of term graphs (cf. Example 3 and Footnote 7).

5 Related and Future Work

The reference article for SPO rewriting using the algebraic approach is Ref. [1],
which gives set-theoretic characterisations of pushouts; the idea of a categorical
characterisation of pushouts of partial maps was first given in [7]. The present
article gives a streamlined and rigorous account of (consequences of) results
from [7], fixing minor omissions of the latter (see Footnote 3). Most importantly,
our pushout construction in (3) does not involve any assumptions about existence
of joins in subobject lattices (which again are assumed implicitly in [7]), and it
only uses pushouts, pullbacks, and upper adjoints of inverse images in C. This
can be useful for applications as we can develop algorithms to construct pushouts
in C∗M using well-understood constructions in C. Even in the case of algebras
over a signature [1], our main results sheds new light on pushouts of partial maps.

The restriction to full subcategories in applications has an elegant theoretical
solution (Lemma 4), even if the complexity of the details of the encoding of
Kappa [9] as a full subcategory of (PG/Tκ)∗M for a suitable type graph Tκ are
daunting. Another example of a subcategory of an adhesive category has been
used in [18] in combination with the double pushout approach (DPO) [2], which
is a special case of SPO in the presence of hereditary pushouts (by Lemma 3).

For DPO rewriting, the literature contains a variety of categorical frameworks
and here we comment only on those of the last decade that are surveyed in
Ref. [4]. In proposing Mipmap-categories as a framework for SPO rewriting, we
do not intend to replace any of these; Mipmap-categories are also not the most
modest strengthening, as partial map adhesive categories with relatively pseudo-
complemented subobject posets have already pushouts along monos in Γ (M)
(cf. [6]). Mipmap-categories are based on our main theorem, can be instantiated
to many examples (including all quasi-topoi), and have additional properties
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that are relevant for double pushout rewriting, e.g. the so-called Twisted-Triple-
Pushout property (reusing the proof of Lemma 8.5 of [5]) without additional
assumptions.

As future work, it remains to explore whether the results of the present paper
can shed new light on term graph rewriting [11], making use of the categorical
framework of Mipmap-categories and complementing the study of term graphs
as a (quasi-)adhesive category [12]. Moreover, guided by the idea that partial
map adhesive categories are the natural weakening of adhesive categories when
moving “down” from bi-categories of spans to categories of partial maps [8], it
is natural to go “up” and study existence conditions for bi-pushouts of spans;
a related goal is the characterisation of sesqui-pushout rewriting with monic
matches [19] as a single bi-pushout, complementing existing work on span-based
rewriting [15, 14].

Conclusion

The main result is a theorem of category theory that shows that upper adjoints
of inverse images are necessary and sufficient for the existence of pushouts of
partial maps, provided that spans have cocones. Based on this theorem, we
propose Mipmap-categories as a uniform framework for SPO and DPO rewriting.
They are a natural strengthening of partial map adhesive categories [8], and
even though there is scope for further generalisation, Mipmap-categories are the
first categorical framework that is relevant to both single and double pushout
rewriting. A subtle point is the restriction to full subcategories. While it does not
pose any theoretical problems (cf. Lemma 4), it adds an extra level of complexity
to the pushout construction which can require substantial additional work in
practice [9].

In summary, Theorem 2 justifies the categorical framework of Mipmap-
categories, distilling central ideas of [7]; moreover, Lemma 4 isolates the problems
that one has to solve to characterise pushouts of (partial maps of) a full sub-
category of a Mipmap-category. The motivating example is the encoding of the
rule-based modelling language Kappa of [9]; however, very similar problems arise
in SPO rewriting of term graphs and jungle rewriting [7].

Acknowledgements We wish to thank the reviewers for their useful comments.
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A Basic Category Theory

Here, we give definitions of selected notions that are used in the paper and can
be found in virtually any textbook on category theory.

Definition 12 (Full Subcategory). Let C,D be categories. The category D is
a subcategory of C if each object D ∈ D is also an object of C, i.e. D ∈ C, and
we have inclusions of homsets D(A,B) ⊆ C(A,B) for all objects A,B ∈ D; it is
a full subcategory if moreover we have equalities of homsets D(A,B) = C(A,B)
for all objects A,B ∈ D.

Definition 13 (Slice Category). Let C be a category and let T ∈ C be an
object. The category of objects over T or the slice category over T , denoted
by C/T , has C-morphisms with codomain T as objects, and for two objects
(A tA T ), (B tB T ) ∈ C/T , a morphism from tA to tB is an arrow f : A B
in C such that tB ◦ f = tA. Identities and composition are taken from C.

Recall that a functor between categories F : C D maps each object A ∈ C to
an object F(A) ∈ D and preserves identities and composition, i.e. F(idA) = idF(A)
and F(f ◦ g) = F(f) ◦ F(g).

We shall use the following definition of an adjunction.

Definition 14 (Adjoint Functors). Let F : C D and G : D C be functors.
The functor G is right adjoint to F or F is left adjoint to G if for each X ∈ C,
there exists an arrow ηX : X G ◦ F(X) such that for each object Y ∈ D and
each arrow f : X G(Y ), there is a unique arrow f ] : F(X) Y such that
f = G(f ]) ◦ ηX .

Recall that left adjoints preserve all colimits in a category. As a special case of
adjunctions, we have reflective subcategories.

Definition 15 (Reflective Subcategory). Let C,D be categories and let D
be a subcategory of C. It is reflective if the inclusion functor D ⊆ C has a left
adjoint.

Another special case of adjuctions are adjoints between posets, as the latter can
be seen as categories with at most one morphism in each homset. The definition
in terms of posets is as follows.

Definition 16 (Upper and Lower Adjoints). Let (X,v) and (Y,�) be
posets; let f : X Y be a monotone function, i.e. x v x′ implies f(x) � f(x′)
for all x, x′ ∈ X. A monotone function g : Y X is an upper adjoint of f if
for all x ∈ X and y ∈ Y we have f(x) � y if and only if x v g(y); it is a lower
adjoint of f if for all x ∈ X and y ∈ Y we have g(y) v x if and only if y � f(x).

Note that each monotone function has at most one upper or lower adjoint, which
then is referred to as the respective adjoint.
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B On Necessary Conditions

We now show that upper adjoints of inverse image functions are a necessary
condition for pushouts of partial maps (along total ones) and thus provide the
proof for Proposition 1.

Let f : A B be a morphism in C, and we want to show that the upper
adjoint to f−1 exists provided that C∗M has pushouts (along total morphisms). It
suffices to show that for each M-morphism m : A′ A, there is an M-subobject
[n] ∈ SubMB such that for every [p] ∈ SubMB, f−1([p]) v m if and only if p v n,
because putting ∀f ([m]) := [n] yields the upper adjoint.

Thus, to show that a suitable [n] ∈ SubMB exists, let B (n,i〉) D (〈g,j) A′

be the pushout of B Γf A (m,id〉) A′ in C∗M. Thus, in C, we have a diagram
as shown on the left in (4).

A A′ A′

A

B

X

B′

Y

D

m id

id

f

i

g

j

n′

n

[n′] = f−1([n])

A A′

A

B

Q

P

m

id

f

h

q

p

B′
n

p′

[p′] = f−1([p]) (4)

Let [p] ∈ SubMB be a subobject satisfying p v n; we directly have the inclusion
f−1([p]) v f−1([n]) = [n′] v m using commutativity of the left hand diagram
in (4) and that f−1 is monotone.

It remains to show that for each [p] ∈ SubMB that satisfies f−1([p]) v m, we
also have p v n. Thus let [p] ∈ SubMB be a subobject with f−1([p]) v m. There
exist h : Q P and q : Q A′ that yields the situation of the right diagram
in (4), i.e. A p′ Q h P is a pullback of A f B p P and also p′ = m ◦ q.
This implies that (p, id〉) ◦ Γf = (q, h〉) ◦ (m, id〉). Since B (n,i〉) D (〈g,j) A′ is
a pushout, there exists a map (k, r〉) : D P such that (k, r〉) ◦ (n, i〉) = (p, id〉).
Hence, p v n, and the proof is complete.
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C Proving the Main Theorem

In this section, we complete the proof of Theorem 2. For this, we first give
auxiliary results of inverse image functions and their upper adjoints that we shall
use to finish the proof. Also recall the folklore Pullback Lemma.

Lemma 5 (Pullback Lemma). Let the squares below on the left be commuta-
tive squares in an arbitrary category C.

AN

C

n

g

G

ḡ

n̄

K

Q
q

j

g′ ⇒


AN

C

n

g

G

ḡ

n̄

K

Q
q

j

g′ ⇔

AN

C

n

G

ḡ

n̄

K

Q
q

j

g′


If C g N n A is a pullback of C n̄ G ḡ A, then Q g′ K j N is a
pullback of Q q C g N if and only if Q g′ K n◦j A is a pullback of
Q n̄◦q G ḡ A.

C.1 Basic Properties of Upper Adjoints to Inverse Image Functions

Lemma 6 (Splitting Upper Adjoints). Let C n̄ G ḡ A be a cospan in C
with pullback C g N n A such that n̄ ∈ M and [n̄] = ∀ḡ([n]); moreover, let
q : Q C be an M-morphism, let Q g′ K j N be the pullback of Q q C g

N , and assume that [n̄ ◦ q] = ∀ḡ([n ◦ j]).

AN

C

n

g

G

ḡ

n̄

K

Q
q

j

g′ [n̄] = ∀ḡ([n]) [n̄ ◦ q] = ∀ḡ([n ◦ j])

Then [q] = ∀g[j].

Proof. Let q′ : Q′ C be an M-morphism. If [q′] v [q] holds then we derive
g−1([q′]) v g−1([q]) = [j], using that g−1 is monotone; conversely, assume that
g−1([q′]) v [j]. Using the Pullback Lemma, we obtain ḡ−1([n̄◦q′]) v [n◦j], which
in turn implies that [n̄ ◦ q′] v ∀ḡ([n ◦ j]) = [n̄ ◦ q] (where the latter equality is
part of the assumptions). Finally, [q′] v [q] follows since n̄ is a mono. ut

Lemma 7 (Composition of Inverse Image Functions). For any pair of
composable morphisms f : A B and g : B C we have

(g ◦ f)−1 = f−1 ◦ g−1.

Proof. This is a direct consequence of the Pullback Lemma (Lemma 5). ut
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Lemma 8 (Counit of Upper Adjoints). Let h : Y Z be an arrow in C such
that the upper adjoint ∀h ` h−1 exists; then, for all y ∈ SubMY , we have

h−1(∀h(y)
)
v y.

Proof. Given y ∈ SubMY , we use the defining property of ∀h on the subobjects
y and ∀h(y) ∈ SubMZ, i.e. h−1(∀h(y)

)
v y if and only if ∀h(y) v ∀h(y); now the

desired follows, as the latter is trivially true. ut

C.2 Completing the Proof of the Main Theorem

We continue the proof of the Theorem 2. The proposed construction of a pushout
candidate for a given span C (〈g,N,n) A (m,M,f〉) B in C∗M is shown in Figure 2.
We first prove Claim 3, and we start with the equation g−1 ◦ ∀g([j]) = [j]. By

A M

B

NC

m

n

f

g

G

F

ḡ

n̄

f̄

m̄
W

u

v
l

K

k
i

j

(Ê)

(Å)

[k] = l−1
(
∀l(m u n)

)
A M B

N

C

m

n

f

g

K

Q

P

X

u′

v′

i

j

p

q

g′

f ′

[q] = ∀g([j])
[p] = ∀f ([i])

Fig. 2. Construction of pushouts of partial maps

definition, we have [k] = l−1(∀l([m]u[n])
)
and thus [k] = (ḡ)−1(v−1(∀l([m]u[n]))

)
(using Lemma 7). Now, let k̄ : Q G be a representative M-morphism of [k̄] =
v−1(∀l([m] u [n])

)
; moreover, let g′ : K Q be the unique morphism that makes

Q g′ K k A a pullback of Q k̄ G ḡ A, leading to the situation of the left
one of the below diagrams.

AN

C

n

g

G

ḡ

n̄

K

Q

k̄

j

g′

AN

C

n

g

G

ḡ

n̄

K

Q

k̄

j

g′

q

Thus, as (ḡ)−1([k̄]) = [k] v [n], we have [k̄] v ∀ḡ([n]) = [n̄] (where the last
equation follows from Lemma 3 and (Ê) from Figure 2 being a pushout square);
hence, there is a unique morphism q : k̄ n̄ in C/G. Now, we derive [j] =
g−1([q]) using the Pullback Lemma, and Lemma 6 implies [q] = ∀g([j]); thus
[j] = g−1([q]) = g−1 ◦ ∀g([j]). This yields the first equation of Claim 3 and,
mutatis mutandis, we derive f−1 ◦ ∀f ([i]) = [i]. Thus, we have established

g−1 ◦ ∀g([j]) = [j] and f−1 ◦ ∀f ([i]) = [i], (5)
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and can in fact construct our candidate for a pushout as on the right in Figure 2,
where Q v′ X u′ P is the pushout of Q g′ K f ′ P .

To establish the universal property of C (q,v′〉) X (〈u′,p) B, it will be
appropriate to first characterise [k] as a certain join (cf. Figure 1).

On the Domain of Definition of the Diagonal The crucial part of the proof is to
show that [k] can be characterised as the join [k] =

⊔
A where

A =
{
x ∈ SubMA

∣∣∣∣∃c ∈ SubMC.∃b ∈ SubMB.
∃m(f−1(b)) = x = ∃n(g−1(c))

}
.

For this, we shall use that G v W u F is a hereditary pushout of the span
G ḡ A f̄ F (as defined on the left in Figure 2).

It suffices to show that [k] is a greatest element of A. As [k] ∈ A follows from
Equation (5) and k = n◦j = m◦i, it remains to show that it is an upper bound of
A. Thus let [a : A′ A] ∈ A; this means that there are M-morphisms b : B′ B,
c : C ′ C and pullbacksM i′ A′ f ′′ B′, N j′ A′ g′′ C ′ (ofM f B b B′

and N g C c C ′, respectively) such that i′ : a m and j′ : a n (as illustrated
on the left in (6) where (ä) and (á) are pullback squares).

C N A M B
fg mn

C ′ A′ A′ B′
f ′′g′′

bi′c j′

A′

a(ä) (á)

AG F
ḡ f̄

BC

A′C ′ B′
f̄ ′′ḡ′′

a

bc

m̄n̄

(ä) (á)

(Ê) (Å) A

G

F

Wv

u

A′

C ′

B′

W ′

g′′
f ′′

n̄◦c

m̄◦b

w

(6)
Next, we paste pullback squares as illustrated in the middle of (6): by combining
(ä) with (Ê) and (á) with (Å) (where (Ê) and (Å) are taken from Figure 2), we
obtain C ′ g′′ A′ a A and A a A′ f ′′ B′ as pullbacks of C ′ n̄◦c G ḡ A
and A f̄ F m̄◦b B′, respectively. Taking the pushout C ′ f̄ ′′ W ′ ḡ′′ B′ of
C ′ g′′ A′ f ′′ B′ yields a unique morphism w : W ′ W such that w ◦ ḡ′′ =
u ◦ m̄ ◦ b and w ◦ f̄ ′′ = v ◦ n̄ ◦ c (as illustrated on the right in (6)). Using that
pushouts are hereditary and Theorem 1, the spans W ′ ḡ′′ B′ m̄◦b F and
G n̄◦c C ′ f̄ ′′ W ′ are pullbacks (of W ′ w W u F and G v W w W ′,
respectively), and moreover w is an M-morphism. This implies that [a] = l−1([w])
as the “diagonal” of the right hand cube in (6) is a pullback square by the
Pullback Lemma; clearly, l−1([w]) = [a] v m u n and thus [w] v ∀l(m u n),
whence [a] = l−1([w]) v l−1(∀l(m u n)

)
= [k], using monotonicity of l−1.

Existence and Uniqueness of Mediating Morphisms Existence and uniqueness of
mediating morphisms are now a relatively easy consequence. Roughly, having the
equation [k] =

⊔
A, the mediating maps from our pushout candidate and their

uniqueness are also “inherited” from the hereditary pushout Q v′ X u′ P of
the span Q g′ K f ′ P in Figure 2. The details are as follows.
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Let C (r,d〉) X ′ (〈e,s) B be a cospan with (r, d〉) ◦ (n, g〉) = (s, e〉) ◦ (m, f〉) =:

(k′, h′〉) in C∗M. Spelling out commutativity of the corresponding square in C∗M,
we see that ∃n(g−1([r])) = [k′] = ∃m(f−1([s])) and thus [k′] ∈ A and [k′] v [k] =
[n ◦ j] = [m ◦ i] (cf. Figure 2). Hence, we have g−1([r]) v [j] and f−1[s] v [i] as
n and m are monos. Next, using that [q] = ∀g([j]) and [p] = ∀f ([i]), we obtain
[r] v [q] and [s] v [p] with respective inclusion morphisms r′ : r q and s′ : s p.

C Q X P B
v′ u′ pq

R S
sr

s′r′

X ′
d e

K

Q

P

X

f ′

g′

v′

u′

In fact, Q (r′,d〉) X ′ (〈e,s′) P is a cospan for Q Γ (g′) K Γ (f ′) P in C∗M as
g′−1([r′]) = f ′−1([s′]) (using that [k′] v [k] and the Pullback Lemma).

As Q v′ X u′ P is a hereditary pushout of Q g′ K f ′ P , there is a
unique map φ : X X ′ such that

(r′, d〉) = φ ◦ Γ (v′) and (s′, e〉) = φ ◦ Γ (u′),

which implies (r, d〉) = φ◦ (q, v′〉) and (s, e〉) = φ◦ (p, u′〉), and thus φ is a mediating
map. Any other map ψ : X X ′ such that (r, d〉) = ψ◦(q, v′〉) and (s, e〉) = ψ◦(p, u′〉)
satisfies

(r′, d〉) = ψ ◦ Γ (v′) and (s′, e〉) = ψ ◦ Γ (u′)

(as the morphisms r′ : r q and s′ : s p are unique). Thus, using that Q Γv′ X
and X Γu′ P are jointly epi (as they form a pushout), we derive ψ = φ.


