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Some Sahlqvist completeness results for
Coalgebraic Logics

Fredrik Dahlqvist and Dirk Pattinson

Dept. of Computing, Imperial College London
f.dahlqvistO9@imperial.ac.uk
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Abstract. This paper presents a first step towards completeness-via-
canonicity results for coalgebraic modal logics. Specifically, we consider
the relationship between classes of coalgebras for w-accessible endofunc-
tors and logics defined by Sahlqgvist-like frame conditions. Our strategy
is based on conjoining two well-known approaches: we represent acces-
sible functors as (equational) quotients of polynomial functors and then
use canonicity results for boolean algebras with operators to transport
completeness to the coalgebraic setting.

Keywords: Modal logic, coalgebraic modal logic, canonicity, complete-
ness, Sahlqvist formula

1 Introduction

Coalgebras have gained popularity as an elegant and general framework to study
and represent a wide variety of dynamical systems in computer science (see [12])
and even in physics (see [1]). In parallel to this area of research, the field of
coalgebraic logic has emerged as a unifying framework for the many types of
(modal) logics used to reason about dynamical systems (see [8] for an overview).
One of the great insights into the relationship between coalgebras and coalge-
braic logics, is that the class of all T-coalgebras for a functor T can always be
characterised logically by its one-step behaviour, i.e. axioms and rules with nest-
ing depth of modal operators uniformly equal to 1 (see [13]). However, once the
transition type (i.e. the functor T') has been described logically in such a way,
one may be interested in subclasses of T-coalgebras which are characterised by
more complex axioms (such as transitivity for example) which we will refer to as
frame conditions. The problem of logically characterising subclasses of the class
of all T-coalgebras for an arbitrary functor T is by and large still open ([11] offers
a solution for some of the standard frame conditions of classical modal logic).
This paper aims to isolate a large class of frame conditions which can be
used to logically characterise proper subclasses of coalgebras, i.e. axioms giving
a sound and complete description of certain classes of coalgebras. Our strategy is
based on the following observations. Firstly, it is well known that accessible Set
functors can be represented as (equational) quotients of polynomial functors.
Secondly, the coalgebraic logics for polynomial Set functors turns out to be very



2 Fredrik Dahlgvist and Dirk Pattinson

closely related to Boolean Algebras with Operators (BAOs). Thirdly, there is a
well developed theory of Sahlqvist formulae for general BAOs (see [6, 5, 14]). The
first step will therefore be to show how Sahlqvist formulae can be imported into
the coalgebraic logics of polynomial functors, the second step will be to show how
they can then be transported to logics of general functors via the presentation.
The paper in organized as follows: in Section 2 we will present the basic facts
about BAOs and coalgebraic logics that are needed for the rest of the paper.
This will be very succinct and the reader is referred to [7, 6,5, 14,9, 8] for further
details. The V-style of coalgebraic logic requires some notational discipline, and
the notation of [9] is presented in detail. The section concludes with our first
Sahlqvist-like completeness result for polynomial functors. Section 8 will first
address the idea of presenting a functor 7' with a polynomial functor S (again
we will present the bare minimum and the reader is referred to [2] for all the
details), and then explore what this means for coalgebraic logics. In Section 4 we
present the main technical result of the paper, the Translation Theorem, which
relates the derivability in the logic associated to a functor T to that in the logic
of the functor S presenting it. Finally, in Section 5 we gather all our results
together and present a Sahlqvist completeness theorem for coalgebraic logics.

2 BAOs and Coalgebraic Logics

We start with some notation, basic definitions and facts about BAOs and coal-
gebraic modal logics. Readers familiar with this material can safely move to
Example 1 which should offer a first glimpse at what this paper aims to achieve.

Boolean Algebras with Operators (BAQOs). We roughly follow the terminology of
[6] which itself is based on the seminal paper [7]. A Boolean Algebra with
Operator (BAO) is a Boolean Algebra (BA) 2 together with functions f, :
A21(@) 5 A where A is the set underlying 2 and ¢ is an element of a signature
(X, ar) with arity map ar : X' — N. The maps f, are required to preserve joins in
each of their arguments, in which case they are known as operators. The BAOs
with a given signature X', together with the BA-morphism preserving operators
in the obvious way, form a category which we will call BAO(X'). As shown in
[7], every BA 2 can be embedded in a unique Complete Atomic Boolean Algebra
(CABA) 21° called its canonical extension and which has the property that
(1) every atom of ¢ is a meet of elements of 2 and (2) every subset in A (the
set underlying ) whose join in ¢ is T, has a finite subset whose join in 2 is
also T. This result can be extended to include operators (in fact any monotone
map), viz. any BAO A can be embedded in a BAO A° - its canonical extension
- whose underlying BA is the canonical extension of that of A. This result is of
fundamental importance because the category of CABAs is dual to the category
Set in which models live.

Sahlquist formulae in a BAO. Let us fixa BAO A = (2, {f, | 0 € X'}). We define
a Y-term to be an element of the algebra freely generated by the elements of
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and the operators f,,o € X. Following [6] and [5], we define a Sahlqvist term
to be a X-term of the form:

U[VL, ooy Uy DWT, - ooy Wiy ] (1)

where (i) u is a strictly positive m + n-ary term, i.e. contains no negations, (ii)
the v;’s are terms of the shape v; = o{(...(0(x))...) where each o = —o;~
is the dual of a unary operator o; € X, and (iii) the wy’s (1 < k < m) are
positive terms, i.e. all variables in wy must occur in the scope of an even number
of complementation symbols. A Sahlqvist equation is an equation of the type
s = 0 where s is a Sahlqvist term. A Sahlgvist inequality (or Sahlgvist formula
in the context of algebras of terms) is an inequality of the type s <t where ¢ is
positive. As shown in [6], all Sahlqvist identities are canonical, i.e. if s = 0 holds
in A, then it holds in its canonical extension A°.

Coalgebraic Logics. Coalgebraic logics come in two flavours which we now intro-
duce very succinctly. In both cases V' denotes a set of propositional variables.
We start with the predicate lifting style of coalgebraic logic. A coalgebraic
language L7 has a syntax given by

az=p|L|-alaAnb|o(al,...,an)

where p € V and o € X are modal operators belonging to a signature (X, ar).
Note that we’re using the notational convention of [9] where the lower case
Roman letters a, b, ¢ stand for formulae. Such a language is interpreted in terms
of coalgebras and predicate liftings. Given a standard Set-endofunctor T' (we
will assume throughout the paper that all functors are standard), a coalgebra
is a pair (W, ) where W is a set (of worlds) and v : W — TW is a transition
map (7T defines the ‘transition type’). Each modal operator o is interpreted by
a predicate lifting, i.e. a natural transformation [o] : Q™ — OT where Q is
the contravariant powerset functor. Intuitively, predicate liftings ‘lift’ n-tuples of
predicates (i.e. subsets, hence the powerset functor) to a predicate on transitions
(hence QT). A coalgebraic model - or T-model - is a triple M = (W, v, )
where 7w : W — P(V) is a valuation. The notion of truth of a formula a at
a point w € W is defined inductively in the usual manner for propositional
variables and boolean operators, and by

Mw E olar,...,a,) iff y(w) € [olw([ai], .. [an])

for modal operators, where [a;] is the interpretation of a; in W. A formula a is
satisfiable in M if there exists w € W such that M, w = a. A coalgebraic
frame - or T-frame - is just a T-coalgebra (W,~) and a formula a is valid on
the frame if for any valuation , a is true at every point in the model (W, v, 7).
The V-style of coalgebraic logic (also known as Moss style, or coalgebraic logic
for the cover modality) has a very different flavour. We recall the basic definitions
and results, and refer to [9] for a very good and very thorough overview of the
topic. Since the language involves objects of many types, our notation follows
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the conventions of [9] very closely to avoid confusion. We start by fixing a weak-
pullback preserving functor T and we define T,, = [J{TY | Y C X finite}, the
finitary version of T'. The coalgebraic language L induced by T is given by:

az=pl-al \No|\/¢]|Va

where p € V, ¢ € P,Lr and a € T,Lr. \/ 0 defines L. For any o € T,,Lr
we define the base of o by Base’ (o) = N{U C Lr | a € TU}, i.e. the set
of immediate subformulae of Va. Given a T-model M = (W, v, ), the truth
relation =C W x L is inductively defined for any world w € W and formula a €
L7 by the usual clauses for atomic propositions and propositional connectives
and

M, w = Va iff v(w)T ()

where T(|) € TW x T Ly is the relation lifting of the truth-relation =C W x L7
(see [9] for an extensive discussion of relation liftings).

Coalgebraic Logic is weakly complete (see [9]) with respect to the 2-dimensional
Hilbert system which we call KKV(T') and is given by the axioms and rules:

a<e c<b

a<a (Cut) —= a<b
{a<b|ac e} a<b
VoS VR S beo
a<b {a<bl|be ¢}
(/\L)iA(égbaE(b (/\R)—ag/\gb
oy MOV <V AUl <V
No < V{vU{a}} No < V{vU{-a}}
(Distributivity)

MV o |¢e Xt <V{Amg(n) |~ € Choice(X)}

{a<b|(a,b) € R}
Va <Vp

(V1) (,B) € TR

(V(TN)(®) <b|de SRD(A)} (Va <b|aTed}
MNMVa ac Ay <b (V3) V(T V)(®) <b

(V2)

where a,b € L, ¢, v € P,Lr, X € P, Pu,Lp, a,8 € T,Lp, D € T, P,Lr,
A € P,T,Lr. The set Choice(X) is the set of choice functions on X, i.e. the
maps 7y : X — L such that v(¢) € ¢, and rng denotes the range of the function.
R C L1 x L7 is any relation and TR is its lifting. Finally SRD(A) is the set
of so-called ‘slim redistributions’ of A. This last concept is important, and we
therefore define it in extenso. A redistribution of A € P,T,, Lt is an element ¢
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of T, P, L which ‘contains’ all the elements of A as lifted members, i.c. a Te
for all a € A. It is called slim if it is build from the direct subformulae of the
elements of A, i.e. if & € T, P, (U, 4 Base(a)).

To help the reader digest this rather heavy load of definitions, let us look at an
example which will cover both BAOs and coalgebraic logics.

Example 1. Given a signature (X, ar), we define a functor Sy : Set — Set by

SEX:HEnxX"

new

where Y, is the set regrouping all operation symbols ¢ € X of arity n. Any
functor of this shape is called a polynomial functor. We write U : BA — Set
for the forgetful functor, and F : Set — BA for its left adjoint (the associated
free construction). This allows us to lift set-functors T' : Set — Set to the
category of boolean algebras by putting T = FTU : BA — BA. In particular,
every signature X induces the functor Sy, : BA — BA defined by

SsA=FSsUA=F (H A“(”)>

ceX

where A = U%2(. From now on we will drop the X subscript if there is no risk
of confusion. It is easy to see by the freeness of the construction of S that the
category Alg(S) of S-algebras in BA is isomorphic to the category of boolean
algebras 21 with maps f, : A™ — A where n is the arity of o. But this is almost
the category BAO(X) defined above! The only difference is that the maps do
not have to be operators, but we will return to this in an instant.

If we now turn our attention to coalgebraic logic, we can use the signature X
to define a coalgebraic language Lg in the predicate lifting style defined above.
It is relatively straightforward to see that the Lindenbaum-Tarski algebra of Lg,
which we will denote Ag, is the initial object in Alg(S), or equivalently, the
free BAO of Y-terms as defined above but with the preservation of joins not
being enforced. We would like to interpret Lg in S-models by reading M, w |=
o(ai,...,a,) as ‘w has a o-tuple successor and a; holds at the i*” component of
this successor’. The predicate liftings are then defined by:

[[U]]W : (’PW)H%IPSW,(UM,Un)’—){d($1,,$n)|$l 6U1,1§2§n}

The obvious question now is: what axioms will give a sound and complete axiom-
atization of CoAlg(S), the class of all S-coalgebras? It is not too difficult to find
this list of axioms from scratch and then use a canonical model construction to
prove completeness, however, the fact that we’re using Y in our syntax and our
semantics suggests turning our attention to the V-flavour of coalgebraic logic.

There is an obvious one-to-one correspondence between the language Lg defined
above and the V-style language Lg induced by S. Since S = S, and since
o(ay...,an) can be seen as an element of SLg, we can recursively add V in
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front of every modal operator ¢ in order to get a V-style formula. Conversely,
by recursively removing every V from a formula in Lg we get a formula in Lg
(see [10] for a detailed discussion of translations between the two flavours of
coalgebraic logic). We now have rules that provide us with a sound and (weakly)
complete axiomatization of CoAlg(S), namely:

Vo(ai,...,an) < Vo(by,...,b,)
(V2)s N{Vo(ar,...,a,) |o(a1,...,a,) € A} = Vo(Am[A] ..., A7m[A4])
(V3)S VU(V¢1,,v¢n) = \/{Vo(al,...,an) ‘ a; € gbl}

where = means both < and >, a; € Lg,A € P,SLs,¢; € P,Ls. Let us dis-
cuss these rules and axioms briefly. The (V1)g axiom takes this simplified form
because relation lifting by polynomial functors is very simple: if R C X x X,
then (a,3) € SR only if a, 3 lie in the same part of the co-product SX and
each component of the tuple a is R-related to the corresponding component
of 8. For (V2)g, it is easy to see from the definition of slim redistribution
that SRD(A) is empty if A contains elements lying in different parts of the
co-products, hence the presence of o-terms only. Moreover, it is not too hard
to check that if ®,W € SRD(A) and (¥,®) € S C, then VSA® < VSAV,
and since o(m1[4],...,m,[A]) is a lifted subset of all other elements of SRD(A),
Vo(Ami[A] ..., ANm[A]) < b implies VS AP < b for all other @ € SRD(A).
Finally, and most importantly for our purpose, (V3)g is just another way of
saying that V preserves joins in each of its arguments. Of course the number
of arguments of V can vary, but by trivially translating into Lg we get that o
- which has a fixed number of arguments - preserves joins in each of its argu-
ments. To see this for the first argument for example, just take ¢; = {a1,b;}
and ¢; = {a;} for 1 < i < n, and note that the premise of the (V3) rule is a
finite set for which we can take the join'.

Let us denote by Kg the predicate-lifting style logic defined by the trivial trans-
lations of the axioms (V1)g — (V3)g from Lg to Lg and any axiomatization of
propositional logic. It is easy to see that the semantics of Lg is essentially the
same as the semantics we defined for Lg and since we know that KKV(S) is sound
and complete w.r.t. the class of all S-coalgebras and that KKV(S) and Kg are
in bijective correspondence, we can conclude that Kg is also sound and weakly
complete w.r.t. the class of all S-coalgebras. The conclusion of this example is
therefore that if we look at the logic Kg, rather than at the language Lg, then
the Lindenbaum-Tarski algebra Ag of Kg is a bona fide BAO since preservation
of joins has been enforced by the (V3)s axiom.

The previous example suggests our first Sahlqvist completeness theorem. But
let us first define a notion of Sahlqvist formula for the coalgebraic logic of a
polynomial functor.

! We refer the reader to [9] to see that the converse of (V2) and (V3) (i.e. with the
inequalities going in the opposite direction) are derivable using (V1) and the fact
that S preserves weak-pullbacks.
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Definition 2. Let a be a formula in KKV(S) for a polynomial functor S, and
let ag be its trivial translation into the predicate-lifting-style logic Kg. Then a
(and ag) will be called a polynomial Sahlqvist formula if (the equivalence
class of) ag in the Lindenbaum-Tarski algebra Ag of Kg is a Sahlqvist formula
as defined above (following [6]).

Our first Sahlqvist completeness theorem is shown by following the well-trodden
path of completeness-via-canonicity proofs (for more details on this technique
we refer the reader to Chapter 4 and 5 of the classic [4]). Assume that X is a
signature defining a polynomial functor S and that C' is a set of frame conditions,
then we want to endow the set of ultrafilters of the Lindenbaum-Tarski algebra
Ag(C) of Kg + C (i.e. the BAO of formulae Lg quotiented by equivalence under
Ks+ C) with the structure of an S-coalgebra. The natural transition map to use
is 7. : Uf(Ag(C)) — SUf(Ag(C)) defined by

7C(¢) = 0’(%’ s ’¢n) (2)

where a; € ¥;,1 <i<nif o(ay,...,a,) € ¢. However, when X' is infinite some
care must be taken due to the following fact. Consider the set

C={-0(T,...,T) | o€ X}

The set ¢ is Kg-consistent but . is undefined on any ultrafilter containing it.
In particular, any set of frame conditions containing ¢ will lead to a situation
where ~. cannot be defined anywhere. The set  characterises precisely the set of
ultrafilters for which -, is well-defined. Note that if X is finite, this problem does
not arise, moreover ¢ cannot be a subset of any finite set of frame conditions.
But as we shall see later, infinite signatures and infinite sets of frame conditions
will be very useful. This justifies the following definition.

Definition 3. We recursively define the collection Z of deadlocking sets of
formulae as follows: ¢ € Z and if ' € Z, then for any operator o € X, ar(c) =n
and map x : n — {1,2} s.th. 1 € rg(x)

{o(myo) (2, T)s -,y (2, T) | 2€(} e Z

where 71,7 are the obvious projections. Intuitively, ( characterises a deadlock
ultrafilter whereas Z characterises all the ultrafilters from which a deadlock
state can be reached in finitely many transitions. We then define an acceptable
set of frame conditions as a set of Lg-formulae which are Kg-consistent and do
not contain any deadlocking set of formulae. This definition is extended via the
trivial translation to KKV(S)-frame conditions.

Note that ¢ characterizes ultrafilters from which no transition is possible at all,
even trivial transitions defined by nullary terms in the signature - which also
encodes a notion of ‘deadlock’ - are forbidden.

Theorem 4 (Sahlqvist Completeness for Polynomial Functors). Let S
be a polynomial functor, Lg be the V-language it defines and let C C Lg be an
acceptable set of Sahlquist frame conditions, then KKV(S) 4+ C is complete w.r.t.
the class of S-coalgebras validating C.
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Proof (Sketch). We start with a KKV(S) + C-consistent formula a and we will
show that we can find a model in the class of S-coalgebras which validate C, in
which a is satisfied. Let X be the signature defining S.

Finite signatures: The map ~. defined by Eq. (2) is well-defined because we
can derive T <\/_ .y 0o(T,..., T)in Kg, i.e. ultrafilters always have a successor.
Moreover, by the (V2)g axioms we cannot have tuples prefixed with different
operator symbols in an ultrafilter ¢ since we cannot have | € ¢. This guarantees
that v.(¢) lands in a unique component of the coproduct defining S. It is not too
difficult to check that 7.(¢) is indeed an ultrafilter. The canonical valuation is
given as expected by 7. : Uf(Ag(C)) = P(V), ¢ — V N ¢. Since we have a total
function ~y., rather than a relation like in the traditional Kripke setting, we do
not need an Existence Lemma and we can move straight to the Truth Lemma
which is easily proven: if we define M, = (Uf(As(C)), Ve, 7c), then

(M, ¢) Faiffacd

We can now build a model in which a is satisfied: take any ultrafilter ¢ containing
a and we have (M., ¢) = a. Now, all we need to do is to show that our canonical
model is based on a coalgebra which validates the frame conditions of C. To do
this, we need to consider the complezx algebra associated with (Uf(A(C)),~c)-
Specifically, we put a X-BAO structure on P(Uf(Ags(C))) by defining

o (X1, ..., Xy) = {6 € UF(As(C)) | 7e(d); € Xi,1 < i <n)

for all o € X. The reason for the notation o¢, is that the BAO we’ve just defined
is nothing but Ag(C)°, the canonical extension of Ag(C). Now, since all the
formulae in C are Sahlqvist, then they must be canonical (see [6]), i.e. they
must all hold in Ag(C)*. It is then easy to check that if a formula of C' holds in
Ag(C)® = P(Uf(As(C))), it must be valid on the S-frame (Uf(A(C)),v.).

Infinite signatures: To account for the possibility of deadlock states we start
by building a slightly different canonical model. The carrier set is given by

W.={¢ € UF(A(C)) | forall ('€ Z,{ € ¢}

The map v, : W, — SW, is then defined as above and is well-defined by con-
struction and by the comments made in the finite signature case. The Truth
lemma holds just as in the finite signature case. So to build a model for a we
just need to find an ultrafilter ¢ € W, containing a. It is quite straightforward
to check that this is indeed possible (in fact it is possible for any finite set of
formulae). The complex algebra associated with W, is defined as in the finite
signature case and is a subalgebra of the canonical extension (A(C))¢ of A(C).
Since C' is a set of Sahlqvist formulae, they are canonical and thus (A(C))®
belongs to the variety they define. By Birkhoff’s theorem this variety is closed
under taking subalgebras and so P(W..) is an algebra satisfying the equations of
C'. The fact that (W, ~.) validates the formulae in C follows.

Remark 5. As was hinted in the proof above, if the polynomial functor S is
defined by a signature with only finitely many operation symbols, then the result
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above can be strengthened to a strong completeness result, i.e. any consistent
set of formulae is satisfiable. In the case of infinite signatures, only finite sets
of consistent formulae are guaranteed to be satisfiable. However, acceptable sets
of formulae in the sense of Definition (3) are also satisfiable, providing a result
which is somewhere between weak and strong completeness.

3 Presentations and translations

We will make crucial use of the fact that every accessible functor arises as the
quotient of a polynomial functor. By a A-ary presentation of a set-endofunctor T'
we understand a A-ary signature (X, ar) (i.e. arities are bounded by \) together
with an epi natural transformation ¢ : Sy, — T. It is well known that every
A-accessible endofunctor has a A-ary presentation and we refer the reader to [2]
for a detailed overview of presentations in the context of coalgebras.

A natural question to ask in this context is: given a natural transformation
q : S — T, what can we say about the relationship between the coalgebraic
logics associated with S and T'?7 Is there a syntactic relationship? And what
happens at the semantic level? These questions seem natural but, as far as we
know, have not really been studied systematically in the literature. Let us first
look at what happens at the syntactic level.

Definition 6. Let S,T be two weak-pullback preserving standard functors on
Set and let ¢ : S — T be a natural transformation. We define the translation
map (-)9: Lg — L recursively by

(Va)? = V(gz, 0 S()")(e)
We call (-)? the translation along ¢ and will use the following notational
conventions for maps associated with ()2 : Lg — L

— ()9:S5Lg — T Ly will be shorthand for the map ¢, o S(-)?
— []9: PuSLs — P,T Ly will be shorthand for the map P, {.)¢
- {-}9: SP,Ls — TP,Lr will be shorthand for the map ¢p_r, o SP, ()¢

Note that with this notation we have (Va)? = V({(a)?).

At the level of the semantics, note that a natural transformation ¢ : S — T
induces a functor @ : CoAlg(S) — CoAlg(T) on the corresponding categories
of coaglebras, given by Q(W,v) = (W,qw o ~). In particular Q turns models
for Lg-formulae into models for Lp-formulae and we will now show that the
translation along g agrees with the functor @ in the sense that truth is preserved
by applying both simultaneously. Formally:

Proposition 7. Suppose that q : S — T is a natural transformation and that
a € Lg. Suppose also that we have a model M = (W, ~, ) such that

M,wkE=a
for some w € W. If we then define Q(M) = (W, qw o, ) we have
QM),w = (a)?
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The following lemma shows how the functors Base® and Base” are related by an
epi natural transformation ¢ : S — T. This lemma will be very useful to relate
concepts for S and T which depend on the bases.

Proposition 8. Let S, T be Set functors and q : S — T an epi natural trans-
formation between them, let T weakly preserve pullbacks and let Ls and Lr be
the V-languages induced by S and T respectively, then the following diagram
commutes:

SLs B prg
() i lp(-)q
TLr B2 P,
We conclude this section with an example.

Example 9. A functor of particular interest for applications is the so-called
bag functor which we denote B. Coalgebras for the bag functor are models for
Graded Modal Logic which is essentially the modal logic version of cardinality
restrictions in Description Logics. The bag functor can be defined by

BX ={f:X — N| supp(f) is finite }

Alternatively and equivalently, an element of BX can be defined as a ‘multiset’,
i.e. a set of pairs (denoted with “’) {(z; : n;) | ¢« € I} where the elements x; ,
i € I are distinct elements of X and the n;,i € I are integers thought of as the
multiplicities of the elements x;. B has a simple presentation in terms of the list
functor ListX =[], .., X™. The presentation is given by:

new

gx @ ListX — BX, (a1,...,an) = {(apa), .-, apm)) | p € Perm(n)}

where Perm(n) is the group of permutations of n elements. In other words ¢
identifies all permutations of a given tuple, and thus an element of BX can be
represented as a multiset (a; : k1,...,a, : k,) where a; : k; means a; appears
k; times in the (equivalence class of) tuple. In this context the translation (-)?
works as follows: a L ¢-formula of the form Vn(ay,...,a,) gets translated into
an Lp-formula of the shape Vn(k; : (a})?, ..., kn : (a),)?) where the a} are the
distinct elements of the set {a1,...,a,} and k; their multiplicity (and m < n).

4 The Translation Theorem

We have so far established the following: (1) we have a logic for coalgebras
based on polynomial functors which is suitable for defining Sahlqvist formulae
and (2) every accessible functor 7' can be presented from a polynomial functor
S and this presentation allows us to move from the language and the coalgebras
based on S to those based on T in a sensible way. This section is they key
technical contribution of this paper and shows how we can connect the facts
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that we have established in the two previous sections. The idea will be to show
that the translation map (-)? acts not just on the language Ls but also on the
logic KKV(S). Crucially, we will show how derivability in KKV(S) is related
to derivabilty in KKV(T'). This section is rather technical and we must start
with a few lemmata. The intended meaning of our first lemma is that (-)? sends
substitution instances of axioms to substitution instances of axioms.

Definition 10. A substitution is a map 7 : L — L defined inductively from
amap m: V — Lp by: #(p) = w(p) for all p € V, w(p Ap) = 7(d) AN 7(¢) ,
(=¢) = 7 (¢) and 7#(Va) = V(T7(a)).

Lemma 11. Let S, T be two weak-pullback preserving functors on Set, let q :
S — T be a epi natural transformation and let Lg and Lp be the V-languages
induced by S and T respectively. Let m: V — Lg define a substitution 7 : Lg —
Ls and and let p be the map p= ()9 o7 :V — L, then for all a € Lg

()Tom(a) =po(-)!(a)

There are two important constructions in the KKV axiomatization: the notion
of slim redistribution and that of lifted member (used for the (V2) and (V3)
axiom). The following two lemmata show how these notions interact with the
translation map. They are generalisation of Lemmata 5.44 and 5.45 in [10] where
a special class of presentations (called ‘well-based’ presentations) is considered,
here we consider arbitrary epi natural transformations between weak-pullback
preserving functors.

Lemma 12. Let S,T be two weak-pullback preserving functors on Set, let q :
S — T be an epi natural transformation, and let Lg and L1 be the V-languages
induced by S and T respectively. For any A € P,SLs and & € TP, Ly, the
following two conditions are equivalent:

(1) & € SRD([A]?)
(2) there exist ' € SP,Lg such that {®'}9 = & and for all a € A there erist
o such that o/ SEP" and (/)1 = (a)?

Lemma 13. Let S, T be two weak-pullback preserving functors on Set, let q :
S — T be an epi natural transformation, and let Lg and Lp be the V-languages
induced by S and T respectively. For any o € T Ly and ® € TP, Ly the following
two conditions are equivalent:

(1) aTe® for ® € TP, Ly
(2) there exist &' € TP,Ls such that {¢'}9 = & and o' € SLs such that
(aY1 =« and o/ Se P’

We are now ready to move to our key technical result. Our main motivation is to
get a completeness result for KKV(T')+C where C is a set of ‘Sahlqvist formulae’
- we will define what this means precisely in the next section. Following the usual
method we’ll start with a KKV(T') + C-consistent formula a and try to build a
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model for it. By Theorem 4, we know how to do this for KKV(S) 4+ D, when
S — T is a presentation of T and D is a set of Sahlqvist formulae. So what
seems to be required is a result linking KKV (T') + C-consistency to KKV(S) + D-
consistency for the right D. More specifically, we want a result relating —a < L
not being derivable in KKV(T') + C to a similar statement in KKV(T") 4+ D for a
certain D. As it turns out, the trick is to look at all the pre-images of a and of
C, and, using the contrapositive, the result we are looking for is therefore:

Theorem 14 (Translation Theorem). Let T be a weak-pullback preserving
Set functor, let ¢ : S — T be a presentation of T and let Lg and Lt be the
V-languages defined by S and T. Assume we have a set C of KKV(T')-consistent
formulae (the frame conditions) and let us define the set C' C Lg by:

C'={d eLs|()?eC and is KKV(S) — consistent}

Then
KKV(S)+C'F{a < L] (a)?=a}

implies
KKV(T)+CFa< 1

Proof (Sketch). We proceed by induction on the depth n of the shortest KKV (.S)+
C’-proof of a’ < 1 amongst all a’ such that (a’)? = a. The base case is if n = 0,
i.e. if there there exist an inequality @’ < 1 which is either an axiom of the propo-
sitional fragment of the logic or a substitution instance of an axiom in C’. By
Lemma 11 and the definition of C’, it is clear that if a’ is a substitution instance
of a formula ¢’ € C’, then its translation (a')? = a is a substitution instance of
a formula in ¢ € C, and we can thus conclude that KKV(T) + C F a < L. The
inductive hypothesis is the following: if we have KKV(S) + C” proofs that all the
pre-images under (-)¢ of a formula a are false and if the smallest of these proofs
has depth n, then we have a proof that a is false in KKV(T') 4+ C. So let’s assume
that we have proofs

KKV(S)+C'F{d < L] (a)?=a}

and that the depth of the shortest proof if n + 1. We then show that we can
always find a set of KKV(S) + C’-proofs of minimal depth n whose conclusion
are the pre-images of a premise in KKV(T) 4+ C whose conclusion is ¢ < L. In
other words, we build the last step of a T-proof by using the last steps of existing
S-proofs and the inductive hypothesis. This is done by examining, in turn, each
of the possible outermost connectives of a, and thus of a’, i.e. V or a boolean
connective. Each of these possible outermost connectives of a’ specifies a small
number of rules which could have been the last rule applied to reach (¢’ < L).
The proof then consists in examining each of these possibilities and show that
they all lead to a situation where the induction hypothesis can be applied and
lead to a T-rule with conclusion a < L.
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5 Sahlqvist formulae for Coalgebraic Logics

We now have all we need to formulate our Sahlqvist completeness result for
coalgebraic modal logic. We start by defining a notion of Sahlqvist formula for
a general (i.e. not necessarily polynomial) functor.

Definition 15. Let T be a weak-pullback preserving functor, let ¢ : S — T be
a presentation of T and let L1 and Lg be the V-languages induced by S and
T respectively, then a € L will be called a coalgebraic Sahlqvist formula
if every pre-image of a under the translation map ()¢ : Lg — L is Sahlqvist
in the sense of Definition 2. A set C C L will be called an acceptable set
of frame conditions if its inverse image under (-)? is acceptable in the sense of
Definition 3.

Theorem 16 (Sahlqvist Completeness Theorem). Let T be a weak-pullback
preserving Set functor, let ¢ : S — T be a presentation of T and let L1 and Lg
be the V-language induced by S and T respectively. Assume that C C Lr is an
acceptable set of coalgebraic Sahlquist formulae, then KKV(T) + C is complete
w.r.t. the class of T-coalgebra validating C'.

Proof. As is customary, we start with a formula a € L7 which is KKV(T) + C-
consistent, and we will build a model for @ in the class of T-coalgebras validating
the coalgebraic frame conditions in C. The proof is in four steps.

Firstly, by using the contrapositive of Theorem 14, we know that since a is
KKV(T') 4+ C-consistent, then there must exist a pre-image a’ of a under (-)¢
which is KKV(S) + C’-consistent.

Secondly, since C'is a set of coalgebraic Sahlqvist formulae we can apply Theorem
4 and conclude that there exists a model Mg based on an S-coalgebra (W, )
which belongs to the class of coalgebraic frames validating the axioms of C’ and
such that a’ is satisfied in Mg, i.e. there exist w € W such that Mg, w = a'.
Thirdly, by Proposition 7 if we define My = Q(Mg) then we have that since
Mg, w = d' and (o) = a, M7, w [ a.

Finally, we need to check that M is a coalgebraic frame validating the formulae
in C. Assume that it is not, then there must exist ¢ € C' and w € W such that
M, w £ c. By the contrapositive of Proposition 7 this means that Mg, w & ¢’
for all ¢’ in the pre-image of ¢ under (-)2. But by Definition 15 and the second
step of the proof we know that we must have Mg, w |= ¢ for any such ¢ and
we therefore have a contradiction.

Example 17. We return to the bag functor B of Example 9 to illustrate what
is, as far as we know, the first Sahlqvist completeness result for Graded Modal
Logic (GML). An Lp-formula of the shape Vn(ay : k1,...,am : k) is true at a
point w if w has n successors, of which k; satisfy a;, for 1 < i < m. Note that
by construction (B is presented by List) our B-coalgebras are finitely branching.
For this example we will place ourselves in the predicate lifting style logic ob-
tained by the trivial translation removing V operators (see Example 1), and
we rewrite Vn(ay : ki,...,am : kn) as (n)(ay : k1,...,am : kn). For clarity’s
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sake we define the following derived modal operators which are closer to the
traditional operators of GML:

n

<>np = \/<n>(p 2, T (n_l))

i=1

<>§np = \/ <>np

i=1

Thus $,,p holds at w if w has n successors and p is true at (at least) one of them,
whereas $<,p holds at w if w has at most n successors and p is true at (at least)
one of them, i.e. p is true at at least one and at most n successors. Using these
operators we can define graded versions of the most popular Sahlqvist frame
conditions, for example ‘transitivity for at most n successors’:

(4n) : O<nO<nd = O<np

To see that (4,) is Sahlgvist, note first that all the pre-images of (n)(p : 4, T :
(n—1)) under the translation map (-)? introduced in Example 9 are of the shape
(in the predicate-lifting style):

n(m(p,...,p, T,...,T)) (3)
—_—— ——

i times (n —4) times

for some m € Perm(n). i.e. just an operator applied to some variables. So a
pre-image of {,p is just a join of n formulae of the shape (3) for a choice of n
permutations m; € Perm(n),1 <14 <n (or combinations of elements of this shape
using meets and joins). In turn, the pre-images of {<,p are joins of n choices
of pre-images of {;p,1 < i < n (or combinations of elements of this shape using
meets and joins). Thus the pre-images of the consequent of (4,) are (strictly)
positive. Similarly, the antecedent of (4,,) can be seen to be strictly positive and
thus (4,,) is a Sahlqvist formula in the sense of Eq. (1) for any n.

Note that the cardinality restriction leads to a slightly counter-intuitive meaning
for the axiom (4,). Indeed, assume a point w has two successors, that one of
these successors has three successors, one of which is the only state to satisfy p,
then (45) holds, but transitivity doesn’t. So (4,,) is transitivity for frames with
branching degree at most n. To recover the usual notion of transitivity we need
to consider the collection of Sahlqvist formulae (4) = {(4,) | n € N}. It is clear
that (4) is acceptable in the sense of Definition 3 and the basic GML + (4) is
thus weakly complete w.r.t. finitely branching transitive frames.

Remark 18. We must make two important remarks about the previous exam-
ple. First, the fact that Lg-formulas count the total number of successors points
to an important difference with the traditional language for Graded Modal Logic
LemL where a formula ¢ is traditionally interpreted as ‘¢ holds at k distinct
successors’, leaving the total number of successors unspecified. Clearly we cannot
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express this in a finitary way in Lg, so our Sahlqvist formulae are expressed in
a fragment of Lgv. But there is a translation tr from Lz to LgmL defined by

tr(Vn(ay 1 k1, ..oy am k) = On T App1 L A /\ Ok, i
i=1

where {, T AO,y1L just says that there are exactly n successors. Our second
remark is that the <, modalities are algebraically ill-behaved as they do not
distribute over joins, so there is no way of applying the theory of Sahlqvist
formulae in BAOs to GML in the usual setting which may explain why we were
unable to find any Sahlqvist completeness result for this logic in the literature.

Example 19. Our next example, is intended to show the relationship between
our notion of Sahlqvist formula and the traditional one from relational modal
logic. Here we will look at the finite powerset functor P, which has a very simple
presentation ¢ : List — P,, given by

gx : ListX —» P, X, (a1,...,an) — {a1,...,a,}

The empty list is sent to the empty set. Thus, the pre-images of a Lp_-formula of
the type V{ai,...,ax} are all the £ -formula of the type Vn(aj,...,a,),n >k
where (al,...,al) is any list containing all the elements of {ay, ..., ax}. Here we
are in a slightly better position than in the graded case as there are semantic-
preserving translations of the usual modal language L£j;r in terms of ¢ and
O into Lp, and vice-versa (see [9]), in particular {p is translated by V{p, T}
and Op by V0V V{p}. We can check that the traditional Sahlqvist formulae as
defined for example in [4] are also Sahlqvist formulae in the sense of this paper.
Notice first that the pre-images under ()7 of $p, or equivalently of V{p, T}, are
of the shape Va for an « € List{p, T}, or, in the predicate-lifting style, (n)a
with a € ({p, T})™ for some n € N. It is then quite straightforward to check
that positive formulae in £, are translated into positive formulae in £ whose
inverse images under (-)? are also positive. This takes care of the consequent of
Sahlqvist formulae. Now for the antecedent. As defined in [4], the antecedent
must be built from 1, T, boxed atoms and negative formulae using A,V and
. Clearly, L and T pose no problem. Negative L7 -formulae get mapped to
negative Lp_-formulae whose inverse image under (-)? are also negative. The
only potentially problematic building block are the boxed atoms. The formula
Op is translated to VOV V{p} whose inverse images under (-)? are of the shape (in
the predicate lifting style) (0) V (n)(p,...,p), i.e. strictly positive terms. Clearly,
the nesting of more boxes doesn’t change this and so all inverse images of boxed
atoms are strictly positive and we can therefore view them as part of the strictly
positive term in Eq. (1) defining Sahlqvist antecedents.

6 Outlook

As illustrated by Example 17, there are instances of logics in the predicate-lifting
style which can make statements that cannot be translated in the V-style (see
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[10]). We would like to extend our result to such logics, possibly by enriching the
polynomial logics with operators that carry an infinitary meaning but remain
algebraically well-behaved. We would also like to extend our result to richer
coalgebraic logics such as coalgebraic p-calculus (see [3] for recent advances in
defining Sahlqgvist formulae for the p-calculus) and hybrid coalgebraic modal
logic. Finally we would like to find examples and applications of our results to
more logics such as probabilistic or coalition logics.

Acknowledgement. We are grateful to Clemens Kupke for his help on some
of the finer points of V-style logics and to Alexander Kurz for hinting at some
parts of [10] which were very useful. We would also like to thank the anonymous
referees for their insightful and useful comments.

References

1. Samson Abramsky. Coalgebras, Chu Spaces, and Representations of Physical Sys-
tems. CoRR, abs/0910.3959, 2009.

2. Jiri Addmek, H. Peter Gumm, and Vera Trnkova. Presentation of set functors: A
coalgebraic perspective. J. Log. Comput., 20(5):991-1015, 2010.

3. Nick Bezhanishvili and Tan Hodkinson. Sahlqvist theorem for modal fixed point
logic. Theoretical Computer Science, 424:1-19, 2012.

4. Patrick Blackburn, Maarten de Rijke, and Yde Venema. Modal Logic, volume 53
of Cambridge Tracts in Theoretical Computer Scie. Cambridge University Press,
2001.

5. M. de Rijke and Y. Venema. Sahlqvist’s Theorem For Boolean Algebras With
Operators With An Application To Cylindric Algebras. Studia Logica, 1995.

6. Bjarni Jénsson. On the canonicity of Sahlqvist identities. Studia Logica, 53(4):473~
492, 1994.

7. Bjarni Jonsson and Alfred Tarski. Boolean algebras with operators. part 1. Amer.
J. Math., 33:891-937, 1951.

8. C. Kupke and D. Pattinson. Coalgebraic semantics of modal logics: an overview.
Theoretical Computer Science, 412(38):5070-5094, 2011. Special issue CMCS 2010.

9. Clemens Kupke, Alexander Kurz, and Yde Venema. Completeness for the coalge-
braic cover modality. Logical Methods in Computer Science, 8(3), 2012.

10. A. Kurz and R. Leal. Modalities in the Stone age: A comparison of coalgebraic
logics. In MFPS XXV, Oxford, 2009.

11. D. Pattinson and L. Schréder. Beyond rank 1: Algebraic semantics and finite
models for coalgebraic logics. In R. Amadio, editor, Proc. FoSSaCS 2008, number
4962 in LNCS, pages 66-80, 2008.

12. Jan J. M. M. Rutten. Universal coalgebra: a theory of systems. Theor. Comput.
Sei., 249(1):3-80, 2000.

13. Lutz Schréder. A finite model construction for coalgebraic modal logic. In Luca
Aceto and Anna Ingélfsdéttir, editors, Foundations Of Software Science And Com-
putation Structures, volume 3921 of Lecture Notes in Computer Science, pages
157-171. Springer; Berlin; http://www.springer.de, 2006.

14. Yde Venema. Algebras and coalgebras. In J. van Benthem, P. Blackburn, and
F. Wolter, editors, Handbook of Modal Logic. Elsevier, 2006.



