

Edinburgh Research Explorer

Communication Membrane Systems with Active Symports

Citation for published version:
Brijder, R, Cavaliere, M, Riscos-Núñez, A, Rozenberg, G & Sburlan, D 2006, 'Communication Membrane
Systems with Active Symports' Journal of Automata, Languages and Combinatorics, vol. 11, no. 3, pp. 241-
261.

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Journal of Automata, Languages and Combinatorics

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 05. Apr. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/43712635?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://www.research.ed.ac.uk/portal/en/publications/communication-membrane-systems-with-active-symports(fab4643f-f0d9-4d72-b9c1-2854391d450e).html

Chapter 8

Communication Membrane

Systems with Active Symports

Abstract
We consider membrane systems where the generation/transformation of objects
can take place only if it is linked to communication rules.

More specifically, all the rules move objects through membranes and, more-
over, the membranes can modify the objects as they pass through. The intuitive
interpretation of such rules is that a multiset of objects can move from a region
to an adjacent one, and moreover objects can engage into (biochemical) reac-
tions while passing through (are in “contact” with) a membrane. Therefore such
“twofold” rules are called symport-rewriting (in short, sr) rules, where symport
refers to a coordinated passage of a “team” of molecules through a membrane.

In this chapter we investigate the influence of the form of sr rules on the power
of membrane systems that employ them (sometime in combination with simple
antiport rules which allow a synchronized exchange, through a membrane, of two
molecules residing in two adjacent regions). A typical restriction on the form of
an sr rule requires that the passage described by the rule is such that the sort
of exiting molecules is a subset of the sort of entering molecules (however the
multiplicities of sorts do not have to be related).

We also compare the sequential passage mode with the maximally parallel
passage mode.

8.1 Introduction

Membrane computing, introduced in [20], is a computational model inspired by
the functioning of membranes in living cells. The biological membranes within
a cell divide the cell in a number of compartments (regions). This is the basic
feature of this model with each region containing its own set of evolution rules,

174 Introduction

where each rule prescribes both the transformation and generation of molecules as
well as the transport of molecules through membranes. In this way each evolution
rule has both a rewriting and a communication component.

An important class of membrane systems allows only communication, i.e., their
rules prescribe only the passage of objects (molecules) through membranes. Such
systems are called symport/antiport membrane systems where both “symport”
and “antiport” refer to types of rules that allow for a synchronized passage of
molecules through a membrane. For symport rules this passage is unidirectional (a
multiset of molecules is passing through a membrane together), while for antiport
rules this passage is bidirectional (a passage of a multiset of molecules in one
direction is synchronized with a passage of molecules in another direction through
the same membrane).

In this chapter we enrich symport rules by coupling them with a generative
component: a multiset of molecules passing a membrane synchronously in the
unidirectional fashion can be changed to a different multiset. Such rules are called
symport-rewriting rules, or sr rules for short – they are biologically motivated, as
the biological membranes do not only allow for the passage of molecules, but can
also change them during a passage. Membrane systems using sr rules and antiport
rules are called communication membrane systems with active symports, or CAS
P systems for short.

In this chapter we study the influence of the form of sr rules (sometimes in
combination with antiport rules) on the generative power of resulting membrane
systems. We also study the influence of the communication mode (sequential ver-
sus maximally parallel) on the generative power. In sequential mode, at any given
time, at most one sr rule can be active for any given membrane, while (as usual)
in maximally parallel mode an application of the rules is such that no more rules
can be applied to the objects that are not already involved in the passage through
membranes.

The chapter is organized as follows. Section 8.2 recalls some basic notions
from language theory – more specifically those of matrix grammars and register
machines. Section 8.3 formally defines CAS P systems. Section 8.4 considers “al-
phabetically restricted” CAS P systems which can use only sr rules in which the
type of every generated object (i.e., an object occurring at the right hand side)
is already present at the “entrance to the membrane” (i.e., occurring at the left
hand side). In Section 8.5 we consider CAS P systems operating in sequential
mode. Section 8.6 considers CAS P systems that use only unary rules, i.e., the
rules that describe the passage of one single molecule and allow this molecule to
multiply during this passage (technically, this corresponds to the rules a → v,
where v ∈ a∗).

A natural restriction on communication can be formulated through the use
of uni-directional membranes, i.e., membranes such that, for any symbol a, if a
may cross a given membrane in one direction (as specified by one of the rules),
then a cannot cross this membrane in the opposite direction. These systems are
considered in Section 8.7. Unary rules are a special case of non-cooperative rules,

Chapter 8 175

i.e., rules that describe the passage of a single object (which during the passage can
be changed into a multiset of objects). CAS P systems using only non-cooperative
rules are considered in Section 8.8 both with and without the use of antiport rules.
In Section 8.9 we consider bounded CAS P systems, i.e., CAS P systems for which
there exists a positive integer k such that in any computation and any region the
cardinality of the multiset of objects present in the region does not exceed k. In
the last section we discuss the results obtained in this chapter and we formulate
a number of open problems.

8.2 Preliminaries

We assume the reader to be familiar with basic notions of formal languages and
automata theory (which can be found, e.g., in [25]). In this section we briefly recall
some notions and results concerning matrix grammars and register machines that
will be used in some proofs in this chapter.

8.2.1 Matrix Grammars

A matrix grammar is a construct G = (N, T, S, M, F), where N is the nonterminal
alphabet, T is the terminal alphabet (N∩T = ∅), S ∈ N is the axiom, M is a finite
set of sequences (called matrices) of context-free productions (A1 → x1, . . . , An →
xn), n ≥ 1 with Ai ∈ N, xi ∈ (N ∪T)∗, 1 ≤ i ≤ n, and F is a set of occurrences of
rules in M (note that one may have the same rule in different entries of a matrix
and only some of these entries in F).

Given two strings w ∈ (N ∪ T)∗N(N ∪ T)∗ and z ∈ (N ∪ T)∗, we write
w =⇒ z if there is a matrix (A1 → x1, . . . , An → xn) ∈M and there exist strings
wi ∈ (N ∪ T)∗, for 1 ≤ i ≤ n + 1, such that w = w1, z = wn+1 and, for each
1 ≤ i ≤ n, either wi = w′iAiw

′′
i and wi+1 = w′ixiw

′′
i for some w′i, w

′′
i ∈ (N ∪ T)∗,

or wi = wi+1, Ai does not appear in wi, and (the given occurrence of) production
Ai → xi appears in F . Thus, the productions of a matrix are applied in the order
in which they are listed, except that one skips the rules in F if they cannot be
applied – therefore we say that these productions are applied in the appearance
checking mode. If the set F is empty, then G is said to be without appearance
checking. The language generated by G is defined by L(G) = {w ∈ T ∗ | S =⇒∗

w}. The family of languages generated by matrix grammars with appearance
checking is denoted by MATac. The family of languages generated by matrix
grammars without appearance checking is denoted by MAT . It is known (see [24,
Chapter 12]) that MAT ⊂ MATac = RE.

We say that a matrix grammar is pure if there is no distinction between
terminals and nonterminals, i.e., each string derived from S belongs to L(G).
The family of languages generated by pure matrix grammars without appearance
checking is denoted by pMAT . It is known (see [11, Lemma 5.1.1]) that pMAT ⊂
MAT .

176 Preliminaries

8.2.2 Register Machines

Intuitively, a register machine is an automaton with a number of registers (each
storing a natural number) that is executing labelled instructions of several simple
types. More precisely:

A register machine is a construct M = (k,P , l0, lh), where:

• k is the number of registers,

• P is a set of labelled instructions (the program) that can be of the following
forms:

1. (l : add(r), li, lj),
2. (l : sub(r), li, lj),
3. (lh : halt),

with l, lh, li, lj from the set lab(P) of labels associated with the instructions
in a one-to-one manner,

• l0 ∈ lab(P) is the label of the initial instruction,

• lh ∈ lab(P) is the label of the halting instruction.

The execution of an instruction (l : add(r), li, lj) increments by one the value
stored in register r and then the machine proceeds, in a nondeterministic way,
either to the instruction with label li or to the instruction with label lj . An
instruction (l : sub(r), li, lj) is executed as follows. If the value stored in register
r is not zero, then it subtracts one from this value, and the machine proceeds to
the instruction labelled by li; otherwise it proceeds to the instruction labelled by
lj . A halting instruction (lh : halt) stops the machine; its label is always the final
label lh.

We say that a vector (n1, . . . , nα) ∈ N
α is generated by M (where α is fixed

for M) if, starting from the instruction labelled by l0 with the value of all registers
equal to zero, it halts with value nj in register j for all 1 ≤ j ≤ α, and with the
values of the registers α + 1, . . . , k equal to zero. The set of all vectors obtained
in this way constitutes the set generated by M . The family of all sets of vectors
generated by register machines is denoted by RegM . It is known (see [19]) that
register machines can generate the family of Turing computable sets of vectors of
natural numbers, that is, RegM = PsRE.

A register machine without checking for zero is a register machine where all
subtraction instructions are of the form (l : sub(r), lj , lh∗), where lh∗ is the non-
successful halting label – the machine stops but the computation is not considered
successful. The family of languages generated by register machines without check-
ing for zero is denoted by RegM �=0. The computational power of this model is the
same, in terms of Parikh images of languages, as that of matrix grammars without
appearance checking. That is, RegM �=0 = PsMAT (see, e.g., [12]).

Chapter 8 177

8.3 Communication Membrane Systems with Ac-

tive Symports

In what follows we assume that the reader is familiar with the area of mem-
brane computing, in particular with membrane systems using symport/antiport
rules, see, e.g., [21]. We will still use a rather informal terminology describing the
nested relationship between membranes or regions, such as, e.g., (immediately)
inner membrane of membrane i or (immediately) outer membrane of membrane
i, however, if needed, this can be always made precise by, e.g., considering a tree
representation of the nested structure of membranes (thus an immediately inner
membrane of membrane i becomes a direct descendent of membrane i).

The model of membrane systems studied in this chapter is defined as follows.

Definition 1
A communication membrane system with active symports (in short, a CAS P
system) is a construct

Π = (Γ, μ, w1, . . . , wm, R1, . . . , Rm, Ra
1 , . . . , Ra

m, i0),

where:

• Γ is the alphabet of objects,

• μ is a tree structure representing a membrane structure with m membranes
(labelled in a one-to-one manner by 1, . . . , m),

• w1, . . . , wm are the multisets of objects initially present in the regions of the
system,

• R1, . . . , Rm are finite sets of symport-rewriting (in short, sr) rules associated
with membranes 1, 2, . . . , m, respectively; each rule is of the form (u, v, out)
or (u, v, in), where u ∈ Γ+, v ∈ Γ∗,

• Ra
1 , . . . , Ra

m are finite sets of antiport rules associated with membranes
1, 2, . . . , m, respectively; each rule is of the form (u, in; v, out) where u ∈
Γ+, v ∈ Γ+,

• i0 ∈ {1, . . . , m} is the label of the output membrane of Π.

We also use ΓΠ to denote Γ. As usual, the root of μ is called the skin membrane.
The skin membrane separates the system from the environment. The leaves of
μ are called elementary. Each membrane i delimits a region i: it is the space
between it and its direct descendants. The surrounding region of membrane i is
the environment if i is the skin membrane, and otherwise it is the region of the
direct ancestor of i.

We now define the semantics of symport-rewriting rules. An sr rule r =
(u, v, out) ∈ Ri, 1 ≤ i ≤ m, can only be applied if multiset u is present in

178 Communication Membrane Systems with Active Symports

region i (we say then that rule r is applicable). The effect of applying this rule
is as follows: multiset u is deleted from region i and simultaneously multiset v is
added to its surrounding region. This formalizes the following intuition: multiset
u is moved out of region i by crossing through membrane i and while crossing,
it is transformed into multiset v. An sr rule (u, v, in) from the set Ri is applied
analogously, however multiset u is moved into region i by crossing through mem-
brane i and while crossing u is transformed into multiset v. Rules (u, v, out) ∈ Ri

and (u, v, in) ∈ Ri will also be denoted by u]
i

−→ v and u [
i

−→ v, respectively.
The (standard) effect of applying an antiport rule (x, in; y, out) ∈ Ra

i , 1 ≤
i ≤ m, is as follows: multiset x crosses membrane i from the surrounding region
into region i, while, at the same time, multiset y moves in the opposite direction
through membrane i.

Before going on, it is worth to remark that CAS P systems do not assume a
potentially infinite supply of objects available in the environment, although this
is the case in the classical definition of symport/antiport P systems, which have a
set E of objects available in the environment in an unbounded number of copies.

In this chapter we consider several restrictions for the sr rules of CAS P sys-
tems, and so we give now notation and terminology to describe these restric-
tions. Symport-rewriting rules (u, v, out) and (u, v, in) are called cooperative if
|u| ≥ 2, and noncooperative if |u| = 1. Also, sr rules are called alph-restricted
if alph(v) ⊆ alph(u), where alph(x) is the smallest alphabet Ψ ⊆ Γ such that
x ∈ Ψ∗. Thus, such sr rules cannot introduce new types of objects. Noncoopera-
tive alph-restricted sr rules are also called unary sr rules (because there is only
one type of object, one symbol, present in these rules). The weight of an antiport
rule (u, in; v, out) is defined as max{|u|, |v|}.

As usual, a configuration of a membrane system is an instantaneous descrip-
tion of the membrane structure and the contents of all the regions. The initial
configuration consists of the membrane structure μ and the multisets of objects
initially present in the regions of the system, given by w1, . . . , wm.

The system evolves from one configuration to another by performing a tran-
sition step. In one mode of operation, the most usual one for P systems, the
transition steps are performed by applying the rules in a nondeterministic, maxi-
mally parallel manner. However, we will also consider another mode of operation,
called sequential, where no antiport rules are present and at most one sr rule is
applied at each step for each membrane, allowing a membrane to be inactive even
when there is an applicable sr rule.

All the possible sequences (finite or infinite) of transition steps that the sys-
tem is able to perform from the initial configuration are the computations of the
system. A given configuration is called reachable if it results from a computation
of the system. A reachable configuration is a halting configuration, if there is no
rule applicable to it. The output of a CAS P system, denoted by Ps(Π), is the
set of vectors of natural numbers which are the Parikh images of the multisets
present in region i0 in all possible halting configurations.

We also want to make a comment concerning the outputs of computations in

Chapter 8 179

membrane systems. They are traditionally either vectors expressing the multiplici-
ties of various objects present in the output region at the conclusion of a successful
computation or numbers expressing the cardinality of all objects present in the
output region at the conclusion of a successful computation. The common dimen-
sion of the vectors is the cardinality of a fixed a priori alphabet of output objects.
This alphabet may be different from the total alphabet Γ of objects, however it
is not explicitly given. This also happens in this chapter, however as usual the
output alphabet is always well understood from the context of considerations.

Example 1
It is easy to see that the (unique) halting configuration of the CAS P sys-
tem Π from Figure 8.1 is (in both sequential and maximally parallel mode)
[[]2 [aaaaaaaa]3]1 and so, we have Ps(Π) = {(8)}.

3aa

c

a

c

b

bb
aa

1

2

Figure 8.1: A graphic representation of a communication membrane system Π with
active symports (CAS P system). The initial configuration is [[]2 []3 a a]1. The
output region is the one enclosed by membrane 3 and the output alphabet is {a}.
The sets of sr rules associated with regions 2 and 3 are: R2 = {b]

2
−→ c, a [

2
−→ bb}

and R3 = {c [
3

−→ aa}, respectively.

We denote by CAS(α, anti) the class of CAS P systems with sr rules of type
α, and antiports of weight at most i. In this chapter we consider α ∈ {coo,
ncoo, cooAR, ncooU} to denote general (non-restricted), noncooperative, cooper-
ative alph-restricted, and unary sr rules, respectively. We use PsCASm(α, anti)
to denote the family of sets of vectors computed by CAS P systems from the class
CAS(α, anti) with at most m membranes. Besides, we denote PsCAS∗(α, anti) =⋃

m∈N
PsCASm(α, anti). Moreover, when we consider systems working in the se-

quential mode we will add the prefix seq (obtaining in this way the notation
seqPsCASm(α, anti)).

In what follows, to simplify the notation, in the definition of CAS P systems
that do not use antiport rules we will omit the specification of the sets of antiport
rules.

180 Alphabetic Restriction

8.4 Alphabetic Restriction

In this section we investigate systems using cooperative alph-restricted sr rules,
cooAR sr rules for short, without antiport rules. We show that this restriction does
not decrease the generative power of the model – CAS P systems using cooAR sr
rules are computationally universal.

Theorem 2
PsCAS2(cooAR, ant0) = PsRE.

Proof
In order to demonstrate the computational universality of the model, we will
prove that any register machine can be simulated by it. To this aim, consider
an arbitrary register machine M = (k,P , l0, lh), generating a set of vectors over
N

α (i.e., registers from 1 to α are output registers and registers from α + 1 to k
are working registers), where lab(P) consists of n labels. We construct the CAS
P system Π = (Γ, μ, w1, w2, R1, R2, i0) satisfying the required conditions that
generates the same set of vectors as M does, as follows.

• Γ = {ci | 1 ≤ i ≤ k} ∪ {li, l
′
i, l
′′
i , l′′′i | 0 ≤ i ≤ n− 1}.

• μ = [[]2]1.

• w1 = λ and w2 = l0c1 . . . ckl0l
′
0l
′′
0 l′′′0 . . . ln−1l

′
n−1l

′′
n−1l

′′′
n−1.

• R1 = ∅,

• The set R2 of cooperative alph-restricted sr rules is defined as follows:

– for every instruction
(
li1 : add(j), li2 , li3

)
∈ P , R2 contains the sr rules

li1 li1 li2cj]
2

−→ li2 li2 li1cjcj and li1 li1 li3cj]
2

−→ li3 li3 li1cjcj ,

– for every instruction rs =
(
li1 : sub(j), li2 , li3

)
∈ P , R2 contains the sr

rules rs1 = li1 li1 l
′
i1

l′′i1]
2

−→ li1 l
′
i1

l′i1 l
′′
i1

l′′i1 l
′′
i1

,
rs2 = l′i1 l

′
i1

l′′i1]
2

−→ l′i1 l
′′
i1

l′′i1 ,
rs3 = l′′i1 l

′′
i1

l′′′i1
cjcj]

2
−→ l′′i1 l

′′′
i1

l′′′i1
cj ,

rs4 = l′′i1 l
′′
i1

l′′i1 l
′′′
i1

l′′′i1
li2]

2
−→ li2 li2 l

′′
i1

l′′′i1
,

rs5 = l′′i1 l
′′
i1

l′′i1 l
′′
i1

li3]
2

−→ li3 li3 l
′′
i1

.

– in addition, R2 contains the following sr rules:
x [

2
−→ x, for every x ∈ Γ, and

rs6 = lhc1 · · · ckl0l
′
0l
′′
0 l′′′0 · · · ln−1l

′
n−1l

′′
n−1l

′′′
n−1]

2
−→ λ.

• i0 = 2.

The simulation of M by Π is performed as follows. The current label of M is
represented by exactly one symbol li that appears in region 2 with multiplicity
two. Therefore, the initial label l0 of M appears twice in w2. The number ni

stored in a register i of M is encoded in Π by multiplicity ni+1 of symbol ci. The

Chapter 8 181

reason for these encodings is that since only cooAR sr rules are available, during
the computation, the multiplicity of ci and li may never be zero. Thus, only one
copy of cj corresponds to the case that register j is zero. Since in the initial
configuration of M every register is zero, each symbol ci appears in multiplicity
one in w2.

The interpretation of the sr rules that simulate the addition instruction
(
li1 :

add(j), li2 , li3
)
∈ P is quite straightforward: we modify the amount of objects li1

and li2 (or li3) to simulate the transfer of control from li1 to li2 (or to li3 , respec-
tively). We also generate one more copy of object cj to simulate the increment by
1 of the value of register j. Note that by applying this sr rule we move objects
from region 2 to region 1. In the next step all the objects are put back to region
2 without modifying their multiplicities. This is accomplished by sr rules x [

2
−→ x,

for every x ∈ Γ.
The simulation of the subtraction instruction is more complicated since we

need to check whether or not the value stored in the specified register is zero
in order to select the next control label of the machine. Given rs =

(
li1 :

sub(j), li2 , li3
)
∈ P , we proceed in three steps (as before, after each of these steps

all objects are put back into region 2) depending on whether or not the value of
register j in P is zero (or, equivalently, on whether or not the multiplicity of cj

in Π is one):
step register j is not zero register j is zero
1 rs1 rs1

2 rs2, rs3 rs2

3 rs4 rs5

The end result is that the multiplicity of li1 is changed from two to one, and
the multiplicity of li2 (li3) is changed from one to two when the value stored in
register j was not zero (was zero, resp.). Moreover, when register j was not zero,
the multiplicity of cj was decreased by one.

Thus, Π simulates M step by step until arriving at the label lh (in case of
a successful computation). Then, Π performs one last step deleting all auxiliary
objects through the application of sr rule rs6. Thus, in the halting configura-
tion region 1 will be empty, and the multiplicity of objects cj , 1 ≤ j ≤ α, in
region 2 represents exactly the contents of the corresponding output registers of
the machine in the halting state. Consequently, since RegM = PsRE we have
proved that PsCAS2(cooAR, ant0) ⊇ PsRE. Invoking the Turing-Church thesis
we obtain also the converse inclusion; hence PsCAS2(cooAR, ant0) = PsRE.

Note that the maximal parallelism of the system is fundamental in the above
proof, as it allows to simulate the zero checking in a register. Indeed, rule rs3 is
applicable in step 2 iff the value stored in the corresponding register is not zero.

Remark
The above proof can be modified in order to decrease the cardinality of the alpha-
bet of Π. Actually, all the elements in the set Λ = {li, l

′
i, l
′′
i , l′′′i | i = 0, . . . , n− 1}

can be encoded by using only two symbols. The idea is to establish a correspon-
dence between elements from Λ and pairs of numbers, each pair being represented

182 The Sequential Mode

by the multiplicities of two symbols (e.g., a and b). This must be done in such
a way that if l1 ∈ Λ is represented by a smaller multiplicity of a than used for
representing l2, then the multiplicity of b in the representation of l1 must be
greater than the multiplicity of b in the representation of l2. In this way, a given
multiplicity of a and b (encoding l1 ∈ Λ), can trigger only l1.

Corollary 3
PsCAS2(coo, ant0) = PsRE.

Proof
Since the set of CAS P systems using cooperative sr rules includes the set of CAS P
systems using cooAR sr rules, we have PsCAS2(cooAR, ant0) ⊆ PsCAS2(coo, ant0).
Thus, the corollary follows from the previous theorem and the Turing-Church the-
sis.

8.5 The Sequential Mode

The application of sr rules in a maximally parallel way is a powerful way to reg-
ulate the communication. This fact will become even more clear in this section
where we consider CAS P systems working in the sequential mode: in each mem-
brane at most one sr rule is applied at each step, allowing a membrane to remain
inactive even when there is an applicable sr rule for it. The notion of a sequential
mode of operation for P systems with carriers is studied in [15], and the computa-
tional power of these systems is shown to be equal to the family of Parikh images
of the languages generated by matrix grammars without appearance checking.
We show that the generative power of CAS P systems with cooperative sr rules
working in the sequential mode is also equal to PsMAT . First, we prove the result
for cooperative alph-restricted sr rules, and later we extend it to cooperative sr
rules.

Lemma 4
seqPsCAS∗(cooAR, ant0) ⊆ PsMAT.

Proof
Let Π = (Γ, μ, w1, . . . , wm, R1, . . . , Rm, i0) be a CAS system with cooperative
alph-restricted sr rules and working in the sequential mode. We prove that there
exists a matrix grammar without appearance checking generating a language
whose Parikh image is Ps(Π).

First of all, as matrix grammars can only handle strings, we need to find a
string-representation for the configurations of Π (which indicates for each object
the region in which it occurs). To this aim, we introduce a notation that assigns
to each object a pair (object, location) explicitly mentioning the region where
the object resides. That is, for each object x present in region i, we include the
pair (x, i) in the string. Note that the so-constructed string may contain many
occurrences of a pair (x, i) – this represents the multiplicity of x in region i.

Chapter 8 183

Note also that the order of such pairs in a string is not relevant, so any per-
mutation of the string could be used as well. We will use pure matrix grammars
to generate every reachable configuration of Π, and later filter out the halting
configurations.

In order to correctly simulate the transition steps in Π by means of matrices of
context-free productions, we have to avoid that the pairs (x, i) corresponding to
objects produced in a given step are used to trigger rules in the same transition
step. Furthermore, we have to take into account all the sr rules that are applied
in Π (recall that Π works in the sequential mode, so at most one sr rule is applied
in each membrane at each step). We will introduce one matrix for each possible
applicable multiset of sr rules. That is, we will have a specific matrix to simulate
each one of the (|R1|+1)·(|R2|+1) · · · (|Rm|+1) possible combinations of selecting
at most one sr rule from each one of the sets of sr rules associated with the m
membranes of Π.

We are ready now to specify the pure matrix grammar without appearance
checking GΠ = (N, S, M) that simulates Π. Let N = (Γ×{1, . . . , m})∪{S}∪{Aj,i |
1 ≤ i ≤ m, 1 ≤ j ≤ |Ri|} and S /∈ Γ. The set of matrices M is defined as
follows. Let Ri = {ri

1, . . . , r
i
ni
}, for 1 ≤ i ≤ m, and consider an arbitrary set C

consisting of c ≤ m sr rules taken from R1, . . . , Rm (at most one from each set),
C = {ri1

j1
, · · · , ric

jc
}. For each sr rule ri

j : u]
i

−→ v in C we define

avail(ri
j) = {(x1, i)→ Aj,i; (x2, i)→ λ; . . . ; (xk, i)→ λ},

prod(ri
j) = {Aj,i → (y1, i

′)(y2, i
′) · · · (yk′ , i′)},

where u = x1 . . . xk, v = y1 . . . yk′ , and i′ is the surrounding region of i (we proceed
analogously for sr rules u [

i
−→ v, by just exchanging i and i′). Then, for each C as

above, we let M contain the matrix

(
avail(ri1

j1
); . . . ; avail(ric

jc
); prod(ri1

j1
); . . . ; prod(ric

jc
)
)

that simulates the application of rules in C. The set M also includes a matrix
(S → w0), where w0 is a string-representation of the initial configuration of Π.

Thus, we simulate Π by GΠ, in such a way that the language generated by
GΠ corresponds to the string-representation of the reachable configurations of Π.
Now, taking into account the inclusion pMAT ⊂MAT (cf. Section 8.2), we know
that there exists a matrix grammar without appearance checking G such that
L(G) = L(GΠ).

Next, we need to filter out words from L(G) corresponding to the halting con-
figurations of Π. Note that the number of sr rules of Π is finite, and each one of
them has a finite number of symbols on its left hand side. Therefore, the set of
all configurations to which no rules of Π are applicable forms a regular language.
In this way, it is possible to obtain the halting configurations of Π as the inter-
section of L(G) and a regular language. Since the family of languages generated
by matrix grammars without appearance checking is closed under intersection
with regular languages (see [11], Lemma 1.3.5), we deduce that there exists a ma-

184 The Sequential Mode

trix grammar without appearance checking G′ such that L(G′) contains all the
string-representations of the halting configurations of Π.

Finally, we apply the following erasing morphism over the set of halting con-
figurations:

γ((x, i)) =

{
λ if i �= i0,
x if i = i0,

and we get exactly the contents of the output region for every halting configura-
tion, the Parikh image of which are the vectors generated by Π. Thus, taking into
account that MAT is closed under morphisms (see [11], Theorem 1.3.1), we con-
clude that there exists a matrix grammar without appearance checking G′′ that
generates, in the Parikh image sense, the same set of vectors as Π. Therefore, we
have that seqPsCAS∗(cooAR, ant0) ⊆ PsMAT.

Lemma 5
PsMAT ⊆ seqPsCAS2(cooAR, ant0).

Proof
Since RegM �=0 = PsMAT (see Section 8.2) we prove that any register machine
without checking for zero can be simulated by a CAS P system.

Consider an arbitrary register machine M = (k,P , l0, lh) with k registers and
without checking for zero, generating a set of vectors over N

n (that is, registers
from 1 to n are output registers and registers from n+1 to k are working registers).
We define the CAS P system Π = (Γ, μ, w1, w2, R1, R2, i0) as follows:

• Γ = {c1, . . . , ck, l, l0, . . . , ln−1},

• μ = [[]2]1,

• w1 = λ, w2 = l0ll0l1 . . . ln−1c1 . . . ck,

• R1 = ∅,

• the set R2 of cooperative alph-restricted sr rules is defined as follows:

1. for every instruction (li1 : add(j), li2 , li3) ∈ P , R2 contains the following
sr rules: li1 li1 li2cj]

2
−→ li1 li2 li2cjcj ,

li1 li2 li2cjcj [
2

−→ li1 li2 li2cjcj ,
li1 li1 li3cj]

2
−→ li1 li3 li3cjcj ,

li1 li3 li3cjcj [
2

−→ li1 li3 li3cjcj .

2. for every instruction (li1 : sub(j), li2 , lh∗) ∈ P , R2 contains the follow-
ing sr rules: li1 li1 li2cjcj]

2
−→ li1 li2 li2cj and li1 li2 li2cj [

2
−→ li1 li2 li2cj .

3. in addition, R2 contains the following sr rules:
cj]

2
−→ cj and cj [

2
−→ cj for every j ∈ {n+ 1, . . . , k},

l]
2

−→ l, l [
2

−→ l,
c1 . . . cklhll0l1 . . . ln−1]

2
−→ λ.

• i0 = 2.

Chapter 8 185

Since we again deal with cooAR sr rules, we use the same encodings for the
contents of the registers and for the current label of M as we did in the proof of
Theorem 2. The current label of M is represented by exactly one symbol li that
appears in region 2 with multiplicity two (the others have multiplicity one), and
the number ni stored in a register i of M is encoded in Π by multiplicity ni + 1
of symbol ci.

The intuition behind the construction of Π is as follows. The addition instruc-
tion is simulated by just generating one more object for the corresponding register
and replacing a copy of li1 nondeterministically by a copy of either li2 or li3 . For
the subtraction instruction, if the register to which we try to apply the instruc-
tion is zero, then the rule li1 li1 li2cjcj]

2
−→ li1 li2 li2cj cannot be applied. Instead of

getting a non-accepting halting label lh∗ , in Π we avoid halting and accepting in
Π by using the infinite loop given by the execution of the rules l]

2
−→ l, l [

2
−→ l. The

only case when the loop can be interrupted is when the corresponding computa-
tion of M is successful, that is, if the label lh is reached. In this case, Π deletes
l, together with the additional elements cj for all the registers by applying the
rule c1 . . . cklhll0l1 . . . ln−1]

2
−→ λ. Then, we can get the output (the contents of

the registers) from the multiset of objects present in region 2 in the halting con-
figuration. Notice that if any of the working registers rj with j ∈ {n + 1, . . . , k}
is not zero when lh is reached, then Π will not halt, because the corresponding
rules cj]

2
−→ cj and cj [

2
−→ cj will run forever.

Theorem 6
seqPsCAS2(cooAR, ant0) = seqPsCAS∗(cooAR, ant0) = PsMAT.

Proof
By definition, the inclusion seqPsCAS2(cooAR, ant0)⊆ seqPsCAS∗(cooAR, ant0)
holds. By Lemma 4 and Lemma 5 we have the desired result.

Corollary 7
seqPsCAS2(coo, ant0) = seqPsCAS∗(coo, ant0) = PsMAT.

Proof
The proof follows easily from the previous theorem. On the one hand, the same
construction of the matrix grammar used for proving Lemma 4 can be used for the
general cooperative case. On the other hand, it is clear that seqPsCAS2(cooAR,
ant0) ⊆ seqPsCAS2(coo, ant0).

8.6 Unary Rules

We now consider unary sr rules instead of cooperative alph-restricted sr rules.
Recall that unary sr rules are sr rules of the form a]−→ v with v ∈ a∗. Hence, one
object a can move from one region to another and, while crossing the membrane,
it can produce several copies of itself. It turns out that if we also allow standard
antiport rules of weight one, then we get computational universality.

186 Unary Rules

Theorem 8
PsCAS∗(ncooU , ant1) = PsRE.

Proof
In order to prove the computational universality of the model, we rely on the proof
in [26] which provides a construction of a universal P system Π with symport and
antiport rules of weight 1, and with an environment containing an unbounded
supply of objects.

We construct a CAS P system Π′ that simulates the computations of Π as
follows. Since symport rules of weight 1 are a particular case of unary sr rules, we
can include Π as a subsystem of Π′.

In the proof from [26], during the initial steps of a computation the system
receives as an input arbitrarily many objects from the environment, but only one
at each step. Thus, we simulate the “infinite environment” condition by using
repetitive applications of rules that are able to generate an unbounded number of
objects.

More precisely, we consider a new skin membrane surrounding Π that will play
the role of the environment of Π, and two additional elementary membranes in
the new skin region. Let e0, e1, and e2 be the labels for these three membranes,
respectively, and let E = {a1, . . . , an} be the alphabet of the environment of Π
(we refer again to [26]). Finally, we include in our system the initial multiset
we1

= a1ā1 . . . anān, and we consider the following sets of rules:

• Re1
= {ai]

e1
−→ a2

i , āi [
e1

−→ āi | 1 ≤ i ≤ n}.

• Ra
e1
= {(ai, in; āi, out) | 1 ≤ i ≤ n}.

• Re2
= {āi [

e2
−→ āi | 1 ≤ i ≤ n}.

These rules behave as loops that are able to generate new objects ai for every
1 ≤ i ≤ n as long as they continue (the loop for a given i halts when the object
āi gets inside membrane e2). Therefore, such construction can produce nondeter-
ministically arbitrarily many copies of objects ai for 1 ≤ i ≤ n that will be used
by the original system Π to implement the simulation described in the proof from
[26].

We conclude that PsRE ⊆ PsCAS∗(ncooU , ant1), and since
PsCAS∗(ncooU , ant1) ⊆ PsRE is assumed to be true, the theorem holds.

Based on the above theorem we have the following result.

Corollary 9
PsCAS∗(α, ant1) = PsRE, for α ∈ {ncooU , ncoo, cooAR, coo}.

We conclude this section with a preliminary result concerning the generative
power of systems from CAS(ncooU , ant0).

Theorem 10
PsCAS∗(ncooU , ant0) is incomparable with PsFIN .

Chapter 8 187

Proof
On one hand it is clear that PsCAS∗(ncooU , ant0) contains an infinite set of
vectors. Moreover PsCAS∗(ncooU , ant0) does not contain, for instance, the finite
set {(2, 3), (3, 4)}. Every system from CAS(ncooU , ant0) that generates the vectors
(2, 3) and (3, 4) can also generate the vectors (2, 4) and (3, 3) because the rules
producing distinct symbols are noncooperative and unary, hence independent.

8.7 Unidirectional Membranes

In this section we consider a constraint on the form of the rules for systems in
CAS(ncooU , ant1), which strengthens the selective role of membranes in regulating
the traffic of molecules through them. More specifically, this restriction makes
the traffic strictly unidirectional: if a molecule can pass through a membrane in
one direction, then it cannot pass through the same membrane in the opposite
direction. Such a restriction is natural from the biological point of view: e.g., if
a toxic substance is secreted from a cell through its membrane, then it should
not be allowed to go back. This is interesting also from mathematical point of
view, because it turns out to be a real restriction: we get a model that is not
computationally universal.

This restriction is formally defined as follows. Let

Π = (Γ, μ, w1, . . . , wm, R1, . . . , Rm, Ra
1 , . . . , Ra

m, i0)

be a CAS(ncoo, ant1) P system. Let, for i ∈ {1, . . . , m},

Ini = {a ∈ Γ | (a, v, in) ∈ Ri, v ∈ Γ
∗ or (a, in; b, out) ∈ Ra

i , b ∈ Γ},

Outi = {a ∈ Γ | (a, v, out) ∈ Ri, v ∈ Γ
∗ or (b, in; a, out) ∈ Ra

i , b ∈ Γ}.

Then Π is called unidirectional if Ini and Outi are disjoint for all i ∈ {1, . . . , m}.
The class of all unidirectional systems in CAS(ncoo, ant1) is denoted uniCAS(ncoo,
ant1). Moreover, for a set of sr rules R, we define max(R) = max{|v| | (a, v, in) ∈
R or (a, v, out) ∈ R}. For a configuration C we use tob(C) to denote the total
number of objects (thus with multiplicities counted) present in all the regions in
C. The main consequence of unidirectionality is expressed in the following lemma.

Lemma 11
Let Π ∈ uniCAS(ncooU , ant1), let w be the multiset of objects initially present in
Π, and let R be the set of all sr rules in Π. Then for every reachable configuration
C in Π, tob(C) ≤ |w| · (weight(R))m.

Proof
The unidirectionality of Π implies that no object in Π during any computation can
cross the same membrane twice. Therefore, the upper bound on the total number
of membranes crossed by an object in any computation is given by m. Since in
one crossing each object cannot generate more than weight(R) objects and |w| is
the number of objects in the initial configuration, |w| · (weight(R))

m is indeed an

188 Unidirectional Membranes

upper bound on the total number of objects in every reachable configuration in
Π.

The next theorem shows that unidirectional P systems with unary sr rules and
antiport rules of weight 1 generate only finite sets of vectors.

Theorem 12
uniPsCAS∗(ncooU , ant1) = PsFIN.

Proof
Consider an arbitrary Π ∈ uniCAS(ncooU , ant1). By Lemma 11 the total number
of objects in Π is bounded, and so the number of possible reachable configurations
is finite. Therefore, uniPsCAS∗(ncooU , ant1) is also finite.

In order to prove the reverse inclusion, consider a finite set A of vectors of
dimension n, and let m = |A|. We construct ΠA ∈ uniCAS(ncooU , ant1) that
generates A as follows.

ΠA = (Γ, μ, w1, . . . , w2m+2, R1, . . . , R2m+2, R
a
1 , . . . , Ra

2m+2, i0),

where:

• Γ = {S, a1, . . . , an};

• μ = [[[]3]2 . . . [[]2m+1]2m []2m+2]1;

• w1 = S, w2m+2 = λ, and w2j = λ, w2j+1 = a1 . . . an, for 1 ≤ j ≤ m;

• The output membrane is i0 = 2m+ 2;

• R1 = ∅, R2m+2 = {(ai, ai, in) | 1 ≤ i ≤ n}, and Ra
1 = Ra

2m+2 = ∅. For
1 ≤ j ≤ m we have
R2j = {(S, Sn, in)} ∪ {(ai, a

xji

i , out) | 1 ≤ i ≤ n, vj = (xj1, . . . , xjn)},
Ra

2j = ∅,
R2j+1 = ∅,
Ra

2j+1 = {(S, in; ai, out) | 1 ≤ i ≤ n}.

The alphabet Γ consists of one symbol ai for each component of the vectors, plus
an additional starting symbol S. The membrane structure is set up as follows.
For each vector vj ∈ A we have two membranes (labelled by 2j and 2j+1) in the
membrane structure, and we also have another membrane to collect the output.
The initial configuration contains object S in the skin, and the multiset a1 . . . an

placed in all the regions delimited by elementary membranes (except for region
2m+ 2).

The computation in ΠA proceeds as follows. In the first step, the object S
enters a nondeterministically chosen membrane labelled by 2j, 1 ≤ j ≤ m, and it
produces n copies of itself. Then, objects a1, . . . , an present in region 2j + 1 are
exchanged via antiport rules against the n copies of S. In the next step, all those
objects ai cross membrane 2j towards the skin region, producing several copies

Chapter 8 189

of themselves, according to the components of vector vj . Finally, all these objects
go to the output region (via sr rules of weight 1), and the computation stops.
Consequently, we have PsFIN ⊆ uniPsCAS∗(ncooU , ant1), and so the theorem
follows.

The unidirectional restriction has the intuitive meaning of letting each object
cross a membrane only in one direction. Note that it is easy to overcome this
restriction in the case when the objects can be rewritten. Indeed, we will see in
the next section that the unidirectional restriction does not decrease the power of
the model if the sr rules are not unary.

8.8 Noncooperative Rules

We turn now to CAS P systems using noncooperative sr rules (without antiport
rules). We will prove that such systems are not universal. In this proof we will use
the class of P systems with symbol rewriting noncooperative rules using targets
[21], which we denote by OP (ncoo). Let PsOP (ncoo) be the family of sets of
vectors generated by the P systems in the class OP (ncoo).

Theorem 13
uniPsCAS2(ncoo, ant0) = PsCAS∗(ncoo, ant0) = PsCF.

Proof
First of all we recall (from [21]) that PsOP (ncoo) = PsCF . Using this result we
need to prove two more inclusions in order to demonstrate the theorem.

1. P sCAS∗(ncoo, ant0) ⊆ PsOP (ncoo).

This inclusion holds because any Π ∈ CAS(ncoo, ant0) can be reformulated as
a P system Π′ ∈ OP (ncoo) with symbol-objects and noncooperative rules using
targets in such a way that Ps(Π′) = Ps(Π). This reformulation is done as follows.

The system Π′ has the same alphabet, membrane structure and output region
as Π. The sr rules a]

i
−→ v from Π are reformulated as a → (y1, out)(y2, out) . . .

(yk, out) ∈ Ri in Π′ where v = y1 . . . yk. Analogously, sr rules a [
i

−→ v from Π are
reformulated as rules a → (y1, ini)(y2, ini) . . . (yk, ini) ∈ Rj in Π′, where j is the
surrounding region of i.

Obviously, Ps(Π′) = Ps(Π), and hence the inclusion holds.

2. P sOP (ncoo) ⊆ uniPsCAS2(ncoo, ant0).

Let Π = (Γ, μ, w1, . . . , wm, R1, . . . , Rm, i0) ∈ OP (ncoo). Let then

Π′ = (Γ′, μ′, w′1, w
′
2, R

′
1, R

′
2, 2) ∈ CAS2(ncoo, ant0)

be defined as follows

• Γ′ = Γ× {1, . . . , m}.

190 Deciding Boundness

• μ′ = [[]2]1.

• w′1 = λ and w′2 = h1(w1) · · ·hm(wm), where for 1 ≤ i ≤ m, hi is the
morphism defined by hi(x) = (x, i) for x ∈ Γ.

• There are no sr rules associated with the skin (R′1 = ∅).

• For each rule rt : a→ u ∈ Ri of Π, we include in R′2 two sr rules:

– (a, i)]
2

−→ At,

– At [
2

−→ v,

where v is obtained by adding (x, i) for each (x, here) ∈ u, adding (x, k)
for each (x, ink) ∈ u, and adding (x, j) for each (x, out) ∈ u where j is the
surrounding region of i.

• i′0 = 2.

Note that in Π′ we have collapsed the membrane hierarchy of Π: for each
object x in Π a pair (x, i) is introduced which specifies the region i of object x.

The simulation of Π by Π′ proceeds as follows. First, we encode into w′2 the
multisets w1, . . . , wm present in the initial configuration of Π using the morphisms
hi, 1 ≤ i ≤ m. Then, each transition step of Π is simulated in Π′ in two steps: a
special object is sent out to region 1 for each rule from Π that has been triggered,
and then this object returns into region 2 generating the products of the applica-
tion of that rule in Π, taking into account the target indicators. This process is
iterated until the system stops, and the output is collected in region 2 (the inner
region). Consequently, we have that PsOP (ncoo) ⊆ uniPsCAS2(ncoo, ant0).

8.9 Deciding Boundness

We say that a membrane system is bounded if there exists a positive integer k such
that in any region of any reachable configuration the cardinality of the multiset
of objects present in the region does not exceed k.

It is easily seen that the boundness property is undecidable for arbitrary CAS
P systems. In this section we show that it is decidable for CAS P systems using
noncooperative sr rules.

In the proof of this result we will use the notion of dependency graph. This
idea comes from classical formal language theory, but it has not been used in the
P systems framework until recently (see [9]).

Definition 14
Let Π = (Γ, μ, w1, . . . , wm, R1, . . . , Rm, i0) be a CAS P system with noncoopera-
tive sr rules. The dependency graph associated with it, gΠ, is defined as follows:

• Nodes: Γ× {1, . . . , m} and a special node O.

Chapter 8 191

• Edges: First, we include an edge O
p
→ (a, i) for every a ∈ Γ and 1 ≤ i ≤ m

such that |wi|a = p. In this way we include in the graph information about
the initial configuration.
Then, we add an edge (a, i)

p
→ (b, j) for any sr rule a]

i
−→ u ∈ Ri, where

|u|b = p > 0 and j is the surrounding region of i.
Analogously, we add an edge (a, j)

p
→ (b, i) for any sr rule a [

i
−→ u ∈ Ri,

where |u|b = p > 0 and j is the surrounding region of i.

We also add one edge from (a, j) to itself with weight 1 (a, j)
1
→ (a, j), if

there is no sr rule a]
j

−→ u and no sr rule a [
i

−→ u for any i such that j is its
surrounding region.

Clearly, the labels of the edges represent the multiplicity of the created objects.
Since sr rules are applied in parallel, it is natural to define the weight of a path
in gΠ as the multiplication of the labels of its edges.

Theorem 15
Let Π ∈ CAS(ncoo, ant0), and let D ⊆ ΓΠ. It is decidable whether or not there
exists k ∈ N such that no region in any reachable configuration of Π contains
more than k objects.

Proof
We present a constructive proof, describing an algorithmic procedure to decide
if there exists such k for an arbitrary region ρ of Π. To this aim we will use the
dependency graph associated with Π, denoted by gΠ.

We say that in a given dependency graph there is a “growing loop” for objects
from D in region ρ if there exists a circular path in gΠ such that:

1. at least one of its edges has a label greater than 1,

2. at least one node of the form (a, ρ) with a ∈ D is reachable from any of the
nodes in the circular path,

3. at least one node of such a circular path is reachable from the special node
O of gΠ.

The algorithm consists of checking if there exists a “growing loop” that is able
to eventually produce an unbounded number of objects from D in region ρ. Since
gΠ is finite, this can be decided.

If such a loop exists, then we conclude that the number of objects from D in
ρ is not bounded.

Conversely, if such a loop does not exist, then there exists an upper bound on
the number of objects from D in region ρ.

Thus, applying the above described algorithm for all the regions of Π we can
decide the existence of a bound on the number of objects.

Corollary 16
It is decidable whether or not an arbitrary Π ∈CAS(ncoo, ant0) is bounded.

192 Discussion

Proof
The proof follows from Theorem 15, by simply setting the entire alphabet of Π
as the set D.

In this section we provided a direct proof that the boundness property is
decidable for CAS P systems with noncooperative sr rules. Note that one can
also construct an indirect proof of this result using Theorem 13. Indeed, one can
construct for each such CAS P system a context-free grammar generating the
same language. Now using well known results from context-free grammars one
obtains the boundness result.

8.10 Discussion

In standard membrane systems, the evolution (of objects) takes place in regions,
and communication happens across membranes. In this chapter we have defined a
class of membrane systems where membranes play a more central role: both com-
munication and evolution are associated with membranes, and moreover evolution
happens only as a result of communication.

We have presented an investigation of the generative power of CAS P systems.
In particular, we have attempted to find out, in a systematic way, how various
features/mechanisms of such systems influence their power.

First of all, we have shown that if there is some context-sensitivity in the system
(that is, if we allow cooperative sr rules) then one obtains the computational
universality, even if only cooperative alph-restricted sr rules (cooAR) are used:

PsCAS2(cooAR, ant0) = PsRE.

Also, allowing antiport rules makes the CAS P systems computationally universal,
irrespectively of the type of sr rules used:

PsCAS∗(ncooU , ant1) = PsRE.

Since antiports are rules where two objects residing in different sides of a mem-
brane cooperate to exchange their positions, this supports the “context-sensitive”
intuition of universality.

Thus “cooperation” is crucial for the control of communication in order to reach
computational universality (this cooperation can be achieved by using antiport
rules or by using cooperative sr rules).

We turned then to other ways of controlling communication. First, we studied
the consequences of not allowing the parallel application of several sr rules on
the same membrane (seq mode), and then we also explored the case when the
communication channels are only unidirectional for each object. In both cases the
computational universality is lost:

seqPsCAS∗(cooAR, ant0) = PsMAT,

uniPsCAS∗(ncooU , ant1) = PsFIN.

Chapter 8 193

Finally, we have shown that computational universality is also lost if we ex-
plicitly required that the sr rules are noncooperative. This remains true even if
we control the communication through membranes by unidirectionality:

PsCAS∗(ncoo, ant0) = PsCF,

uniPsCAS2(ncoo, ant0) = PsCAS∗(ncoo, ant0).

These results are summarized in Figure 8.2. To avoid too cumbersome nota-
tion we omit here the subscripts indicating the number of membranes used. The
identities involving cooAR are also omitted, since they are equivalent to the coo
case.

In order to get a better understanding of various features/mechanisms used
in membrane systems, an even more systematic study is needed. Hence, e.g., one
could consider “basic models” such as CAS P systems with unary sr rules (and
without antiports), and determine their generating power.

It is somehow surprising to find out that PsCAS(ncooU , ant0) is incomparable
with PsFIN .

Another interesting line of research is to study different ways of restricting
the parallelism. In Section 8.7 we have studied membrane systems where at most
one sr rule is applied on each membrane, but we allow that a membrane remains
inactive even if there are applicable sr rules for it (sequential mode). If we impose
the maximality condition to such sequential mode, which forces that at least one
sr rule is applied on each membrane (provided that there are applicable rules for
it), then we get some control over the application of the sr rules in the systems,
and we again reach computational universality for the cooperative case. Thus,
max-seqPsCAS(coo, ant0) �= seqPsCAS(coo, ant0). What is the situation in the
noncooperative case?

Finally, it would be interesting to investigate the effect of minimal parallelism
(see, [8]) in the framework of CAS P systems.

194 Discussion

PsCAS(coo, ant0) = PsCAS(ncooU , ant1) = PsRE

seqPsCAS(coo, ant0) = PsMAT

uniPsCAS(ncoo, ant0) = PsCAS(ncoo, ant0) = PsCF

uniPsCAS(ncooU , ant1) = PsFIN

Figure 8.2: Hierarchy of families of sets of vectors computed by CAS P systems.
Arrows indicate strict inclusions of the lower family in the upper family.

