

Edinburgh Research Explorer

Foundations of Differential Dataflow
Citation for published version:
Abadi, M, McSherry, F & Plotkin, G 2015, Foundations of Differential Dataflow. in A Pitts (ed.), Foundations
of Software Science and Computation Structures: 18th International Conference, FOSSACS 2015, Held as
Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2015, London, UK,
April 11-18, 2015, Proceedings. Lecture Notes in Computer Science, vol. 9034, Springer Berlin Heidelberg,
pp. 71-83. DOI: 10.1007/978-3-662-46678-0_5

Digital Object Identifier (DOI):
10.1007/978-3-662-46678-0_5

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Foundations of Software Science and Computation Structures

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 05. Apr. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/43712629?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1007/978-3-662-46678-0_5
https://www.research.ed.ac.uk/portal/en/publications/foundations-of-differential-dataflow(522158de-21a9-415a-bd6e-55b311cb7fd8).html

Foundations of Differential Dataflow

Mart́ın Abadi1,2 Frank McSherry Gordon D. Plotkin1,3

1 Microsoft Research
2 University of California at Santa Cruz

3 LFCS, School of Informatics, University of Edinburgh

Abstract. Differential dataflow is a recent approach to incremental
computation that relies on a partially ordered set of differences. In the
present paper, we aim to develop its foundations. We define a small pro-
gramming language whose types are abelian groups, with both a standard
and a differential denotational semantics. The two semantics coincide in
that the differential semantics is the differential of the standard one.
Möbius inversion, a well-known idea from combinatorics, permits a sys-
tematic treatment of various operators and constructs.

1 Introduction

Differential computation [2] is a recent approach to incremental computa-
tion (see, e.g., [1,3]) that relies on a partially ordered collection of versions
of data. In its intended implementations, the set of updates required to
reconstruct any given version is retained in a data structure indexed by
the partial order, rather than consolidated into a “current” version. For
example, in an iterative algorithm with two nested loops with counters
i and j, differential computation may associate a version with each pair
(i, j) (with the product order on such pairs). Then an implementation
may re-use work done at all (i′, j′) < (i, j) to compute the (i, j)-th ver-
sion. We model such collections of data as functions from the partial order
to the possible data versions, and call them streams.

Differential dataflow is an instantiation of differential computation
in a data-parallel dataflow setting. In such a setting the data used are
large collections of records and the fundamental operators are indepen-
dently applied to disjoint parts of their inputs. Differential computation
preserves the sparseness of input differences in the output, as an output
can change only if its input has changed. The result can be very concise
representations and efficient updates. The Naiad system [4] includes a
realization of differential dataflow that supports high-throughput, low-
latency computations on large datasets with frequent updates.

Differential dataflow aims to avoid redundant computation by replac-
ing the versions of its collection-valued variables with versions of dif-

ferences. These may have negative multiplicities, so that a version At
of a stream A is the sum of the differences (δA)s at versions s ≤ t:
At =

∑
s≤t δAs. The formula resembles those used in incremental com-

putation, where s, t ∈ N, but permits more general orders.

Functions on streams A are replaced by their differentials, operating
on the corresponding difference streams δA, and responsible for produc-
ing corresponding output difference streams. In particular, as established
in [2], the product order Nk enables very efficient nested iterative differ-
ential computation, because each nested iteration can selectively re-use
some of the previously computed differences, but is not required to use
all of them. Efficiently updating the state of an iterative computation is
challenging, and is the main feature of differential dataflow.

In the present paper we aim to develop the foundations of differential
dataflow. We show that the use of collections allowing negative multiplic-
ities and product partial orders of the natural numbers are special cases
of general differential computation on abelian groups and locally finite
partial orders. We demonstrate the relevance and usefulness of Möbius
inversion, a well-known idea from combinatorics (see, for example, [5,6]),
to understanding and verifying properties of function differentials.

Specifically, we consider the question of finding the differential of a
computation given by a program in a small programming language that
includes nested iteration. To this end, we define both a standard denota-
tional semantics for the language and a differential one. Our main theorem
(Theorem 1 below) states that the semantics are consistent in that the
differential semantics is the differential of the standard semantics. Möbius
inversion is central to these results.

In Section 2 we lay the mathematical foundations for differential com-
putation. We discuss how abelian groups arise naturally when considering
collections with negative multiplicities. We explain Möbius inversion for
spaces of functions from partial orders to abelian groups. We then define
function differentials, giving some examples. In particular, we derive some
formulas for such differentials, previously set out without justification [2].

In Section 3 we consider loops. Two policies for loop egress are men-
tioned in [2]: exit after a fixed number of iterations and exit on a first
repetition. We consider only the first of these, as it is the one used in
practice and mathematically simpler; the second would require the use of
partial functions from partial orders to groups.

In Section 4 we present the language and its two semantics, and estab-
lish Theorem 1. As noted above, the semantics are denotational, defining
what is computed, rather than how; going further, it may be attractive to

describe an operational semantics in terms of the propagation of differ-
ences in a dataflow graph, somewhat closer to Naiad’s implementation.

In Section 5 we discuss the treatment of prioritization, a technique
from [2] aimed at supporting nested iterative computations starting from
where they last left off for each outer iteration, rather than restarting.
The treatment of priorities in [2] via lexicographic products of partial
orders does not correctly support more than one nested loop (despite
the suggestion there that it should); further, the treatment of differential
aspects is incomplete, and it is not clear how to proceed. We instead
propose a simpler rule and show that it correctly achieves the goal of
arbitrary prioritized computation.

We conclude in Section 6, and discuss some possible future work.

2 Mathematical foundations

The mathematical foundations of differential dataflow concern: data or-
ganised into abelian groups; version-indexed streams of data and their
differentials, which are obtained by Möbius transformation; and stream
operations and their differentials, which, in their turn, operate on stream
differentials. These three topics are covered in Sections 2.1, 2.2, and 2.3.

2.1 Abelian groups

Abelian groups play a major role in our theory, arising from negative
multiplicities. The set of collections, or multisets, C(X) over a set X can
be defined as the functions c : X → N that are 0 almost everywhere. It
forms a commutative monoid under multiset union, defined pointwise by:
(c∪d)(x) = c(x)+d(x). The set of multisets A(X) with possibly negative
multiplicities is obtained by replacing N by Z; it forms an abelian group
under pointwise sum. A similar example is provided by the commutative
monoid R+ of the positive reals and the abelian group R of all reals.

A function between commutative monoids is linear if it preserves fi-
nite sums, e.g., selection and aggregation can provide linear functions
from C(X) to commutative monoids such as C(Y) and R+. These func-
tions lift to the corresponding groups: every linear f : C(X) → G, with
G an abelian group, has a unique linear extension f : A(X) → G
given by f(c) =

∑
x∈X c(x)f(x). These observations exemplify a well-

known general construction universally embedding cancellative commu-
tative monoids in abelian groups.

2.2 Versions, streams, and Möbius inversion.

We work with a general notion of version, viz. locally finite partial orders,
that is partial orders T such that, for t ∈ T , ↓ t is finite (↓ t is {t′ | t′ ≤ t}).
Examples include finite products of N, as indicated above, and the finite
powerset partial order Pfin(I). We think of functions from T to G as
T -indexed streams of elements of G.

The Möbius coefficients µT (t′, t) ∈ Z, with t′ ≤ t, are given by the
following recursion:

µT (t′, t) =

0 (t′ 6≤ t)
1 (t′ = t)
−
∑

t′≤r<t µT (t′, r) (t′ < t)

For example for T = N (the natural numbers with their usual ordering),
µN(n′, n) is 1, if n′ = n, is −1, if n′ = n − 1, and is 0, otherwise; for
X ⊆ Y ⊆fin I, µ(X,Y) = −1#(Y \X). For product partial orders one has:
µS×T ((s′, t′), (s, t)) = µS(s′, s)µT (t′, t).

The Möbius transformation of a function f : T → G, where G is an
abelian group, is given by:

δT (f)(t) =
∑
t′≤t

µT (t′, t)f(t′)

For example δN(f)(n) = f(n)− f(n− 1), if n > 0, and = f(0) if n = 0.
Defining

ST (f)(t) =
∑
t′≤t

f(t′)

we obtain the famous Möbius inversion formulas:

ST (δT (f)) = f = δT (ST (f))

See, for example, [5,6]. Expanded out, these formulas read:

f(t) =
∑
t′≤t

∑
t′′≤t′

µT (t′′, t′)f(t′′) f(t) =
∑
t′≤t

µT (t′, t)
∑
t′′≤t′

f(t′′)

The collection GT of all T -indexed streams of elements of G forms an
abelian group under pointwise addition. We would further like to iterate
this function space construction to obtain the doubly indexed functions
mentioned in the introduction; we would also like to consider products
of such groups. It is therefore natural to generalise to abelian groups G

equipped with linear inverses G
δG−→ G

SG−−→ G. A simple example is any
abelian group G, such as A(X), with δG = SG = idG, the identity on G.

For such a G and a locally finite partial order T we define linear

inverses GT
δ
GT−−→ GT

S
GT−−−→ GT on GT by setting:

δGT (f) =
∑
t′≤t

µT (t′, t)δG(f(t′)) and SGT (f) =
∑
t′≤t

SG(f(t′))

It is clear that δGP and SGP are linear; we check they are mutually inverse:

δGP (SGP (x))(t) =
∑

t′≤t µ(t′, t)δG(SGP (x)(t′))

=
∑

t′≤t µ(t′, t)δG(
∑

t′′≤t′ SG(x(t′′)))

=
∑

t′≤t
∑

t′′≤t′ µ(t′, t)δG(SG(x(t′′))) (as δG is linear)

=
∑

t′≤t µ(t′, t)
∑

t′′≤t′ x(t′′)

= x(t) (by the Möbius inversion formula)

SGP (δGP (x))(t) =
∑

t′≤t SG(δGP (x)(t′))

=
∑

t′≤t SG(
∑

t′′≤t′ µ(t′′, t′)δG(x(t′′)))

=
∑

t′≤t
∑

t′′≤t′ µ(t′′, t′)SG(δG(x(t′′))) (as SG is linear)

=
∑

t′≤t
∑

t′′≤t′ µ(t′′, t′)x(t′′)

= x(t) (by the Möbius inversion formula)

Iterating the stream construction enables us to avoid the explicit use
of product partial orders, as the group isomorphism (GT)T

′ ∼= GT×T
′

extends to an isomorphism of their linear inverses.

As for products, given two abelian groupsG andH with linear inverses
δG, SG and δH , SH , we construct linear inverses δG×H and SG×H for G×H
by setting: δG×H(c, d) = (δG(c), δH(d)) and SG×H(c, d) = (SG(c), SH(d)).
We write π0 and π1 for the first and second projections.

2.3 Function differentials.

The differential of a function f : G → H is the function δ(f) : G → H
where:

δ(f) =def δH ◦ f ◦ SG .

The definition applies to n-ary functions, e.g., for f : G × H → K
we have δ(f)(c, d) = δK(f(SG(c), SH(d))). With this definition we have
δ(f)(δG(c)) = δH(f(c)), suggesting that straight-line programs written
using such functions can be recast differentially by replacing both streams
and functions with their corresponding differentials. Efficient differential

implementations were developed in [2] for several important classes of
primitive functions (e.g., selection, projection, relational joins).

A function f : G→ H can be lifted by a partial order T to a function
fT : GT → HT defined element-wise as:

fT (c)t = f(ct)

The most common case is when T = N, corresponding to the lifting of
an arbitrary function f to one whose inputs may vary sequentially, either
because the function is to be placed within a loop or because the inputs
may change due to external stimulus.

The following proposition relates the differential of a lifted function
to its own differential using Möbius coefficients. It proves the correct-
ness of some implementations from [2], specifically that some lifted linear
functions, such as selection and projection, are their own differentials.

Proposition 1. For any c ∈ GT and t ∈ T we have:

1.
δ(fT)(c)t =

∑
t′≤t

µ(t′, t)δ(f)(
∑
t′′≤t′

ct′′)

2. If, further, f is linear then we have: δ(fT)(c)t = δ(f)(ct).
3. If, yet further, δ(f) = f then δ(fT) = fT , that is, δ(fT)(c)t = f(ct).

Proof. 1. We calculate:

δ(fT)(c)t =
∑

t′≤t µ(t′, t)δH(fT (SGT (c))t′)

=
∑

t′≤t µ(t′, t)δH(f(SGT (c)t′))

=
∑

t′≤t µ(t′, t)δH(f(
∑

t′′≤t′ SG(c)t′′))

=
∑

t′≤t µ(t′, t)δH(f(SG(
∑

t′≤t′ ct′′)))

=
∑

t′≤t µ(t′, t)δ(f)(
∑

t′′≤t′ ct′′)

2. If f is linear so is δ(f) and then, continuing the previous calculation:

δ(fT)(c)t =
∑

t′≤t µ(t′, t)δ(f)(
∑

t′′≤t′ ct′′)

=
∑

t′≤t µ(t′, t)
∑

t′′≤t′ δ(f)(ct′′)

= δ(f)(ct)

3. This is an immediate consequence of the previous part.
ut

For binary functions f : G×H → K, we define fT : GT ×HT → KT

by fT (c, d)t = f(ct, dt). In the case T = N a straightforward calculation
shows that if f is bilinear (i.e., linear in each of its arguments) then:

δ(fN)(c, d)n = δ(f)(cn, δ(d)n) + δ(f)(δ(c)n, dn)− δ(f)(δ(c)n, δ(d)n)

justifying the implementations in [2] of differentials of lifted bilinear func-
tions such as relational join. The equation generalises to forests, i.e., the
locally finite partial orders whose restriction to any ↓ t is linear.

The following proposition (proof omitted) applies more generally. Part
2 justifies the implementation of binary function differentials in [2].

Proposition 2. For any c ∈ GT , d ∈ HT , and t ∈ T we have:

1.

δ(fT)(c, d)t =
∑
t′≤t

µ(t′, t)δ(f)(
∑
t′′≤t′

ct′′ ,
∑
t′′≤t′

dt′′)

2. If, further, f is bilinear (i.e., linear in each argument separately), and
T has binary sups then we have:

δ(fT)(c, d)t =
∑
r, s

r ∨ s = t

δ(f)(cr, ds)

3. If, yet further, δ(f) = f we have:

δ(fT)(c, d)t =
∑
r, s

r ∨ s = t

f(cr, ds)

3 Loops

To develop the differential of an iterative computation we use the same
construction as in [2], but require additional formalism to establish the
correctness of the construction, as well as to be able to generalize it suf-
ficiently to correctly support prioritization. Loops follow the dataflow
computation pictured in Figure 1.

The Ingress node introduces input to a loop, and is modelled by the
function in : G→ GN where:

in(c)i =def

{
c (i = 0)
0 (i > 0)

The Feedback node advances values from one iteration to the next, and
is modelled by the function fb : GN → GN where:

fb(c)i =def

{
0 (i = 0)
ci−1 (i > 0)

grow without bound as t increases. In practice, δA can
be thought of like a (partially ordered) log of updates that
have occurred so far. If we know that no further updates
will be received for any versions t < t0 then all the updates
up to version t0 can be consolidated into the equivalent of
a checkpoint, potentially saving both storage cost and com-
putational effort in reconstruction. The Naiad prototype
includes this consolidation step, but the details are beyond
the scope of this paper.

4. DIFFERENTIAL DATAFLOW
We now present our realization of differential computa-

tion: differential dataflow. As discussed in Section 6, incre-
mental computation has been introduced in a wide variety
of settings. We chose a declarative dataflow framework for
the first implementation of differential computation because
we believe it is well suited to the data-parallel analysis tasks
that are our primary motivating application.

In common with existing work on query planning and
data-parallel processing, we model a dataflow computation
as a directed graph in which vertices correspond to program
inputs, program outputs, or operators (e.g. Select, Join,
GroupBy), and edges indicate the use of the output of one
vertex as an input to another. In general a dataflow graph
may have multiple inputs and outputs. A dataflow graph
may be cyclic, but in the framework of this paper we only
allow the system to introduce cycles in support of fixed-point
subcomputations.

4.1 Language
Our declarative query language is based on the .NET Lan-

guage Integrated Query (LINQ) feature, which extends C#
with declarative operators, such as Select, Where, Join and
GroupBy, among others, that are applied to strongly typed
collections [5]. Each operator corresponds to a dataflow ver-
tex, with incoming edges from one or two source operators.

We extend LINQ with two new query methods to exploit
differental dataflow:

// result corresponds to body^infty(source)
Collection<T> FixedPoint(Collection<T> source,

Func<Collection<T>,Collection<T>> body)

// FixedPoint variant which sequentially introduces
// source records according to priorityFunc
Collection<T> PrioritizedFP(Collection<T> source,

Func<T, int> priorityFunc,
Func<Collection<T>,Collection<T>> body)

FixedPoint takes a source collection (of some record type
T), and a function from collections of T to collections of the
same type. This function represents the body of the loop,
and may include nested FixedPoint invocations; it results
in a cyclic dataflow subgraph in which the result of the body
is fed back to the next loop iteration.
PrioritizedFP additionally takes a function, priority-

Func, that is applied to every record in the source collec-
tion and denotes the order in which those records should
be introduced into the body. For each unique priority in
turn, records having that priority are added to the current
state, and the loop iterates to fixed-point convergence on
the records introduced so far. We will explain the semantics
more precisely in the following subsection.

The two methods take as their bodies arbitrary differential
dataflow queries, which may include further looping and se-

!""#$%"&'$(")*+,$

-)
./
01
1$

2.
/0
11
$

300&%+*4$

$$

Figure 5: The dataflow template for a computation
that iteratively applies the loop body to the input
X, until fixed-point is reached.

quencing instructions. The system manages the complexity
of the partial orders, and hides the details from the user.

4.2 Collection dataflow
In this subsection, we describe how to transform a pro-

gram written using the declarative language above into a
cyclic dataflow graph. We describe the graph in a standard
dataflow model in which operators act on whole collections
at once, because this simplifies the description of operator
semantics. In Section 4.3 we will describe how to modify the
dataflow operators to operate on differences, and Section 4.4
sketches how the system schedules computation.

Recall from Section 3.2 that collection traces model col-
lections that are versioned according to a partial order. We
require that all inputs to an operator vary with the same
partial order, but a straightforward order embedding exists
for all partial orders that we consider, implemented using
the Extend operator:

[Extend(A)](t,i) = At .

The Extend operator allows collections defined outside a
fixed-point loop to be used within it. For example, the col-
lection of edges in a connected components computation is
constant with respect to the loop iteration i, and Extend is
used when referring to the edges within the loop.

Standard LINQ operators such as Select, Where, GroupBy,
Join, and Concat each correspond to single vertices in the
dataflow graph and have their usual collection semantics
lifted to apply to collection traces.

Fixed-point operator.
Although the fixed-point operator is informally as simple

as a loop body and a back edge, we must carefully handle
the introduction and removal of the new integer coordinate
corresponding to the loop index. A fixed-point loop can be
built from three new operators (Figure 5): an ingress vertex
that extends the partial order to include a new integer co-
ordinate, a feedback vertex that provides the output of the
loop body as input to subsequent iterations, and an egress
vertex that strips off the loop index from the partial order
and returns the fixed point. (The standard Concat oper-
ator is used to concatenate the outputs of the ingress and
feedback vertices.)

More precisely, if the input collection X already varies
with a partial order T , the ingress operator produces the

Fig. 1. A loop (reproduced with permission from [2])

The Concat node merges the input and feedback streams, and is modelled
by the function +GT : GT × GT → GT . The Egress node effects the
fixed-iteration-number loop egress policy, returning the value at some
kth iteration, and is modelled by the function outk : GN → G where:

outk(c) = ck

In addition, the loop body is modelled by a function fN : GN → GN for a
given function f on G.

The loop is intended to output an N-indexed stream s ∈ GN at W ,
starting at f(c), where c ∈ G is input at X, and then successively out-
put f2(c), f3(c), It is more convenient, and a little more general,
to take the output just after Concat, obtaining instead the sequence
c, f(c), f2(c), This s is a solution of the fixed-point equation:

d = in(c) + fb(fN(d)) (1)

Indeed it is the unique solution, as one easily checks that the equation is
equivalent to the following iteration equations:

d0 = c dn+1 = f(dn)

which recursively determine d. The output of the loop is obtained by
applying outk to s, and so the whole loop construct computes fk(c).

The differential version of the loop employs the differential versions
of in, fb, and out, so we first check these agree with [2].

Proposition 3. The differentials of in, fb, and out satisfy:

δ(in)(c)i =

c (i = 0)
−c (i = 1)
0 (i ≥ 2)

δ(fb) = fb δ(outk)(c) =
∑
m≤k

cm

Proof. 1. We have:

δ(in)(c)(j) = δGN(in(SG(c))(j) =
∑

i≤j µ(i, j)δG(in(SG(c))(i))

Then we see that if j = 0, this is δG(in(SG(c))(0)) = δG(SG(c)) = c;
if j = 1, this is δG(in(SG(c))(1)) − δG(in(SG(c))(0)) = 0 − c; and if
j ≥ 2, this is δG(in(SG(c))(j))− δG(in(SG(c))(j − 1)) = 0− 0.

2. It suffices to show fb preserves S, i.e., fb(SGT (c))j = SGT (fb(c))j , for
all j ∈ N. In case j = 0, both sides are 0. Otherwise we have:

fb(SGT (c))j = SGT (c)j−1
=
∑

i≤j−1 SG(ci)

=
∑

1≤i≤j SG(ci−1)

=
∑

i≤j SG(fb(c)i)

= SGT (fb(c))j

3. We calculate:

δ(outk)(c) = δG(outk(SGT (c))
= δG(outk(m 7→

∑
m′≤m SG(cm′)))

= δG(
∑

m≤k SG(cm))

=
∑

m≤k cm
ut

As the differential version of the loop employs the differential versions
of in, etc, one expects δ(s) to satisfy the following equation:

d = δ(in)(δ(c)) + fb(δ(fN)(d)) (2)

since + and fb are their own differentials. In fact exactly this equation
arises if we differentiate Equation 1. More precisely, Equation 1 specifies
that d is a fixed point of F , where F (d) =def in(c) +fb(fN(d)). One then
calculates δ(F):

δ(F)(d) = δ(F (S(d)))
= δ(in(c) + fb(fN(Sd)))
= δ(in(c)) + δ(fb(fN(Sd)))
= δ(in)(δ(c)) + fb(δ(fN(Sd)))
= δ(in)(δ(c)) + fb(δ(fN)(δ(Sd)))
= δ(in)(δ(c)) + fb(δ(fN)(d))

So Equation 2 specifies that δ(s) is a fixed-point of δ(F). It is immediate,
for any G and F : G→ G, that d is a fixed-point of F iff δ(d) is a fixed-
point of δ(F); so δ(s) is the unique solution of the second equation. As

sn = fn(c), differentiating we obtain an explicit formula for δ(s):

δ(s)n =
∑
m≤n

µ(m,n)δ(f)m(δ(c))

equivalently:

δ(s)n =

{
δ(c) (n = 0)
δ(f)n(δ(c))− δ(f)n−1(δ(c)) (n > 0)

Finally, combining the differential versions of the loop and the egress
policy, we find:

δ(outk)(δ(s)) =
∑

m≤k δ(s)m
=
∑

m≤k
∑

l≤m µ(l,m)δ(f)l(δ(c))

= δ(f)k(δ(c))

so the differential of the loop followed by the differential of egress is, as
expected, the differential of the kth iteration of the loop body.

4 The programming language

The language has expressions of various types, given as follows.

Types
σ ::= b | σ × τ | unit | σ+

where b is taken from a set of base types. Types will be interpreted as
abelian groups with linear inverses; in particular σ+ will be interpreted
as a group of N-streams.

Expressions

e ::= x | f(e1, . . . , en) | let x : σ be e in e′ |
0σ | e+ e′ | −e |
〈e, e′〉 | fst(e) | snd(e) | ∗ |
iter x : σ to e in e′ | outk(e) (k ∈ N)

where we have a given signature f : σ1, . . . , σn → σ of basic function
symbols. (The basic types and function symbols are the built-ins.)

Typing Environments Γ = x1 : σ1, . . . , xn : σn are sequences of vari-
able bindings, with no variable repetition. We are given rules to establish
typing judgments. These judgments have the form:

Γ ` e : σ

Typing Rules
Γ ` x : σ (x : σ ∈ Γ)

Γ ` ei : σi (i = 1, . . . , n)

Γ ` f(e1, . . . , en) : σ
(f : σ1, . . . , σn → σ)

Γ ` e : σ Γ, x : σ ` e′ : τ
Γ ` let x : σ be e in e′ : τ

Γ ` 0σ : σ
Γ ` e : σ Γ ` e′ : σ

Γ ` e+ e′ : σ

Γ ` e : σ

Γ ` −e : σ

Γ ` e : σ Γ ` e′ : τ
Γ ` 〈e, e′〉 : σ × τ

Γ ` e : σ × τ
Γ ` fst(e) : σ

Γ ` e : σ × τ
Γ ` snd(e) : τ

Γ, x : σ ` e : σ Γ ` e′ : σ
Γ ` iter x : σ to e in e′ : σ+

Γ ` e : σ+

Γ ` outk(e) : σ

Proposition 4. (Unique typing) For any Γ, e, there is at most one σ
such that Γ ` e : σ.

In fact, there will also be a unique derivation of Γ ` e : σ.

4.1 Language semantics

Types Types are modelled by abelian groups with inverses, as described
in Section 2. For for each basic type b we assume given an abelian group
with inverses (B[[b]], δb, Sb). The denotational semantics of types is then:

D[[b]] = B[[b]]
D[[σ × τ]] = D[[σ]]×D[[τ]]
D[[unit]] = 1

D[[σ+]] = D[[σ]]N

Expressions For each basic function symbol f : σ1, . . . , σn → σ we assume
given a map:

B[[f]] : D[[σ1]]× . . .×D[[σn]] −→ D[[σ]] .

We do not assume these are linear, multilinear, or preserve the δ’s or S’s.
Let D[[Γ]] = D[[σ1]]× . . .×D[[σn]] for Γ = x : σ1, . . . , xn : σn. Then for

each Γ ` e : σ we define its semantics with type:

D[[Γ ` e : σ]] : D[[Γ]] −→ D[[σ]]

In case Γ, σ are evident, we may just write D[[e]].

Definition of D We define D[[Γ ` e : σ]](α) ∈ D[[σ]], for each α ∈ D[[Γ]] by
structural induction on e as follows:

D[[Γ ` xi : σi]](α) = αi
D[[Γ ` f(e1, . . . , en) : σ]](α) = B[[f]](D[[e1]](α), . . . ,D[[en]](α))

D[[Γ ` let x : σ be e in e′ : τ]](α) = D[[Γ, x : σ ` e′]](α,D[[e]](α))
D[[Γ ` 0σ : σ]](α) = 0D[[σ]]

D[[Γ ` e+ e′ : σ]](α) = D[[e]](α) +D[[σ]] D[[e′]](α)

D[[Γ ` −e : σ]](α) = −D[[σ]](D[[e]](α))

D[[Γ ` 〈e, e′〉 : σ × τ]](α) = (D[[e]](α),D[[e′]](α))
D[[Γ ` fst(e) : σ]](α) = π0(D[[e]](α))
D[[Γ ` snd(e) : τ]](α) = π1(D[[e]](α))
D[[Γ ` ∗ : unit]](α) = ∗

D[[Γ `iter x :σ to e in e′ :σ+]](α)n = (λa :D[[σ]].D[[e]](α, a))n(D[[e′]](α))
D[[Γ ` outk(e) : σ]](α) = outk(D[[e]](α))

The semantics of iteration is in accord with the discussion of the solution
of Equation 1 for loops.

4.2 Differential semantics

We next define the differential semantics of our expressions. It has the
same form as the ordinary semantics:

Dδ[[Γ ` e : σ]] : D[[Γ]] −→ D[[σ]]

The semantics of types is not changed from the non-differential case.

First for f : σ1, . . . , σn → σ we set

Bδ[[f]](α1, . . . , αn) = δD[[σ]](B[[f]](SD[[σ1]](α1), . . . , SD[[σn]](αn))

Then Dδ is defined exactly as for the non-differential case except for
iteration and egress where, following the discussion of loops, we set:

Dδ[[Γ ` iter x : σ to e in e′ : σ+]](α)(n) =∑
n′≤n µ(n′, n)(λa : D[[σ]].Dδ[[e]](α, a))n

′
(Dδ[[e]](α)))

and

Dδ[[Γ ` outk(e) : σ]](α) =
∑
n≤k
Dδ[[e]](α)(n)

Theorem 1. (Correctness of differential semantics) Suppose Γ ` e : σ.
Then:

Dδ[[Γ ` e : σ]](α) = δD[[σ]](D[[Γ ` e : σ]](SD[[σ]](α)))

equivalently:

Dδ[[Γ ` e : σ]](δD[[σ]](α)) = δD[[σ]](D[[Γ ` e : σ]](α))

Proof. The first of these equivalent statements is proved by structural
induction on expressions. We assume Γ has the form x1 : σ1, . . . , xn : σn.
We only give the last two cases of the proof.

Iteration:

Dδ[[Γ ` iter x : σ to e in e′ : σ+]](α)(n)

=
∑

n′≤n µ(n′, n)(λa : D[[σ]].Dδ[[e]](α, a))n
′
(Dδ[[e′]](α))

=
∑

n′≤n µ(n′, n)(λa : D[[σ]]. δ(D[[e]](Sα, Sa)))n
′
(δ(D[[e′]](Sα))) (by IH)

=
∑

n′≤n µ(n′, n)(δ ◦ (λa : D[[σ]].D[[e]](Sα, a)) ◦ S)n
′
(δ(D[[e′]](Sα)))

=
∑

n′≤n µ(n′, n)δ((λa : D[[σ]].D[[e]](Sα, a))n
′
(D[[e′]](Sα)))

=
∑

n′≤n µ(n′, n)δ(D[[iter x : σ to e in e′]](Sα)(n′))

= δ(D[[iter x : σ to e in e′]](Sα))(n)

Egress:

Dδ[[Γ ` outk(e) : σ]](α) =
∑

n≤k Dδ[[e]](α)(n)

=
∑

n≤k δ(D[[e]](Sα))(n) (by IH)

=
∑

n≤k
∑

n′≤n µ(n′, n)δ(D[[e]](Sα)(n′))

= δ(D[[e]](Sα)(k))
= δ(D[[outk(e)]](Sα))

ut

5 Priorities

In “prioritized iteration” [2], a sequence of fixed-point computations con-
sumes the input values in batches; each batch consists of the set of values
assigned a given priority, and each fixed-point computation starts from
the result of the previous one, plus all input values in the next batch.

Such computations can be much more efficient than ordinary itera-
tions, but it was left open in [2] how to implement them correctly for
anything more complicated than loop bodies with no nested iteration.

The proposed notion of time was the lexicographic product of N with any
nested T , i.e., the partial order on N× T with

(e, s) ≤ (e′, s′) ≡ (e < e′) ∨ (e = e′ ∧ s ≤ s′)

where a pair (e, s) is thought of as “stage s in epoch e”. Unfortunately,
the construction in [2] appears incorrect for T 6= N. Moreover, the lexico-
graphic product is not locally finite, so our theory cannot be applied.

We propose instead to avoid these difficulties using a simple general-
ization of iteration where new input can be introduced at each iteration.
One use of this generality is for prioritized iteration, in which elements
with priority i are introduced at iteration i × k; this scheme provides
exactly k iterations for each priority, before moving to the next priority
starting from where the previous priority left off. This is exactly the pri-
oritized iteration strategy from [2] with the fixed-iteration-number loop-
egress policy, but cast in a framework where we can verify its correctness.

The generalisation of Equation 1 is:

d = c+ fb(fN(d)) (3)

where now c is in GN (rather than in G, and placed at iteration 0 by in).
This equation is equivalent to the equations:

d0 = c0 dn+1 = cn+1 + f(dn)

so has a unique solution s. Differentiating Equation 3, we obtain:

d = δ(c) + fb(δ(fN)(d)

By the remark in Section 3 on fixed-points of function differentials, this
also has a unique solution, viz. δ(s).

To adapt the language, one can simply change the typing rule for the
iteration construct to:

Γ, x : σ ` e : σ+ Γ ` e′ : σ
Γ ` iter x : σ to e in e′ : σ+

We assume the ingress function is available as a built-in function; other
built-in functions can enable the use of priority functions. The semantics
of this version of iteration is given by:

D[[Γ `iter x :σ to e in e′ :σ+]](α) = µd :D[[σ+]].D[[e]](α)+fb(D[[e]](α, d))

where we are making use of the usual notation for fixed points; that is
justified here by the discussion of Equation 3. The differential semantics
has exactly the same form, and Theorem 1 extends.

6 Discussion

We have given mathematical foundations for differential dataflow, intro-
duced in [2]. By accounting for differentials using Möbius inversion, we
systematically justified various operator and loop differentials discussed
there. Using the theory we could also distinguish the difficult case of
lexicographic products, and justify an alternative.

Via a schematic language we showed that a differential semantics was
the differential of the ordinary semantics, verifying the intuition that to
compute the differential of a computation, one only changes how individ-
ual operators are computed, but not its overall shape. (We could have
given a more concrete language with selection and other such operators,
but we felt our more schematic approach would bring out the underlying
ideas more clearly.)

There are some natural possibilities for further work. As mentioned
above, it would be interesting to formulate a small-step operational se-
mantics that propagates differences in a dataflow graph; one could then
prove a soundness theorem linking it to the above denotational semantics.

It would also be interesting to consider the egress policy of exiting on
reaching a fixed point, that is at the first k such that dk = dk+1, where d
is the output stream. As no such time may exist, one is naturally led to
consider partial streams, as mentioned above. This would need a theory of
Möbius inversion for partial functions. It would also give the possibility,
via standard domain theory, of a general recursion construct, so of more
general loops. Finally, as regards priorities, one wonders if the approach
with lexicographic products can be rescued.

References

1. Pramod Bhatotia, Alexander Wieder, Rodrigo Rodrigues, Umut A. Acar, and
Rafael Pasquin, Incoop: MapReduce for incremental computations, Proc. 2nd ACM
Symposium on Cloud Computing, 7pp., 2011.

2. Frank McSherry, Derek Gordon Murray, Rebecca Isaacs, and Michael Isard, Dif-
ferential dataflow, Proc. Sixth Biennial Conference on Innovative Data Systems
Research, www.cidrdb.org, 2013.

3. Svilen R. Mihaylov, Zachary G. Ives, and Sudipto Guha, REX: recursive, delta-
based data-centric computation, Proc. VLDB Endowment, 5(11), 1280–1291, 2012.

4. Derek Gordon Murray, Frank McSherry, Rebecca Isaacs, Michael Isard, Paul
Barham, and Mart́ın Abadi, Naiad: a timely dataflow system, Proc. ACM SIGOPS
24th. Symposium on Operating Systems Principles (eds. Michael Kaminsky and
Mike Dahlin), 439–455, 2013.

5. Gian-Carlo Rota, On the foundations of combinatorial theory I, Theory of Möbius
functions, Probability theory and related fields, 2(4), 340–368, 1964.

6. Richard P. Stanley, Enumerative Combinatorics, Vol. 1, CUP, 2011.

Appendix: Proofs

We give the proofs omitted from the paper.

Proof of Proposition 2

Proof. 1. We calculate:

δ(fT)(c, d)t =
∑

t′≤t µ(t′, t)δK(fT (SGT (c), SHT (d))t′)

=
∑

t′≤t µ(t′, t)δK(f(SGT (c)t′ , SHT (d)t′))

=
∑

t′≤t µ(t′, t)δK(f(
∑

t′′≤t′ SG(c)t′′ ,
∑

t′′≤t′ SH(d)t′′))

=
∑

t′≤t µ(t′, t)δK(f(SG×K(
∑

t′′≤t′ ct′′ ,
∑

t′′≤t′ dt′′)))

=
∑

t′≤t µ(t′, t)δ(f)(
∑

t′′≤t′ ct′′ ,
∑

t′′≤t′ dt′′)

2. Continuing the previous calculation, now using the bilinearity of f ,
we have:

δ(fT)(c)t =
∑

t′≤t µ(t′, t)δ(f)(
∑

t′′≤t′ ct′′ ,
∑

t′′≤t′ dt′′)

=
∑

t′≤t µ(t′, t)
∑

r≤t′,s≤t′ δ(f)(cr, ds)

=
∑

t′≤t µ(t′, t)
∑

t′′≤t′
∑
{δ(f)(cr, ds) | r ∨ s = t′′}

=
∑
{δ(f)(cr, ds) | r ∨ s = t}

3. This is an immediate consequence of the previous part.

ut

Proof of Theorem 1

Proof. We give the remaining cases of the proof.

Case 1. e is xi

Dδ[[Γ ` xi : σ]](α) = αi

= δ(S(αi))

Case 2. e is f(e1, . . . , en)

Dδ[[Γ ` f(e1, . . . , en) : σ]](α) = Bδ[[f]](Dδ[[e1]](α), . . . ,Dδ[[en]](α))

= δ(B[[f]](Sδ(D[[e1]](Sα)), . . . , Sδ(D[[en]](Sα))) (by IH)

= δ(B[[f]](D[[e1]](Sα), . . . ,D[[en]](Sα))

= δ(D[[f(e1, . . . , en)]](Sα))

Case 3. e is let x : σ be e in e′

Dδ[[Γ ` let x : σ be e in e′ : σ]](α) = Dδ[[Γ, x : σ ` e′]](α,Dδ[[e]](α))

= δ(D[[Γ, x : σ ` e′]](Sα, SδD[[e]](Sα))) (by IH)

= δ(D[[Γ, x : σ ` e′]](Sα,D[[e]](Sα)))

= δ(D[[Γ ` let x : σ be e in e′]](Sα))

Cases 4, 5, and 6. These are all much the same. We only give case 5.

Dδ[[Γ ` e+ e′ : σ]](α) = Dδ[[e]](α) +Dδ[[e′]](α)

= δ(Dδ([[e]](Sα)) + δ(Dδ[[e′]](Sα)) (by IH)

= δ(D[[e+ e′]](Sα))

Case 7.

Dδ[[Γ ` 〈e, e′〉 : σ × τ]](α) = (Dδ[[e]](α),Dδ[[e′]](α))

= (δ(Dδ[[e]](Sα)), δ(Dδ[[e′]](Sα))) (by IH)

= δ((Dδ[[e]](Sα),Dδ[[e′]](Sα)))

= δ(Dδ[[〈e, e′〉]](Sα))

Cases 8 and 9. Only case 8 is shown.

Dδ[[Γ ` fst(e) : σ]](α) = π0(Dδ[[e]](α))

= π0(δ(D[[e]](Sα))) (by IH)

= δ(π0(D[[e]](Sα)))

= δ(D[[fst(e)]](Sα))

Case 10. This is trivial, so omitted.
ut

	Foundations of Differential Dataflow

