

Edinburgh Research Explorer

A multiset-based model of synchronizing agents: Computability
and robustness

Citation for published version:
Cavaliere, M, Mardare, R & Sedwards, S 2008, 'A multiset-based model of synchronizing agents:
Computability and robustness' Theoretical Computer Science, vol. 391, no. 3, pp. 216-238. DOI:
10.1016/j.tcs.2007.11.009

Digital Object Identifier (DOI):
10.1016/j.tcs.2007.11.009

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Early version, also known as pre-print

Published In:
Theoretical Computer Science

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 05. Apr. 2019

https://doi.org/10.1016/j.tcs.2007.11.009
https://www.research.ed.ac.uk/portal/en/publications/a-multisetbased-model-of-synchronizing-agents-computability-and-robustness(6ce3dadc-0e94-407b-8d65-02a69966f778).html

A Multiset-Based Model of Synchronizing

Agents:

Computability and Robustness

Matteo Cavaliere ∗, Radu Mardare & Sean Sedwards

Microsoft Research – University of Trento
Centre for Computational & Systems Biology

Italy

Abstract

We introduce a modelling framework and computational paradigm called Colonies
of Synchronizing Agents (CSAs) inspired by the intracellular and intercellular mech-
anisms in biological tissues.

The model is based on a multiset of agents in a common environment. Each
agent has a local state stored in the form of a multiset of atomic objects, which is
updated by global multiset rewriting rules either independently or synchronously
with another agent.

We first define the model then study its computational power, considering trade-
offs between internal rewriting (intracellular mechanisms) and synchronization be-
tween agents (intercellular mechanisms). We also investigate dynamic properties of
CSAs, including behavioural robustness (ability to generate a core behaviour de-
spite agent loss or rule failure) and safety of synchronization (ability of an agent to
synchronize with some other agent whenever needed).

Key words: Colony, Synchronizing, Agents, Robustness, Amorphous, Distributed,
Computing, Multisets, Rewriting.

∗ Corresponding author
Email addresses: cavaliere@cosbi.eu (Matteo Cavaliere), mardare@cosbi.eu

(Radu Mardare), sedwards@cosbi.eu (Sean Sedwards).

Preprint submitted to Elsevier 27 August 2007

1 Motivations

Inspired by intracellular and intercellular mechanisms in biological tissues, we
present and investigate an abstract distributed model of computation which
we call Colonies of Synchronizing Agents (in short CSAs). Our intention is to
create a framework to model, analyse and simulate biological tissues in the
context of formal language and multiset rewriting.

The model is based on a population of agents (e.g., corresponding to cells
or molecules) in a common environment, able to modify their contents and
to synchronize with other agents in the same environment. Each agent has
a contents represented by a multiset of atomic objects (e.g., corresponding
to chemical compounds or the characteristics of individual molecules) with
some of the objects classified as terminals (e.g., corresponding to chemicals
or properties visible to an external observer). The agents’ contents may be
modified by means of multiset rewriting rules (called evolution rules), which
may mimic chemical or other types of intracellular mechanisms. Moreover,
the agents can influence each other by synchronously changing their contents
using pairwise synchronization rules. This models, in a deliberately abstract
way, the various intercellular mechanisms present in biological tissues (e.g.,
signalling mechanisms that cells and biological systems use). All rules are
global, so all agents obey the same rules: the only feature that may distinguish
the agents is their contents.

Hence, a CSA is essentially a multiset of mutisets, acted upon by multiset
rewriting rules.

In this paper we consider CSAs as generative computing devices and consider
various trade-offs between the power of the evolution rules and the power of
the synchronizing rules. We consider CSAs working in a maximally parallel
way (all agents are updated synchronously), modelling the idea that if some-
thing can happen then it must happen. However, from both a biological and
a mathematical point of view, it is also useful to investigate systems where
the update of the agents is not obligatory (i.e., not synchronous). We prove
that the computational power of maximal parallel and asynchronous CSAs can
range from that of finite sets of vectors to that of Turing machines, by varying
the power of the evolution and synchronization rules. Moreover, an intermedi-
ate class of CSAs, equivalent to partially blind counter machines (hence, not
universal), is investigated.

Having investigated the computational power of CSAs, we study the robustness
of colonies by considering their ability to generate core behaviours despite the
failure (i.e., removal) of agents or of rules. We show that for an arbitrary CSA,
robustness cannot be decided but that it is possible to individuate classes of

2

(non-trivial) CSAs where this property can be efficiently decided.

In the final part of the paper we are interested in dynamic properties of CSAs
concerning the applications of the rules.

For this reason, we provide a decidable temporal logic to specify and inves-
tigate dynamic properties of CSAs. For instance, we show that the proposed
logic can be used to specify and then check whether or not in a CSA an agent
has the ability to apply a synchronization whenever it needs: CSAs for which
such a property is true we describe safe on synchronization of rules. This mod-
els, in an abstract way, the ability of a cell to use an intercellular mechanism
whenever it needs.

CSAs are computational devices that have features inspired by many different
models. In particular, they have similarities (and significant differences) with
other models inspired by cell-tissues and investigated in the area of membrane
computing (i.e., P systems). Specifically, CSAs can be considered a generaliza-
tion of P colonies [15], which is also based on interacting agents but has agents
with limited contents (two objects) which can only change their contents using
very restricted rewriting rules (following an earlier definition of an agent in
formal language theory ([14]). In our case, in order to be more general, the
rewriting rules employed by an agent and the contents of an agent can be
arbitrarily complex. Moreover, in P colonies objects can be introduced into
the agent from an external environment (with unbounded copies of a given
object) and the objects present in an agent may only be transferred to an-
other agent by means of the common environment; no direct communication
between agents is allowed (as is the case in CSAs).

CSAs also have similarities with population P systems [5], a class of tissue P
systems [17], and in particular with EC tissue P systems [6], where evolution
(rewriting) is combined with communication. Cells (i.e., agents) can change
their contents by means of (non-cooperative) rewriting rules and hence differ-
ent types of agents can have different sets of rules. It is also possible to move
objects between the agents using ‘bonds’ and agents may also communicate
with an environment that has unbounded resources. Computation is generally
implemented in two different phases: local rewriting plus bond making rules,
applied in an alternate manner. The main differences with these computing
devices and the model we propose here are that we do not have explicit bonds
(edges) between agents (in a sense our agents are linked by a complete graph),
rewriting in our case is arbitrarily complex (i.e., it can be cooperative) for both
evolution and synchronization rules, and the agents we propose do not have
explicit types: rules are global and only the agents’ contents differentiate them.
This latter characteristic makes CSAa similar to the model of self-assembly of
graphs presented in [4], however in that case (i) a graph is constructed from
an initial seed using multiset-based aggregation rules to enlarge the structure,

3

(ii) there is no internal rewriting of the agent contents and (iii) there is no
synchronization between the agents.

CSAs are also distinct from cellular automata [9], where cells exist on a regular
grid, where each cell has a finite number of possible states and where cells
interact with a defined neighbourhood. In our case, as a result of the multiset-
based contents and because of the general rewriting rules, the possible different
internal states of a cell may be infinite. Although our initial definition does
not include an explicit description of space, the extensions we propose include
agents located at arbitrary positions and with the potential to interact with
any other agent in the system.

2 Preliminaries

2.1 Formal Language and Multisets Theory

We briefly recall the basic theoretical notions of formal languages and multiset
rewriting used in this paper.

An introduction to the area of formal languages is [13]. A coverage of all the
aspects of the area is the handbook [20]. Alternatively, the chapter introducing
formal language in [19] contains all the notions needed in the paper.

Given the set A we denote by |A| its cardinality and by ∅, the empty set. We
denote by N the set of natural numbers. We denote by 2A the power set of A.

An alphabet V is a finite set of symbols. By V ∗ we denote the set of all strings
over V . By V + we denote the set of all strings over V excluding the empty
string. The empty string is denoted by λ. The length of a string v is denoted
by |v|. The concatenation of two strings u, v ∈ V ∗ is written uv.

The number of occurrences of the symbol a in the string w is denoted by |w|a.

For a language L ⊆ V ∗, the set length(L) = {|x| | |x ∈ L}} is called the length
set of L, denoted by NL.

If FL is an arbitrary family of languages then we denote by NFL the family
of length sets of languages in FL (family of sets of natural numbers).

The Parikh vector associated with a string x ∈ V ∗ with respect to the alphabet
V = {a1, a2, . . . , an} is PsV (x) = (|x|a1 , |x|a2 , . . . , |x|an). For L ⊆ V ∗ we define
PsV (L) = {PsV (x) | x ∈ L}. This is called the Parikh image of the language
L.

4

If FL is an arbitrary family of languages then we denote by PsFL the family
of Parikh images of languages in FL (family of sets of vectors of natural
numbers).

We denote by FIN , REG, CF , CS, and RE the families of finite, regular,
context-free, context-sensitive, and recursively enumerable languages, respec-
tively.

By L(G) we denote the language generated/produced by the grammar G.

Then, for instance, the family of Parikh images of languages in RE is denoted
by PsRE (this is the family of all recursively enumerable sets of vectors of
natural numbers). The family of all recursively enumerable sets of natural
numbers is denoted by NRE.

We denote by FLA the family of languages over the alphabet A, e.g., REGA,
the family of all regular languages over the alphabet A.

A multiset is a set where each element may have a multiplicity. Formally,
a multiset over a set V is a map M : V → N, where M(a) denotes the
multiplicity (i.e., number of occurrences) of the symbol a ∈ V in the multiset
M . Note that the set V can be infinite.

For multisets M and M ′ over V , we say that M is included in M ′ (M ⊆M ′)
if M(a) ≤ M ′(a) for all a ∈ V . Every multiset includes the empty multiset,
defined as M where M(a) = 0 for all a ∈ V .

The sum of multisets M and M ′ over V is written as the multiset (M +
M ′), defined by (M + M ′)(a) = M(a) + M ′(a) for all a ∈ V . The difference
between M and M ′ is written as (M −M ′) and defined by (M −M ′)(a) =
max{0,M(a)−M ′(a)} for all a ∈ V . We also say that (M +M ′) is obtained
by adding M to M ′ (or viceversa) while (M −M ′) is obtained by removing
M ′ from M .

The support of a multiset M is defined as the set supp(M) = {a ∈ V |
M(a) > 0}. A multiset with finite support is usually presented as a set of
pairs (x,M(x)), for x ∈ supp(M).

The cardinality of a multiset M is denoted by card(M) and it indicates the
number of objects in the multiset. It is defined in the following way. card(M)
is infinite if M has infinite support. If M has finite support then card(M) =∑

ai∈supp(M)M(ai) (i.e., all the occurrences of the elements in the support are
counted).

We denote by M(V) the set of all possible multisets over V and by Mk(V)
and M≤k(V), k ∈ N, the set of all multisets over V having cardinality k and

5

at most k, respectively. That is Mk(V) = {M | M ∈ M(V), card(M) = k}
and M≤k(V) = {M |M ∈ M(V), card(M) ≤ k}.

Note that, since V could be infinite, Mk(V) and M≤k(V), for k ∈ N could also
be infinite.

For the case that the alphabet V is finite we can use a compact string notation
to denote multisets: if M = {(a1,M(a1)), (a2,M(a2)), . . ., (an,M(an))} then

the string w = a
M(a1)
1 a

M(a2)
2 · · · aM(an)

n (and all its permutations) precisely iden-
tifies the symbols in M and their multiplicities. Hence, given a string w ∈ V ∗,
we can say that it identifies the multiset {(a, |w|a) | a ∈ V }. For instance, the
string bab represents the multiset {(a, 1), (b, 2)}, which may also be written
as {a, b, b} and has cardinality 3. The empty multiset is represented by the
empty string, λ.

In this paper we also make use of the notion of a matrix grammar.

A matrix grammar with appearance checking (a.c.) is a construct G =
(N, T, S,M, F), where N and T are disjoint alphabets of non-terminal and
terminal symbols, S ∈ N is the axiom, M is a finite set of matrices which are
sequences of context-free rules of the form (A1 → x1, . . . , An → xn), n ≥ 1
(with Ai ∈ N, xi ∈ (N ∪ T)∗ in all cases), and F is a set of instances of rules
in M .

For w, z ∈ (N ∪ T)∗ we write w =⇒ z if there is a matrix (A1 → x1, . . . An →
xn) in M and strings wi ∈ (N∪T)∗, 1 ≤ i ≤ n+1, such that w = w1, z = wn+1

and, for all 1 ≤ i ≤ n, either
(i) wi = w′

iAiw
′′
i , wi+1 = w′

ixiw
′′
i , for some w′

i, w
′′
i ∈ (N ∪ T)∗

or
(ii) wi = wi+1, Ai does not appear in wi and the rule Ai → xi appears in F .

The rules of a matrix are applied in order, possibly skipping the rules in F if
they cannot be applied (one says that these rules are applied in appearance
checking (a.c.) mode). The reflexive and transitive closure of =⇒ is denoted
by =⇒∗. Then the language generated by G is L(G) = {w ∈ T ∗ | S =⇒∗ w}.

In other words, the language L(G) is composed of all the strings of terminal
symbols that can be obtained starting from S by applying iteratively the
matrices in M .

The family of languages generated by matrix grammars with appearance
checking is denoted by MATac.

G is called a matrix grammar without appearance checking if and only if F =
∅. In this case the generated family of languages is denoted by MAT . The
following results are known (see, e.g., [8], [12]).

6

Theorem 1

• CF ⊂MAT ⊂MATac = RE.
• Each language L ∈ MAT , L ⊆ a∗ is regular (the proof of this statement is

constructive).

The following results are known (e.g., [8]) or they can be derived from the
above assertions and from the definitions given earlier.

Theorem 2

• PsMATac = PsRE.
• NMATac = NRE.
• PsREG ⊂ PsMAT ⊂ PsRE.
• PsCF = PsREG.
• NMAT = NREG = NCF .

A matrix grammar is called pure if there is no distinction between terminals
and non-terminals. The languages generated by a pure matrix grammar is
composed of all sentential forms. The family of languages generated by pure
matrix grammars without appearance checking is denoted by pMAT . It is
easy to see that

Theorem 3 pMAT ⊂MAT.

Matrix grammars without appearance checking are equivalent to partially blind
counter machines (introduced in [11]). That is, the family of Parikh images of
languages generated by matrix grammars without a.c. is equal to the family
of sets of vectors of natural numbers generated by partially blind register
machines (a constructive proof of their equivalence can be found, for instance,
in [10]).

From this last assertion and using results in [11] we obtain the following corol-
laries of interest for this paper.

Corollary 1
(Emptiness)
Given an arbitrary alphabet T , an arbitrary matrix grammar without a.c., G,
with terminal alphabet T , it is decidable whether or not PsT (L(G)) = ∅.

(Union, intersection, complementation)
The sets of Parikh images of languages generated by matrix grammars without
a.c. are closed under union and intersection but not under complementation.

(Containment, Equivalence)
Given an arbitrary alphabet, T , two arbitrary matrix grammars without a.c., G

7

and G′, with terminal alphabet T , it is undecidable whether or not PsT (L(G)) ⊆
PsT (L(G′)) or whether or not PsT (L(G)) = PsT (L(G′)).

From Theorem 1 and using the fact that containment of regular languages is
decidable ([13]) we obtain the following result.

Theorem 4 (Containment, Equivalence)
Given an arbitrary terminal alphabet T of cardinality one, two arbitrary ma-
trix grammars without a.c. G and G′ over T , it is decidable whether or not
NL(G′) ⊆ NL(G) and whether or not NL(G) = NL(G′).

2.2 Membrane Systems

In this section we recall some definitions and results from membrane systems
(often called P systems) which are used in the proofs of this paper. Readers
not interested in the proofs can therefore skip this section. Readers interested
in P systems can consult an introductory guide (e.g., [19]) or the website [23].
In addition to a preprint of the guide, the website also contains a bibliography
and other information about P systems.

Definition 2.1 A P system with symbol-objects and of degree m ≥ 1 is defined
as a construct

Π = (O, T, µ, w1, . . . , wm, R1, . . . , Rm, i0)

where

• O is an alphabet and its elements are called objects; T ⊆ O is a terminal
alphabet;

• µ is a membrane structure consisting of m membranes arranged in an hi-
erarchical tree structure; the membranes (and hence the regions that they
delimit) are injectively labeled with 1, 2, . . . ,m;

• wi, 1 ≤ i ≤ m, are strings that represent multisets over O associated to
regions 1, 2, . . . ,m of µ;

• Ri, 1 ≤ i ≤ m, are finite sets of evolution rules over O; Ri is associated to
region i of µ; an evolution rule is of the form u→ v, where u is a string over
O and v is a string over {ahere, aout | a ∈ O} ∪ {ainj

| a ∈ O, 1 ≤ j ≤ m}.
• i0 ∈ {0, 1, 2, . . . ,m}; if i0 ∈ {1, . . . ,m} then it is the label the membrane

that encloses the output region; if i0 = 0 then the output region is the envi-
ronment.

For any evolution rule u → v the length of u is called the radius of the rule
and the symbols here, out, inj, 1 ≤ j ≤ m, are called target indications.

8

According to the size of the radius of the evolution rules we distinguish between
cooperative rules (if the radius is greater than one) and non-cooperative rules
(otherwise).

The initial configuration of the system Π comprises the structure µ and the
multisets represented by the strings wi, 1 ≤ i ≤ m. In general, we call a
configuration of the system the m-tuple of multisets of objects present at any
time in the m regions of the system.

An occurrence γr of the rule r : u→ v ∈ Ri, i ∈ {1, · · · ,m} can be applied in
region i by assigning to γr a multiset of objects u taken from the multiset of
objects present in region i.

The application of an instance of the evolution rule u → v in a region i
means to remove the multiset of objects u from the multiset of objects present
in region i and to add the multiset v to the multisets of objects present in
the adjacent regions, according to the target indications associated to each
occurrence of the objects in v. In particular, if v contains an occurrence with
target indication here, then the occurrence will be placed in the region i, where
the rule has been applied. If v contains an occurrence with target indication
out, then the occurrence will be moved to the region immediately outside the
region i (this can be the environment if the region where the rule has been
applied is the outermost or skin membrane). If v contains an occurrence with
target indication inj then the occurrence is moved from the region i and placed
in region j (this can be done only if region j is directly contained by region i;
otherwise the evolution rule u→ v cannot be applied).

A transition between configurations is executed using the evolution rules in
a non-deterministic maximally parallel manner at each step, in each region
(we suppose that a global clock exists, marking the instant of each step for
the whole system). This means that occurrences of the objects are assigned to
occurrences of the rules in such a way that, after the assignment is made, there
are insufficient occurrences of the objects for further occurrences of any of the
rules to be applied. This maximal assignment is performed simultaneously in
every region of the system at each step. If an occurrence of an object can
be assigned to more than one occurrence of the rules then the assignment is
chosen in a non-deterministic way.

A sequence of transitions between configurations of a system is called a evo-
lution; an evolution is a successful computation (we simply say simply compu-
tation) if and only if it starts from the initial configuration and halts, i.e., it
reaches a halting configuration where no occurrence of any rule can be applied
in any region.

The output of a computation is defined as the number of occurrences of objects
from T present in the output region in the halting configuration of Π; the set

9

of numbers computed (or generated) in this way by the system Π, considering
any computation, is denoted by N(Π).

It is possible to consider as the result of a computation the vector of numbers
representing the multiplicities of the occurrences of objects from T present in
the output region in the halting configuration. In this case PsT (Π) denotes the
set of vectors of numbers generated by Π, considering all the computations.

We denote by NOPm(α, tar) and PsOPm(α, tar) the family of sets of the
form N(Π) and Ps(Π), respectively, generated by symbol-objects P systems
of degree at most m ≥ 1 (if the degree is not bounded the subscript m becomes
∗), using evolution rules of the type α.

We can have α = coo, indicating that the systems considered use cooper-
ative evolution rules, and α = ncoo indicating that the systems use only
non-cooperative rules.

Moreover, the symbol tar indicates that the communication between the mem-
branes (and hence the regions) is made using the target indication inj in the
way previously specified. If the degree of the system is 1 (only one membrane
is present) then the only possible target indications that can be used are here
and out and in such case the notation is NOP1(α) and PsOP1(α), respectively.

The following results are known (see, e.g., [18]).

Theorem 5

• PsOP∗(ncoo, tar) = PsOP1(ncoo) = PsCF .
• PsOP∗(coo, tar) = PsOPm(coo, tar) = PsRE for all m ≥ 1.

We recall the definition and main results of evolution- communication P sys-
tems originally introduced in ([7]), which joins two basic models of membrane
systems, that with evolution rules and symbol-objects and that with sym-
port/antiport rules (see, e.g, [18]).

Definition 2.2 An evolution-communication P system (in short, an EC P
system) of degree m ≥ 1, is defined as

Π = (O, µ, w1, w2, . . . , wm, R1, . . . , Rm, R
′
1, . . . , R

′
m, i0)

where:

• O, µ, i0 and wi, 1 ≤ i ≤ m as in Definition 2.1;
• Ri, 1 ≤ i ≤ m, are finite sets of simple evolution rules over O; Ri is

associated with the region i of µ; a simple evolution rule is of the form u→
v, where u ∈ O+ and v ∈ O∗; hence, a simple evolution rule is an evolution

10

rule as in P systems with symbol-objects, but with no target indications (in
other words it uses an implicit ‘here’ for target indications);

• R′
i, 1 ≤ i ≤ m, are finite sets of symport rules over O of the form (x, in),

(y, out) and of antiport rules (x, in; y, out) with x, y ∈ O+; R′
i is associated

with membrane i of µ. For a symport rule (x, in) or (x, out), |x| is called
the weight of the rule. For an antiport rule (x, in; y, out) the weight is the
max{|x|, |y|}.

In an EC P system a configuration is represented by the membrane structure
µ and by the m-tuple of multisets of objects present in the m regions of the
system.

In particular, the initial configuration comprises the system of membranes µ
and the multisets represented by the strings wi, 1 ≤ i ≤ m.

Occurrences of evolution rules are applied as in P systems with symbol-objects.

An occurrence γ of a symport rule (x, in) ∈ R′
i ((x, out) ∈ R′

i) can be applied
to membrane i by assigning to γ the occurrences of the objects in x taken
from the region surrounding region i (taken from region i, respectively).

The application of an instance of the symport rule (x, in) to membrane i
consists of moving the occurrences of the objects in x from the region (or
from the environment) surrounding the region i to region i . If an instance
of the symport rule (x, out) is applied to membrane i, the occurrences of the
objects in x are moved from region i to the region (or to the environment)
that surrounds region i.

An occurrence γ of the antiport rule (x, in; y, out) ∈ R′
i can be applied to mem-

brane i by assigning to γ the occurrences of the objects in x taken from region
i and the occurrences of the objects in y taken from the region surrounding
region i.

If an instance of the antiport rule (x, in; y, out) is applied to membrane i,
the occurrences of the objects in x pass into the region i from the region
surrounding it, while, at the same time, the occurrences of the objects in y
move from the surrounding region to region i.

A transition between configurations is governed by the mixed application of
occurrences of the evolution rules and of the symport/antiport rules. Instances
of the rules from Ri are applied to occurrences of objects in region i while the
application of the instances of rules from R′

i govern the communication of the
occurrences of objects through membrane i. There is no distinction drawn
between evolution rules and communication rules (mixed approach): they are
applied in the non-deterministic maximally parallel manner, described above.

11

The system starts from the initial configuration and passes from one configu-
ration to another by applying the above described transitions: this sequence
of transitions is called an evolution of the system. The system halts when it
reaches a halting configuration, i.e., a configuration where no occurrence of
any rule (evolution rules or symport/antiport rules) can be applied in any
region of Π.

In this case the evolution is called a successful computation of Π (or simply a
computation of Π) and the number of occurrences of objects contained in the
output region i0 in the halting configuration is the result of the computation.
The set of numbers computed (or generated) in this way by the system Π,
considering any possible computation of Π, is denoted by N(Π).

It is also possible to consider as a result of the computation the vector of num-
bers representing the multiplicities of the occurrences of the objects contained
in the output region in the halting configuration. In this case Ps(Π) denotes
the set of vectors generated by Π, considering all computations.

The notation NECPm(i, j, α), α ∈ {ncoo, coo}, and PsECPm(i, j, α), α ∈
{ncoo, coo}, is used to denote the family of sets of numbers and the family
of sets of vectors of numbers, respectively, generated by EC P systems with
at most m membranes (as usual, m = ∗ if such a number is unbounded),
using symport rules of weight at most i, antiport rules of weight at most j
and simple evolution rules that can be cooperative (coo) or non-cooperative
(ncoo).

The following results are known (see, e.g, [7,2]).

Theorem 6 • NECP1(1, 0, ncoo) = NCF .
• PsECP1(1, 0, ncoo) = PsCF .
• NECP2(1, 1, ncoo) = NRE.
• PsECP2(1, 1, ncoo) = PsRE.

3 Colonies of Synchronizing Agents

In this section we formalize the notions of colonies and agents discussed in the
Introduction.

A Colony of Synchronizing Agents (a CSA) of degree m ≥ 1 is a construct
Π = (A, T, C,R) with the components having the following meaning:

• A is a finite alphabet of symbols (its elements are called objects). T ⊆ A is
the alphabet of terminal objects.

12

• An agent over A is a multiset over the alphabet A (an agent can be repre-
sented by a string w ∈ A∗, since A is finite). C is the initial configuration
of Π and it is a multiset over the set of all possible agents over A (with
card(C) = m) .

Using the notation introduced in the Preliminaries, C ∈ Mm(H) with
H = M(A).

• R is a finite set of rules over A.
We have evolution rules of type u→ v, with u ∈ A+ and v ∈ A∗.
An instance γ of an evolution rule r : u → v can be applied to an

occurrence ow of agent w by taking a multiset of objects u from ow (hence, it
is required that u ⊆ w) and assigning it to γ (i.e., assigning the occurrences
of the objects in the taken multiset to γ).

The application of an instance of rule r to the occurrence ow of the agent
w consists of removing from ow the multiset u and then adding v to the
resulting multiset.

We say that an evolution rule u → v is cooperative (in short, cooe) if
|u| > 1, non-cooperative (ncooe) if |u| = 1 and unary (une) if |v| ≤ |u| = 1.

We have synchronization rules of the type 〈u, v〉 → 〈u′, v′〉 with uv ∈ A+

and u′, v′ ∈ A∗.
An instance γ of a synchronization rule r : 〈u, v〉 → 〈u′, v′〉 can be applied

to the pair of occurrences ow and ow′ of, respectively, agents w and w′ by:
(i) taking from ow a multiset of objects u and assigning it to γ; (ii) taking
from ow′ a multiset of objects v and assigning it to γ (hence, it is required
that u ⊆ w and v ⊆ w′).

The application of an instance of rule r to the occurrences ow and ow′

consists of: removing the multiset u from ow and then adding u′ to the
resulting multiset; removing the multiset v from ow′ and then adding v′ to
the resulting multiset.

Synchronization rules can be considered as matrices of two rules used
simultaneously.

We say that a synchronization rule 〈u, v〉 → 〈u′, v′〉 is cooperative (coos)
if |u| > 1 or |v| > 1, non-cooperative (ncoos) if |u| = 1 and |v| = 1, unary
(uns) if |u′| ≤ |u| = 1 and |v′| ≤ |v| = 1.

A configuration of a CSA, Π, consists of the occurrences of the agents present
in the system at a given time (we assume the existence of a global clock which
marks the passage of units of time).

We denote by C(Π) the set of all possible configurations of Π. Therefore, using
the notation introduced in the Preliminaries, C(Π) is exactly Mm(H) with
H = M(A).

A transition from an arbitrary configuration c of Π to the next lasts exactly
one time unit and can be obtained in two different modes.

13

Maximally-parallel mode (in short mp): A maximally-parallel transition of Π
(in short, an mp-transition) is obtained by applying the rules in the set R
to the agents present in the configuration c in a maximally parallel and non-
deterministic way. This means that for each occurrence ow of an agent w and
each pair of occurrences ow′ and ow′′ of agents w′ and w′′ present in the config-
uration c, the occurrences of the objects present in ow (ow′ , ow′′) are assigned
to instances of the evolution (synchronization, resp.) rules, the occurrences of
the agents, the occurrences of the objects and the instances of the rules chosen
in a non-deterministic way but respecting the following condition. After the
assignment of the occurrences of the objects to the instances of the rules is
done there is no instance of any rule that can be applied by assigning the
(still) unassigned occurrences of the objects.

A single occurrence of an object can only be assigned to a single instance of a
rule.

Asynchronous mode (in short asyn): A single asynchronous transition of Π (in
short, an asyn-transition) is obtained by applying the rules in the set R to the
agents present in the configuration c in an asynchronous way.

This means that, for each occurrence ow of an agent w and each pair of oc-
currences ow′ and ow′′ of the agents w′, w′′, present in the configuration c, the
occurrences of the objects of ow (ow′ , ow′′) are either assigned to instances of
the evolution (synchronization, resp.) rules or left unassigned. The occurrences
of the agents, the occurrences of the objects and the instances of the rules are
chosen in a non-deterministic way. A single occurrence of an object can only
be assigned to a single instance of a rule.

In other words, in a single asynchronous transition, any number of instances
of rules (zero, one or more) can be applied to the occurrences of the agents
present in the configuration c.

A sequence (possibly infinite) 〈C0, C1, · · · , Ci, Ci+1, · · ·〉 of configurations of Π,
where Ci+1 is obtained from Ci, i ≥ 0, by a γ-transition is called a γ-evolution
of Π, with γ ∈ {asyn,mp}. A configuration c of Π present in a γ-evolution of
Π is said to be reachable using a γ-evolution of Π (or simply reachable if there
is no confusion). Often we also say that the evolution reaches the configuration
c.

A γ-evolution of Π, with γ ∈ {asyn,mp}, is said to be halting if it halts,
that is if it is finite and the last configuration of the sequence is a halting
configuration, i.e., a configuration containing only occurrences of agents for
which no rule from R is applicable.

A γ-evolution of Π that is halting and that starts with the initial configuration
of Π is called a successful γ-computation or, because there is no confusion, we

14

simply say a γ-computation of Π, with γ ∈ {asyn,mp}.

The result/output of an mp- or asyn-computation is the set of vectors of natural
numbers, one vector for each agent w present in the halting configuration (i.e.,
with a number of occurrences greater than zero) and with the vector describing
the multiplicities of terminal objects present in w.

More formally, the result of an mp- or asyn-computation which stops in the
configuration Ch is the set of vectors of natural numbers {PsT (w) | w ∈
supp(Ch)}.

Taking the union of all the results, for all possible mp- and asyn-computations,
we get the set of vectors generated by Π and denoted by Psmp

T (Π) and
Psasyn

T (Π), respectively.

We may also consider only the total number of objects comprising the agent
(the agent’s magnitude), without considering the composition. In this case the
result of an mp- or asyn-computation is the set of natural numbers, one number
for each agent w present in the halting configuration and with the number
being the length of w. More formally, in this case, the result of an mp- or
asyn-computation that stops in the configuration Ch is then the set of numbers
{|w| | w ∈ supp(Ch)}. In other words, in this case, there is no distinction
between the objects composing the agents, in particular the terminals from T
are ignored.

Again, taking the union of all the results, for all possible mp- and asyn-
computations, we get the set of numbers generated by Π and denoted by
Nmp(Π) and Nasyn(Π), respectively.

Note that in both cases, considering sets of vectors (or sets of numbers) one
single computation delivers a finite family of vectors as output (or a finite
set of numbers, resp.) because there could be several agents in the halting
configuration. However, Psγ

T (Π) (Nγ(Π)), γ ∈ {mp, asyn}, is obtained as the
union of results of computations of Π, so as a union of sets of vectors (of sets
of numbers, resp.).

We consider now families of CSAs and then families of sets of vectors of
numbers or of sets of numbers.

We denote by CSAm(α, β), with α ∈ {cooe, ncooe, une} and
β ∈ {coos, ncoos, uns}, the class of CSAs having evolution rules of type α,
synchronization rules of type β and using at most m occurrences of agents in
the initial configuration (m is changed to ∗ if it is unbounded). We omit α or
β if the corresponding rules are not allowed. In particular, notice that if β is
omitted then there is no cooperation between the agents.

15

Hence, we denote by PsCSAγ
m(α, β) (andNCSAγ

m(α, β)) with γ ∈ {mp, asyn}
the family of sets of vectors (of sets of numbers, resp.) generated by CSAs from
CSAm(α, β) using γ-computations.

Example 1 A CSA with degree 3 is defined by the following.

Π = (A, T, C,R) with A = {a, b, c}, T = {a}, C = {(abcba, 1), (abbcc, 1),
(bab, 1)} and rules R = {r1 : abca→ ba, r2 : 〈abc, cc〉 → 〈aa, cb〉}.

The application of an instance of the evolution rule r1 to the configuration C
is shown diagrammatically in Figure 1. The application of an instance of the

1.pdf

Fig. 1. Application of an instance of the evolution rule r1 to configuration C from
Example 1.

synchronization rule r2 to the configuration C is shown in Figure 2.

A more complex example is presented in Figure 3. Alternative maximally par-
allel and asynchronous (partial) evolutions of a CSA are shown, starting from
the configuration {(ac, 2), (a, 1)} with rules {ac → aa, a → b, 〈aa, aa〉 →
〈ab, ab〉, 〈ab, d〉 → 〈bb, d〉, b→ d}.

In what follows we consider the equality of families of sets of vectors modulo
the null vector, i.e., if two families differ only by the null vector then we
consider them to be equal. We indicate by AΠ the alphabet of the CSA Π, by
TΠ the terminal alphabet of Π and by CΠ the initial configuration of Π.

Moreover, because there is no confusion, we avoid using “occurrences of ...”

16

2.pdf

Fig. 2. Application of an instance of the synchronization rule r2 to configuration C
from Example 1.

writing directly the entities (objects, rules or agents) involved.

For instance, when we say “an object c is used ...” we actually mean “one
occurrence of object c is used ...” and when we say “the rule r is applied ...”
we mean “one instance of rule r is used ...”.

4 Computational Power of CSAs

From the definitions of CSAs and invoking the Turing-Church thesis we obtain:

Theorem 7

PsCSAγ
m(α) ⊆ PsCSAγ

m(α, β) ⊆ PsRE.

with α ∈ {cooe, ncooe, une}, β ∈ {coos, ncoos, uns}, γ ∈ {mp, asyn} and m ≥
1.

As soon as we have cooperative evolution rules and maximal-parallelism we
get, as expected, maximal computational power.

Theorem 8

PsCSAmp
2 (cooe) = PsCSAmp

2 (coos) = PsRE.

17

3.pdf

Fig. 3. Alternative maximally-parallel and asynchronous evolutions of a CSA.

Proof. The proofs of the two equalities are straightforward hence we only give
a short sketch. For each P system Π with symbol-objects, one membrane, co-
operative evolution rules, working in maximally-parallel mode and producing
as output the set of vectors of natural numbers S, there exists a CSA, Π′,
from CSA1(cooe) such that Psmp

T (Π′) = S for an adequate terminal alphabet
T . Just take Π′ having in the initial configuration one single agent correspond-
ing to the initial configuration of Π and with cooperative evolution rules as

18

those defined in Π (with no loss of generality we suppose that Π uses only
rules with the target indication ‘here’: any evolution rule with target indica-
tion ‘out’ that sends objects to the environment, where they are effectively
lost, can be replaced by appropriate rules that delete the objects).

Also there exists a CSA Π′′ from CSA2(coos) (i.e, using only synchronization
rules) such that Psmp

T (Π′′) = S, for an adequate terminal alphabet T . Again,
Π′′ has in the initial configuration one agent corresponding to the initial con-
figuration of Π, while the other agent is necessary for applying synchronization
rules, since a synchronization requires two different agents in order to be ex-
ecuted. The cooperative evolution rules of Π can easily be implemented by
using cooperative synchronization rules in Π′′.

The equalities follow from the fact that P systems with symbol-objects, coop-
erative evolution rules, one membrane and working in the maximally-parallel
mode are known to be computational complete (Theorem 5). 2

Removing maximal parallelism decreases the computational power of the con-
sidered colonies.

Theorem 9

PsCSAasyn
∗ (cooe, coos) = PsCSAasyn

∗ (cooe) = PsMAT.

Proof. First we prove that for an arbitrary CSA, Π = (A, T, C,R) from
CSA∗(cooe, coos), there exists a matrix grammar without appearance check-
ing, G, with terminal alphabet T , such that Psasyn

T (Π) = PsT (L(G)).

We suppose that card(C) = m. In particular, we suppose C consists of m
agents w1, w2, · · · , wm with wi ∈ A∗ for i ∈ {1, · · · ,m}.

We construct the sets Ai = {ai | a ∈ A} for i ∈ {1, 2, . . . ,m}.

We construct the morphisms hi : A → Ai for i ∈ {1, 2, . . . ,m} defined
as hi(a) = ai, a ∈ A. The inverse morphisms are denoted by h−1

i for i ∈
{1, 2, . . . ,m}. We have h−1

i (ai) = a, a ∈ A.

We then construct the pure matrix grammar without appearance checking,
G = (N,N, S,M), in the following way.

We define N = {S} ∪ A1 ∪ A2 ∪ · · · ∪ Am with S /∈ A1 ∪ A2 · · · ∪ Am.

The matrices of M are constructed in the following manner (we group them
according to their use).

19

Group I

We add to M the matrix (S → h1(w1)h2(w2) · · ·hm(wm)).

Group II

For each evolution rule u → v in R, with u = u1u2 · · ·uk, ui ∈ A for
i ∈ {1, 2, . . . , k} we add the following matrices: {(hj(u1) → λ, hj(u2) →
λ, . . . , hj(uk−1) → λ, hj(uk) → hj(v)) | j ∈ {1, 2, . . . ,m}}.

Group III

For each synchronization rule 〈u, v〉 → 〈u′, v′〉 with u = u1u2 · · ·uk, ur ∈ A
for r ∈ {1, 2, . . . , k} and v = v1v2 · · · vp, vr ∈ A for r ∈ {1, 2, . . . , p} we
add the matrices: {(hi(u1) → λ, hi(u2) → λ, . . . , hi(u(k−1)) → λ, hi(uk) →
hi(u

′), hj(v1) → λ, hj(v2) → λ, . . . , hj(vp−1) → λ, hj(vp) → hj(v
′)) | i, j ∈

{1, 2, . . . ,m}, i 6= j}.

The basic idea of the simulation is that the matrix in group I is used to start a
derivation of G by creating the string h1(w1)h2(w2) · · ·hm(wm) corresponding
to the initial configuration of Π (distinguishing the objects of the different
agents by using different indexes). The matrices of group II are used to sim-
ulate the evolution rules present in the set R, while the matrices of group III
are used to simulate the synchronization rules present in R.

The language L(G) is the set of all the (strings representing) the configura-
tions of Π reachable by asynchronous evolutions of Π starting with the initial
configuration C.

Precisely, if there is an asynchronous evolution e of Π, starting from the initial
configuration C and reaching the configuration {w′

1, w
′
2, · · · , w′

m}, then in L(G)
there is the string h1(w

′
1)h2(w

′
2) · · ·hm(w′

m).

In particular, a transition of the evolution e obtained by applying an evolution
(synchronization) rule of R to one (to a pair, resp.) of agents is simulated in
G by applying the corresponding matrix from group II (or from group III,
resp.). However, since Π works in an asynchronous way, we must take care of
the transitions of e that are obtained by using more than one rule. Precisely,
a transition of the evolution e that is obtained by applying several rules from
R to the agents is simulated in G by applying, sequentially, the corresponding
matrices from groups II and III.

The reverse is also true : if there is a string w in L(G) then it must be (by the
way G functions) of type h1(w

′
1)h2(w

′
2) · · ·hm(w′

m) with w′
1, w

′
2, · · · , w′

m ∈ A∗.
And by the way G has been constructed, if there is a derivation d in G that

20

produces the string h1(w
′
1)h2(w

′
2) · · ·h(w′

m), then there is an asynchronous
evolution of Π starting from the initial configuration C and reaching the con-
figuration {w′

1, w
′
2, · · · , w′

m}. In fact, Π works in the asynchronous mode and, in
particular, can have evolutions comprising sequential transitions. That is, only
one rule is applied at each application of a rule that simulates the application
of a matrix in the derivation d.

From the language L(G) we select by an appropriate regular intersection the
language L′ of all the strings corresponding to halting configurations reached
by asynchronous computations of Π. This can clearly be done by intersecting
the language L(G) with a regular set Rh of strings over N representing the
halting configurations of Π (i.e., the set Rh represents the strings over N where
no matrix can be applied and it is clearly a regular set).

We obtain L′ = L(G)∩Rh. The language L′ can still be generated by a matrix
grammar without appearance checking since matrix grammars without a.c. are
closed under regular intersection ([8]).

We construct then the following morphisms di : N −→ N ∪ {λ} for each
i ∈ {1, · · · ,m}, defined in the following manner.

di(ai) = ai, a ∈ T.
di(ai) = λ, a ∈ (A− T).

di(aj) = λ, a ∈ A, j 6= i.

For each i ∈ {1, · · · ,m}, the language di(L
′) selects from each string in L′ the

substring corresponding to the agent with objects indexed by i.

Moreover, from each agent the objects not in T are deleted.

Now we construct the language L′′ =
⋃

1≤i≤m(h−1
i (di(L

′))).

L′′ is the language that collects all the agents present in the halting configu-
rations, considering all the computations of Π.

Note that the language L′′ is a language over T and can also be obtained
using a matrix grammar without appearance checking (with terminal alphabet
T) because matrix grammars without appearance checking are closed under
arbitrary morphisms and under union ([8]).

For the construction explained above it follows that PsT (L′′) = Psasyn
T (Π).

Then PsCSAasyn
∗ (cooe, coos) ⊆ PsMAT .

21

On the other hand, a CSA with only one agent in the initial configuration
and using only cooperative evolution rules can simulate a matrix grammar
G = (N, T, S,M) without appearance checking. To make matters simpler
and without loss of generality we suppose that M has p matrices (labelled
by 1, · · · , p) each one with k productions (labelled by 1, · · · , k). It is always
possible to add “dummy” matrices. We also suppose, again with no loss of
generality, that the only production that rewrites S is the first production of
matrix 1.

We construct the set LM = {(mi,mj) | 1 ≤ i ≤ p, 1 ≤ j ≤ k}.

We then construct a CSA, Π = (A = N ∪ T ∪ LM ∪ {x}, T, C,R), with
C = {S(m1,m1)} and x /∈ N ∪ T ∪ LM .

The set of rules R is obtained in the following way. For each matrix i : (a1 →
u1, a2 → u2, . . . , ak → uk) in M and with i ∈ {1, · · · , p}, a1, a2, . . . , ak ∈
N , and u1, u2, · · · , uk ∈ (N ∪ T)∗, we add to R the following cooperative
evolution rules {(mi,m1)a1 → u1(mi,m2)x, (mi,m2)a2 → u2(mi,m3), · · · ,
(mi,mk−1)ak−1 → (mi,mk)uk−1 | 1 ≤ i ≤ m} ∪ {x(mi,mk)ak → uk(mj,m1) |
1 ≤ i ≤ p, 1 ≤ j ≤ p} ∪ {x→ x} ∪ {a→ a | a ∈ N}.

It is straightforward to see that any successful derivation in G producing the
string w can be simulated in Π by starting from the initial configuration C and
applying the corresponding evolution rules in R until a halting configuration
{(mj,m1)w}, for some 1 ≤ j ≤ p, is reached.

Moreover, for any asynchronous computation c in Π halting in a configuration
{(mj,m1)w}, for some 1 ≤ j ≤ p, there is a derivation in G producing w.

In fact, due to the way R is defined, all computations of Π are obtained by
having iterative applications of “blocks” of rules.

Each block of rules is a sequence of applications of rules, (mi,m1)a1 →
u1(mi,m2)x, (mi,m2)a2 → u2(mi,m3), · · · , (mi,mk−1)ak−1 → (mi,mk)uk−1,
x(mi,mk)ak → uk(mj,m1) for some i ∈ {1, · · · , p} and some j ∈ {1, · · · , p}.

Once a block has been started (i.e., (mi,m1)a1 → u1(mi,m2)x is applied)
it must also be completed (i.e., x(mi,mk)ak → uk(mj,m1) applied): in a
computation, a block cannot be interrupted because this would lead to the
object x being present in the configuration of the system, which would then
make the evolution non-halting (because of the rule x→ x in R).

It is easy to see that each element of this block of rules can be simulated in
G by applying the corresponding matrix.

22

Moreover, there are no computations in Π halting in a configuration
{(mj,m1)w} for some 1 ≤ j ≤ p with w having objects from N (non ter-
minals of G). This because of the rules a→ a, a ∈ N present in R.

From the above description, we have that Psasyn
T (Π) = PsT (L(G)).

Thus, PsCSAasyn
∗ (cooe, coos) ⊇ PsMAT and the Theorem follows.

2

Using a similar construction to that in the proof of Theorem 9 and from the
last statement of Theorem 1 we obtain.

Corollary 2 For an arbitrary CSA, Π, there exists a regular grammar G with
one-letter terminal alphabet such that Nasyn(Π) = NL(G).

Proof. The proof is obtained by a slight modification of the first part of
Theorem 9.

Given the CSA, Π = (A, T, C,R) we construct a matrix grammar with-
out a.c., G = (N,N, S,M), as given in the first part of Theorem 9. Then,
again following Theorem 9, we construct the language L′ to contain all the
strings corresponding to halting configurations reached by asynchronous com-
putations of Π. For instance, if {w′

1, w
′
2, · · · , w′

m} is a halting configuration
reached by Π, then in L′ there is the string {h1(w1), h2(w2), · · · , hm(wm)},
where h1, h2, . . . , hm are morphisms defined as in the proof of Theorem 9. As
explained in the proof of Theorem 9 L′ can be generated by a matrix grammar
without a.c.

We construct then the following morphisms di : N −→ {z} ∪ {λ}, for each
i ∈ {1, · · · ,m}, defined in the following manner (z is a new symbol not in N).

di(ai) = z, a ∈ A.
di(aj) = λ, a ∈ A, j 6= i.

Then, for each i ∈ {1, · · · ,m}, the language di(L
′) selects from each string

in L′ the substring corresponding to the agent with objects indexed by i and
replaces all the objects of the agent by the symbol z.

Now we construct the language L′′ =
⋃

1≤i≤m di(L
′).

L′′ is the language that collects all the agents present in the halting configu-
rations, considering all the computations of Π.

From the construction it is clear that Nasyn(Π) = NL′′.

23

Moreover, L′′ can also be generated by a matrix grammar without a.c., using
terminal alphabet {z}. Matrix grammars without a.c. are closed under union
and arbitrary morphism, see, e.g., [8].

The result then follows from the fact that a language generated by a matrix
grammar without a.c. over a one letter alphabet is regular (Theorem 1).

2

Using Theorem 8 and Theorem 9 we obtain:

Corollary 3

PsCSAasyn
∗ (cooe, coos) ⊂ PsCSAmp

1 (cooe, coos)

= PsCSAmp
1 (cooe)

= PsCSAmp
1 (coos)

When using unary rules the computational power is equivalent to that of finite
sets of vectors of natural numbers, even for CSAs working in the maximally
parallel mode.

Theorem 10 PsCSAasyn
∗ (une, uns) = PsCSAmp

∗ (une, uns)
= PsFIN.

Proof. In CSAs using only unary rules the sizes of the agents present in the
initial configuration cannot be increased, so, because of the finite number of
possible combinations, these systems can only generate finite sets of vectors of
numbers as output. On the other hand, any finite set, S, of vectors of numbers
can be obtained as output of a CSA, Π, by having in the initial configuration
of Π, for each vector v in S, one agent w with Parikh vector v (with respect
to an adequate terminal alphabet). 2

However, by combining unary synchronization rules and non-cooperative evo-
lution rules, we obtain computational completeness for CSAs working in the
maximally parallel way with two agents in the initial configuration. The proof
of this result is by simulation of EC P systems.

Theorem 11 PsCSAmp
2 (ncooe, uns) = PsRE.

Proof. Programmed grammars with appearance checking are grammars, known
to be computationally complete (see, e.g., [8]). Without going into unnecessary
details, we mention that in [2] it has been shown that for any programmed
grammar with appearance checking, G, with terminal alphabet T , there exists

24

an EC P system Π with two membranes, non-cooperative evolution rules, sym-
port/antiport rules of weight at most one and such that PsT (L(G)) = Ps(Π).
This proves that PsECP2(1, 1, ncoo) = PsRE.

We show that any evolution-communication P systems with two membranes,
non-cooperative evolution rules and antiport rules of weight one can be simu-
lated by using a CSA system with two agents, non-cooperative evolution rules,
unary synchronization rules and working in the maximally parallel way (the
two agents represent the two regions enclosed by the two membranes in the
EC P system).

For an arbitrary programmed grammar with a.c., G, with terminal alpha-
bet T , we construct (using the construction proposed in [2]) an EC P system
Π = (O, [[]2]1, w1, w2, R1, R2, R

′
1, R

′
2, i0), with T ⊆ O, such that PsT (L(G)) =

Ps(Π). Π is constructed in such a way that its output at the end of a com-
putation consists of objects corresponding to the terminals T collected in the
environment. These objects are immediately sent into the environment once
they are obtained in region 1 and remain there unchanged until the end of the
computation (the symport rules associated to membrane 1 are used only to
send to the environment these objects and no other antiport or symport rules
are associated to membrane 1).

We define O1 = {a1 | a ∈ O} and O2 = {a2 | a ∈ O}.

We define two morphisms that map the objects of O into indexed objects (the
index denotes the region of Π where the object is present).

Precisely, we define h1 : O → O1 as h1(a) = a1 for each a ∈ O, h2 : O → O2

defined as h2(a) = a2 for each a ∈ O.

Now we construct the CSA, Π′ = (A, T ′, C,R), as follows.

We set A = {h1(a), h2(a) | a ∈ O} and C = {h1(w1), h2(w2)}. The terminal
alphabet T ′ is defined as {h1(a) | a ∈ T}.

The rules in R are constructed in the following manner.

For each rule a→ v in Ri, i ∈ {1, 2}, add to R the rule hi(a) → hi(v).

For each symport rule (a, in) present in R′
2, add to R the synchronization rule

〈h1(a), λ〉 → 〈λ, h2(a)〉.

For each symport rule (a, out) present in R′
2, add to R the synchronization

rule 〈h2(a), λ〉 → 〈λ, h1(a)〉.

For each antiport rule (a, in; b, out) present in R′
2, add to R the synchronization

rule 〈h1(a), h2(b)〉 → 〈h1(b), h2(a)〉.

25

All (and only) the computations of Π are simulated by computations of Π′.

The idea is that the two agents in Π′ represent the contents of the regions and
of the environment of Π: the agent with objects indexed by 1 represents the
contents of region 1 and the objects in the environment, while the agent with
objects indexed by 2 represents the contents of region 2.

Evolution rules and symport/antiport rules in Π are simulated by the corre-
sponding constructed evolution and synchronization rules, respectively, present
in R.

The use of indexed objects for the agents guarantees that the two agents are
maintained separate, such that no incorrect interaction (i.e., synchronization)
can take place and every configuration of Π′, reached during any computation,
will always have two agents; one with all objects indexed by 1 and one with
all objects indexed by 2. That is, there are no computations in Π′ that reach
a configuration having agents with objects with different indexes.

From the way Π′ is constructed, it can easily be seen that for each computation
in Π, producing in the environment a multiset of objects w, for w ∈ T ∗ (i.e., the
output of the computation of Π is the vector v = PsT (w)), there exists a com-
putation for Π′ having, in the halting configuration, the agents h1(ww

′), h2(w
′′)

with w′′ ∈ O∗, w ∈ T ∗, w′ ∈ (O−T)∗. That is, the output of the computation
is the set composed of the vectors v = PsT ′(h1(ww

′)) = PsT ′(h1(w)) and
PsT ′(h2(w

′′)) = 0. The empty vector is also present since in h(w′′) there are
no objects from T .

On the other hand, for each computation in Π′, with the agents h1(ww
′) and

h2(w
′′) in the halting configuration, with w′ ∈ O∗, w ∈ T ∗ and w′′ ∈ O∗

(i.e., the output is the set composed of the vectors v = PsT ′(h1(ww
′)) =

PsT ′(h1(w)) and PsT ′(h2(w
′′)) = 0), there exists a computation in Π produc-

ing the multiset of objects w in the environment in the halting configuration
(i.e., having as output the vector v = PsT (w)).

Because in the equality of sets of vectors we do not consider the null vector,
the Theorem follows.

2

Note that the role of synchronization rules, even if only unary, is crucial: when
this type of rule is not used, the computational power of CSAs is only regular
(in terms of Parikh images).

Theorem 12 PsCSAmp
∗ (ncooe) = PsCF.

26

Proof. For an arbitrary CSA, Π = (A, T, C,R), with m agents w1, w2, . . .,
wm (no bound on m) there exists a P system, Π′, with symbol-objects and
non-cooperative evolution rules working in the maximally parallel way, such
that PsT (Π′) = Psmp

T (Π). The P system, Π′ = (A ∪ {S}, T, []1, S, R1), needs
only one region labeled 1. We add to R1 the following rules: {S → w1, S →
w2, . . . , S → wm} and all the rules present in R. Clearly, for each vector v in
Psmp

T (Π) there is a computation in Π′ that halts with a multiset of objects w
in region 1, such that PsT (w) = v. Equally, for each vector v obtained as the
output of a computation in Π′ there exists a computation in Π halting in a
configuration containing the agent w with PsT (w) = v.

Vice versa, for a P system, Π′ = (O, T, []1, w1, R1), with symbol-objects, non-
cooperative evolution rules and working in the maximally-parallel way, it is
possible to construct an equivalent CSA, Π = (O, T,C,R), with C = {w1} and
R = R1. In a direct way we have that Psmp

T (Π) = PsT (Π′). Using Theorem 5,
the result follows.

2

5 Robustness of CSAs: A (Preliminary) Formal Study

In this Section we investigate the robustness of CSAs against perturbations of
some of the features of the system.

For this purpose we use a similar idea of robustness as that employed in [16],
in the framework of grammar systems, adapted here to the proposed CSAs.

We want to investigate situations where either some of the agents or some
of the rules of the colony do not function. What are the consequences to the
behaviour of the colony?

We will try to investigate systems that are robust, e.g., where the behaviour
does not change critically if one or more agents cease to exist in the system.

Let Π = (A, T, C,R) be an arbitrary CSA.

We say that Π′ is an agent-restriction of Π if Π′ = (A, T, C ′, R) with C ′ ⊆ C.
Π′ is a CSA where some of the agents originally present in Π no longer work,
i.e., the CSA behaves as though they were absent from the system.

We also consider a rule-restriction of Π obtained by removing some or possibly
all of the rules. Then, Π′ = (A, T, C,R′) is a rule-restriction of Π if R′ ⊆ R.

27

In this case some of the rules do not work, i.e., the CSA behaves as if they
were absent from the system.

We say that a CSA, Π, is robust when a core behaviour, i.e., the minimally
accepted behaviour, is preserved when considering proper restrictions of it. A
measure of the robustness of Π is the difference between the initial system and
the minimum restriction preserving the core behaviour, where difference and
minimum are to be defined.

By a core behavior of Π we mean a subset of the set of vectors of natural
numbers generated by Π.

We define these subsets by making an intersection with a set of vectors from
PsREG that defines the regular property of the core behaviour we are inter-
ested in. Note that the core behaviour may be infinite.

Questions about robustness can then be formalized in the following manner.

Consider an arbitrary CSA, Π, an arbitrary agent- or rule- restriction Π′ of
Π, and an arbitrary set S from PsREG. Is it possible to decide whether or
not Ps(Π) ∩ S ⊆ Ps(Π′) (i.e., whether Π is robust against the restriction Π′,
in the sense that it will continue to generate, at least, the core behaviour)?

Example 2 We produce a small example that clarifies the introduced notion
of robustness in the case of agent-restriction and asynchronous computations.
The other cases (rule-restriction, maximally-parallel computations) are con-
ceptually similar.

Consider a CSA Π = (A, T, C,R) with A = {a, b, c, d, e, f}, T = {e, f}, C =
{(ab, 1), (bc, 1), (bd, 1), (a, 1)}. The rules in R are
{〈ab, bc〉 → 〈eff, eff〉, 〈ab, bd〉 → 〈eff, eff〉}.

There are two possible asynchronous computations of Π, which are represented
diagrammatically in Figure 4.

As it is possible to see, collecting the results (vectors representing the multi-
plicities of the terminal objects in the agents in the halting configurations) we
obtain that Psasyn

T (Π) = {(1, 2), 0} ∪ {(1, 2), 0} = {(1, 2), 0}, where 0 denotes
(0, 0).

In fact, we have in the two halting configurations (for the two computations),
two agents eff , whose associated Parikh vector (with respect to T) is (1, 2) and
the other agents, bd, bc and a, whose associated Parikh vectors, with respect to
T , are the null vector (the agents do not contain any terminal object).

Now, suppose we fix a core behaviour to be the set of vectors {(1, 2)} (it can

28

4.pdf

Fig. 4. The two possible asynchronous computations of Π of Example 2

be clearly obtained by an intersection of Psasyn
T (Π) with {(1, 2)}, which is in

PsREG).

The system Π is robust when the agent bc is deleted from its initial configu-
ration. In fact, if we consider Π′ = (A, T, C ′, R), with C ′ = {(ab, 1), (bd, 1),
(a, 1)}, we have that Psasyn

T (Π′) = {(1, 2), 0}, which still contains the defined
core behaviour. The only possible computation of Π′ is represented in Figure
5.

On the other hand, the system Π is not robust when the agent ab is deleted
from its initial configuration. If we consider Π′′ = (A, T, C ′′, R), with C ′′ =
{(bd, 1), (a, 1)}, we have that Psasyn

T (Π′′) = {0}, which does not contain the
core behaviour. The system Π′′ is represented in Figure 6. The only possible
computation of Π′′ is the one that halts in the initial configuration C ′′.

We move now to analyse the case of rule-restrictions with asynchronous evo-
lution and demonstrate a negative result.

In what follows we suppose that an arbitrary set S fromNREG (from PsREG)
is given by having the corresponding grammarG fromREG such thatNL(G) =
S (Ps(L(G)) = S, resp.).

Theorem 13 It is undecidable whether or not for an arbitrary CSA, Π, with
terminal alphabet T , arbitrary rule restriction Π′ of Π and arbitrary set S from
PsREGT , Psasyn

T (Π) ∩ S ⊆ Psasyn
T (Π′).

29

5.pdf

Fig. 5. Robust behaviour of Π′ of Example 2 when agent bc is removed from C.

6.pdf

Fig. 6. No robustness displayed by Π′′ of Example 2 when agent ab is removed from
C.

Proof. We start by having two arbitrary matrix grammars without a.c., G =
(N, T, S,M) and G′ = (N ′, T, S,M ′) with N ∩ N ′ = {S}. It is undecidable
whether or not PsT (L(G)) ⊆ PsT (L(G′)) (see Corollary 1).

To make matters simpler and without loss of generality we suppose that M
has p matrices (labelled by 1, 2, · · · , p) of k productions (labelled by 1, 2, · · · , k)
and M ′ has m′ matrices (labelled by 1, 2, · · · ,m′) of k′ productions (labelled
by 1, 2, · · · , k′). Again with no loss of generality we also suppose that the only
production in M (and in M ′) that rewrite the axiom S is the production 1 of
matrix 1.

We construct the sets LM = {(mi,mj) | 1 ≤ i ≤ p, 1 ≤ j ≤ k} and LM =
{(m′

i,m
′
j) | 1 ≤ i ≤ m′, 1 ≤ j ≤ k′}.

As in the second part of Theorem 9, we construct a CSA, Π, equivalent to G

30

in the following way.

Π = (A = N ∪N ′ ∪ T ∪ LM ∪ L′M ∪ {x}, T, C,R) with C =
{S(m1,m1)(m

′
1,m

′
1)} and with the set of rules R obtained in the following

way.

For each matrix i : (a1 → u1, a2 → u2, . . . , ak → uk) in M with a1, a2, . . . , ak ∈
N and u1, u2, · · · , uk ∈ (N ∪ T)∗, with i ∈ {1, · · · , p}, we add to R the fol-
lowing cooperative evolution rules {(mi,m1)a1 → u1(mi,m2)x, (mi,m2)a2 →
u2(mi,m3), · · · , (mi,mk−1)ak−1 → (mi,mk)uk−1}∪{x(mi,mk)ak → uk(mj,m1)
| 1 ≤ j ≤ p} ∪ {a→ a | a ∈ N} ∪ {x→ x}.

Using the same arguments as in the proof of Theorem 9 it is possible to see
that Psasyn

T (Π) = PsT (L(G)).

In a similar way we construct a CSA, Π′ = (A, T, C,R′), which is the same as
Π except that has rules R′, constructed as follows.

For each matrix i : (a1 → u1, a2 → u2, · · · , ak′ → uk′) inM ′ with a1, a2, · · · , ak ∈
N ′ and u1, u2, · · · , uk ∈ (N ′ ∪ T)∗, with i ∈ {1, · · · ,m′}, we add to R′ the fol-
lowing cooperative evolution rules {(m′

i,m
′
1)a1 → u1(m

′
i,m

′
2)x, (m

′
i,m

′
2)a2 →

u2(m
′
i,m

′
3), · · · , (m′

i,m
′
k′−1)ak′−1 → (m′

i,m
′
k′)uk′−1} ∪ {x(m′

i,m
′
k′)ak′ →

uk′(m′
j,m

′
1) | 1 ≤ j ≤ m′} ∪ {a→ a | a ∈ N ′} ∪ {x→ x}.

Again, using the same arguments as in the proof of Theorem 9, we have that
Psasyn

T (Π′) = PsT (L(G′)).

We then construct the CSA Π′′ = (A, T, C,R′ ∪ R). It can be seen that
Psasyn

T (Π′′) = Psasyn
T (Π)∪Psasyn

T (Π′) = PsT (L(G))∪PsT (L(G′)). In fact, ap-
plying rules from R one gets Psasyn

T (Π), while applying rules from R′ one gets
Psasyn

T (Π′). The application of the rules cannot be “mixed” sinceN∩N ′ = {S}.

Now suppose there exists an algorithm to decide whether or not, for arbitrary
CSA, Π, arbitrary rule restriction Π′ of Π and arbitrary set S from PsREGT ,
Psasyn

T (Π) ∩ S ⊆ Psasyn
T (Π′).

We could then apply this algorithm to decide whether or not Psasyn
T (Π′′) ∩

PsT (T ∗) ⊆ Psasyn
T (Π′). Notice that Π′ is a rule restriction of Π′′.

If the answer is true then Psasyn
T (Π) ⊆ Psasyn

T (Π′), otherwise (answer false)
Psasyn

T (Π) 6⊆ Psasyn
T (Π′).

So we could also decide whether or not PsT (L(G)) ⊆ PsT (L(G′)), which is
not possible. Hence, by contradiction, the Theorem follows. 2

Note, however, that the result is different when the considered core behaviour

31

is finite.

Theorem 14 It is decidable whether or not, for an arbitrary CSA, Π, with
terminal alphabet T , arbitrary rule restriction Π′ of Π and arbitrary finite set
S from PsREGT , Psasyn

T (Π) ∩ S ⊆ Psasyn
T (Π′).

Proof. To check whether or not Psasyn
T (Π) ∩ S ⊆ Psasyn

T (Π′) we only need to
construct S ′ = Psasyn

T (Π) ∩ S and then to check whether or not each vector
in S ′ is in Psasyn

T (Π′). This can be done because:

• S is finite.
• For any arbitrary CSA, Π, with terminal alphabet T , we can construct

a matrix grammar without a.c., G, with terminal alphabet T , such that
Psasyn

T (Π) = PsT (L(G)) (Theorem 9) and the membership problem for
matrix grammars without a.c. is decidable (see, e.g., [8]).

• Given a vector v, there is only a finite set of strings (over T) whose Parikh
vector with respect to T is exactly v.

2

Suppose that we are only interested in the size of the agents and not in their
internal structure. This means that we collect, for a colony Π, the set of
numbers N(Π). In this case the robustness problem can be rephrased in the
following manner.

Consider an arbitrary CSA, Π, with an arbitrary agent- / rule-restriction Π′

of Π and an arbitrary set S from NREG.

Is it possible to decide whether or not N(Π) ∩ S ⊆ N(Π′) (i.e., whether Π is
robust against the restriction Π′)? Note that in this case the core behaviour
is defined by specific sizes of the agents.

In this case we get the following positive results, even when considering infinite
core behaviour.

Theorem 15 It is decidable whether or not, for an arbitrary CSA, Π, arbi-
trary rule restriction Π′ of Π and arbitrary set S from NREG, Nasyn(Π)∩S ⊆
Nasyn(Π′).

Proof.

We know that for an arbitrary CSA Π′ we can construct a regular grammar G′

with a one-letter terminal alphabet such that Nasyn(Π′) = NL(G′) (Corollary
2).

Moreover, we can also construct a regular grammar G over a one-letter alpha-

32

bet such that N(L(G)) = Nasyn(Π′) ∩ S.

The result then follows from the fact that, given two arbitrary regular gram-
mars G1 and G2 it is decidable whether or not L(G1) ⊆ L(G2) (see, e.g., [13]).
In particular, this is true when the terminal alphabet of the two regular gram-
mars is of cardinality one and the decidability result can be easily extended
to the length sets of the languages. 2

The same positive result holds when, considering vectors of numbers, the CSAs
work in maximally-parallel mode but use only non-cooperative evolution rules.

Theorem 16 It is decidable whether or not, for an arbitrary CSA, Π from
CSA∗(ncooe), with terminal alphabet T , arbitrary rule restriction Π′ of Π and
arbitrary set S from PsREGT , Ps

mp
T (Π) ∩ S ⊆ Psmp

T (Π′).

Proof. For any CSA Π from CSA∗(ncooe) with terminal alphabet T it is
possible to construct a regular grammar G with terminal alphabet T ′ such
that Psmp

T (Π) = PsT ′(L(G)) (because of Theorem 12 and Theorem 2). Then it
is also possible to construct a regular grammar G′ over T ′ such that Psmp

T (Π)∩
S = PsT ′(L(G′)). The result then follows from the fact that containment is
decidable for regular languages (see, e.g., [13]) and this result can easily be
extended to the Parikh images of regular languages because there is only a
finite number of strings over an alphabet T ′ having a given Parikh vector with
respect to T ′. 2

Note, however, that even if robustness against rule absence is in many cases
undecidable when the core behaviour is infinite, it is still possible to decide
whether a rule (evolution or synchronization) is used or not by a CSA. So, if
a rule is not used we can remove it and the system will be robust against such
deletion.

Theorem 17 It is decidable whether or not, for an arbitrary CSA Π =
(A,C, T,R) and an arbitrary rule r from R, there exists at least one asyn-
chronous computation for Π containing at least one configuration obtained by
applying at least one instance of rule r.

Proof. Given an arbitrary CSA, Π = (A,C, T,R), and an arbitrary rule r
from R we can construct, by modifying the construction given in the first part
of the proof of Theorem 9, a matrix grammar without a.c., G, with terminal
alphabet T , such that PsT (L(G)) is not the empty set if and only if there exists
at least one asynchronous computation for Π having at least one transition
where r is applied. This can be done, for instance, by modifying the matrix
grammar G given in the proof of Theorem 9 as follows. A matrix is added
that is applied at the beginning of each derivation of G and that introduces a

33

non-terminal, X, which is removed only when the matrix that simulates the
rule r is used. In this case we will have that L(G) (also its Parikh image) is
not the empty set if and only if there is a derivation in G where the matrix
that simulates rule r is used. The Theorem follows from the fact that it is
possible to decide whether or not PsT (L(G)) is the empty set (Corollary 1).

2

Now we analyse the case when agent-restrictions are considered. In this case
the problems remain undecidable when the core behaviour is infinite.

Theorem 18 It is undecidable whether or not, for an arbitrary CSA, Π, with
terminal alphabet T , arbitrary agent restriction Π′ of Π and arbitrary set S
from PsREGT , Psasyn

T (Π) ∩ S ⊆ Psasyn
T (Π′).

Proof. We start by having two arbitrary matrix grammars without a.c., G =
(N, T, S,M) and G′ = (N ′, T, S,M ′) with N ∩N ′ = {S}∪T . It is undecidable
whether or not PsT (L(G)) ⊆ PsT (L(G′)) (see Corollary 1).

To make matters simpler and without loss of generality we suppose that M
has p matrices (labelled by 1 · · · , p) of k productions (labelled by 1, · · · , k)
and M ′ has m′ matrices (labelled by 1, · · · ,m′) of k′ productions (labelled by
1, · · · , k′). Again with no loss of generality we suppose that in M and M ′ only
the production 1 of matrix 1 can rewrite S.

We construct the sets LM = {(mi,mj) | 1 ≤ i ≤ p, 1 ≤ j ≤ k} and L′M =
{(m′

i,m
′
j) | 1 ≤ i ≤ m′, 1 ≤ j ≤ k′}.

As in the second part of the proof of Theorem 9 we construct a CSA Π
equivalent to G in the following way.

Π = (A = N ∪N ′ ∪ T ∪ LM ∪ L′M ∪ {x}, T, C,R) with C = {S(m1,m1)} and
with the set of rules R obtained in the following way.

For each matrix i : (a1 → u1, a2 → u2, . . . , ak → uk) in M with a1, a2, . . . , ak ∈
N and u1, u2, · · · , uk ∈ (N ∪ T)∗ with i ∈ {1, · · · , p}, we add to R the fol-
lowing cooperative evolution rules {(mi,m1)a1 → u1(mi,m2)x, (mi,m2)a2 →
u2(mi,m3), · · · , (mi,mk−1)ak−1 → (mi,mk)uk−1}∪{x(mi,mk)ak → uk(mj,m1)
| 1 ≤ j ≤ p}.

For each matrix i : (a1 → u1, a2 → u2, . . . , ak′ → uk′) inM ′ with a1, a2, . . . , ak ∈
N ′ and u1, u2, · · · , uk ∈ (N ′ ∪ T)∗ with i ∈ {1, · · · ,m′}, we add to R the fol-
lowing cooperative evolution rules {(m′

i,m
′
1)a1 → u1(m

′
i,m

′
2)x, (m

′
i,m

′
2)a2 →

u2(m
′
i,m

′
3), · · · , (m′

i,m
′
k′−1)ak′−1 → (m′

i,m
′
k′)uk′−1} ∪ {x(m′

i,m
′
k′)ak′ →

uk′(m′
j,m

′
1) | 1 ≤ j ≤ m′}.

We also add to R the set of rules {a→ a | a ∈ N} ∪ {x→ x}.

34

Using the same arguments as in the proof of Theorem 9 we have that Psasyn
T (Π)

= PsT (L(G)).

In a similar way we construct a CSA, Π′ = (A, T, C ′, R), with the only differ-
ence being the initial configuration C ′ = {S(m′

1,m
′
1)}.

In this case, Psasyn
T (Π′) = PsT (L(G′)).

We then construct the CSA Π′′ = (A, T, C + C ′, R).

We have that Psasyn
T (Π′′) = Psasyn

T (Π)∪Psasyn
T (Π′) = PsT (L(G))∪PsT (L(G′)).

Suppose that Psasyn
T (Π) and Psasyn

T (Π′) are not the empty set.

Now suppose that there is an algorithm to decide, for an arbitrary CSA, Π,
arbitrary agent restriction Π′ of Π and arbitrary set S from PsREGT , whether
or not Psasyn

T (Π) ∩ S ⊆ Psasyn
T (Π′).

We may use this algorithm to decide whether or not Psasyn
T (Π′′)∩PsT (T ∗) ⊆

Psasyn
T (Π′).

In fact, Π′ is an agent restriction of Π′′.

If the proposition is true then Psasyn
T (Π) ⊆ Psasyn

T (Π′), while if the proposition
is false, Psasyn

T (Π) 6⊆ Psasyn
T (Π′) (the case when Psasyn

T (Π) or/and Psasyn
T (Π′)

is the empty set is trivial, emptiness for Parikh images of languages generated
by matrix grammars without a.c. is decidable, Corollary 1).

So we can decide whether or not PsT (L(G)) ⊆ PsT (L(G′)) and this is not
possible (Corollary 1). From this, by contradiction, the Theorem follows. 2

Using the same ideas as in the proof of Theorem 14 we get the following result.

Theorem 19 It is decidable whether or not, for an arbitrary CSA, Π, with
terminal alphabet T , arbitrary agent restriction Π′ of Π and arbitrary finite
set S from PsREGT , Psasyn

T (Π) ∩ S ⊆ Psasyn
T (Π′).

Using the same ideas as in the proof of Theorem 15 we get the following result.

Theorem 20 It is decidable whether or not, for an arbitrary CSA, Π, arbi-
trary agent restriction Π′ of Π and arbitrary set S from NREG, N(Π)∩ S ⊆
N(Π′).

Obviously, for CSAs that are computationally complete (in a constructive
way), every non-trivial property is undecidable (Rice’s Theorem, see, e.g.,
[13]). So this is already shown to be true for CSAs with non-cooperative evo-
lution rules, unary synchronization rules and working in the maximally parallel

35

mode.

Therefore, from Theorem 11, we have the following result.

Theorem 21 It is undecidable whether or not, for an arbitrary CSA, Π from
CSA∗(cooe, uns) with terminal alphabet T , arbitrary agent or rule restriction
Π′ of Π and arbitrary set S from PsREGT , Psmp

T (Π) ∩ S ⊆ Psmp
T (Π′).

Note that, invoking Rice’s Theorem once again, we get the same negative
results even when considering finite core behaviour and length sets.

Theorem 22 It is undecidable whether or not for an arbitrary CSA, Π from
CSA∗(cooe, uns), with terminal alphabet T , arbitrary agent or rule restriction
Π′ of Π and arbitrary finite set S from PsREGT , Psmp

T (Π) ∩ S ⊆ Psmp
T (Π′).

Theorem 23 It is undecidable whether or not, for an arbitrary CSA, Π from
CSA∗(cooe, uns), arbitrary agent or rule restriction Π′ of Π and arbitrary set
S from NREG, Nmp(Π) ∩ S ⊆ Nmp(Π′).

6 A Computational Tree Logic for CSAs

In this section we continue the investigation of the dynamic properties of CSAs
and for this purpose we introduce a computational tree logic (CTL temporal
logic) to formally specify, verify and model-check properties of CSAs. An in-
troduction to the basic notions and results of temporal logics can be found in
[3,21].

Temporal logics are the most used logics in model-checking analysis: efficient
algorithms and tools having already been developed for them, e.g. NuSMV
[22]. They are devised with operators for expressing and quantifying on pos-
sible evolutions or configurations of systems. For instance, for an arbitrary
system it is possible to specify properties such as ‘for any possible evolution,
φ is fulfilled’, ‘there exists an evolution such that φ is not true’, ‘in the next
state φ will be satisfied’, ‘eventually φ will be satisfied’ and ‘φ happens until ψ
is satisfied’, with φ and ψ properties of the system. We show how to use these
operators to formally specify and verify complex properties of CSAs, such as
‘the agent will always eventually reach a certain configuration’, or ‘rule r is
not applicable until rule r′ is used’, etc.

Definition 6.1 (Preconditions) Let A be an arbitrary alphabet and R an
arbitrary set of rules over A. We define the mapping prec : R→ 2M(A) by

• if r ∈ R is the evolution rule u→ v then prec(r) = {u};
• if r ∈ R is a synchronization rule 〈u, v〉 → 〈u′, v′〉 then prec(r) = {u}∪{v}.

36

We define prec(R) =
⋃

r∈R prec(r).

We now extend the definition of γ-evolutions for a given CSA by introducing
the notion of γ-complete evolution defined for arbitrary classes of CSAs.

In what follows, let C = CSAA,T,R
m be a class of all the CSAs having alphabet

A, terminal alphabet T , set of rules R over A, degree m, with A, T , R and m
arbitrarily chosen.

Definition 6.2 (γ-complete evolutions) A sequence of CSAs 〈Π0,Π1, Π2,
. . . ,Πi, . . .〉 with Πi = (A, T, Ci, R) ∈ C, i ≥ 0, is called γ-complete evolution
in C starting in Π0 if 〈C0, C1, C2, . . . Ci, . . .〉, i ≥ 0, is a halting or an infinite
γ-evolution of Π0, with γ ∈ {asyn,mp}.

We denote by Eγ
C (Π0) the set of all γ-complete evolutions in C starting at Π0.

Let e = 〈Π0,Π1, . . . ,Πi,Πi+1 . . .〉 be an arbitrary γ-complete evolution in C
starting in Π0. We call 〈Πi,Πi+1, . . .〉, i ≥ 0, an i-suffix evolution 1 of e and
we denote it by ei.

Definition 6.3 (Syntax of LC) The set AP (C) is defined by:

• > ∈ AP (C).
• prec(R) ⊆ AP (C).
• if w1, w2, . . . , wi ∈ prec(R) ∪ {>}, i ≤ m, then w1 ⊕ . . .⊕ wi ∈ AP (C).

We call the elements of AP (C) atomic formulas of the logic LC.

We define the configuration formulas of LC and the evolution formulas of LC
in the following way.

• any atomic formula of LC is a configuration formula of LC.
• if φ, ψ are configuration formulas of LC then ¬φ and φ∧ψ are configuration

formulas of LC.
• if φ is an evolution formula of LC then Eφ is a configuration formula of LC.
• if φ, ψ are configuration formulas of LC then Xφ and φUψ are evolution

formulas of LC.

The configuration formulas and evolution formulas of LC form the language
of LC.

The meanings of >,¬,∧ are those from classical logic. In addition, we have
the temporal operators: Eφ that expresses an existential quantification on
evolutions,Xφ which means “at the next configuration φ is satisfied” and φUψ

1 Observe that for an arbitrary γ-complete evolution e in C, for each i ≥ 0, ei is
also a γ-complete evolution in C.

37

which means “φ is satisfied until ψ is satisfied”. In what follows, the properties
we can express by using these operators are checked for some models called
temporal structures.

Definition 6.4 (Temporal structures) We define the structure T γ
C =

(S,R), γ ∈ {asyn,mp}, as follows:

• S ⊆ C, such that if Π0 ∈ S then {Π1,Π2, . . . | 〈Π0,Π1,Π2, . . .〉 ∈ Eγ
C (Π0)} ⊆

S.
• R ⊆ S × S, such that (Π1,Π2) ∈ R iff there exists 〈Π1,Π2, . . .〉 ∈ Eγ

C (Π1).

We call T γ
C a temporal structure in C.

Definition 6.5 (CSA-Semantics) Let T γ
C = (S,R) be a temporal structure

in C. For an arbitrary Π ∈ S, an arbitrary e ∈ Eγ
C (Π) and an arbitrary formula

φ from the language of LC, we define coinductively the satisfiability relations
T γ
C ,Π |= φ and T γ

C , e |= φ by:

T γ
C ,Π |= > always.

T γ
C ,Π |= w for w ∈ prec(R) iff CΠ = {(w′, 1)} and w ⊆ w′.

T γ
C ,Π |= w1 ⊕ w2 ⊕ . . . ⊕ wi for wj ∈ prec(R) ∪ {>}, 1 ≤ j ≤ i iff CΠ =
C1 + C2 + . . . + Ci s.t. for any wj 6= >, 1 ≤ j ≤ i, Cj = {(wj + uj, 1)} for
some uj ∈ M(A).

T γ
C ,Π |= φ ∧ ψ iff T γ

C ,Π |= φ and T γ
C ,Π |= ψ.

T γ
C ,Π |= ¬φ iff T γ

C ,Π 6|= φ.

T γ
C ,Π |= Eφ iff there exists e ∈ Eγ

C (Π) such that T γ
C , e |= φ.

T γ
C , e |= φUψ iff there exists i ≥ 0 such that T γ

C , ei |= ψ and for all j ≤ i
T γ
C , ej |= φ.

T γ
C , e |= Xφ iff T γ

C , e1 |= φ.

Definition 6.6 (Validity and satisfiability) A configuration formula φ
(evolution formula φ) from LC is valid iff for every temporal structure T γ

C =
(S,R) in C and any Π ∈ S (any e ∈ Eγ

C (Π), resp.) we have T γ
C ,Π |= φ

(T γ
C , e |= φ, resp.). A configuration formula φ (evolution formula φ) is sat-

isfiable iff there exists a temporal structure T γ
C = (S,R) and a Π ∈ S (an

e ∈ Eγ
C (Π), resp.) such that T γ

C ,Π |= φ (T γ
C , e |= φ, resp.).

Definition 6.7 (Derived formulas) We define the following derived for-
mulas for LC.

38

Aφ = ¬E¬φ.

Fφ = >Uφ.

Gφ = ¬F¬φ.

The semantics of the derived formulas are the following.

T γ
C ,Π |= Aφ iff for any e ∈ Eγ

C (Π) we have T γ
C , e |= φ.

T γ
C , e |= Fφ iff there exists i ≥ 0 such that T γ

C , ei |= φ.

T γ
C , e |= Gφ iff for any i ≥ 0 we have T γ

C , ei |= φ.

Aφ is a universal quantification on evolutions. Fφ means “eventually φ is
satisfied” (i.e., Fφ is satisfied by an evolution that contains at least one con-
figuration that has the property φ). Gφ means “globally φ is satisfied” (i.e.,
Gφ is satisfied by an evolution that contains only configurations satisfying φ).

Theorem 24 (Decidability) The satisfiability, validity and model-checking
problems for LC against the CSA-semantics are decidable.

Proof. The result derives from the fact that CTL logic is decidable (see, e.g.,
[21,3]) and from the fact that AP (C), the set of atomic formulas, is a finite
set. 2

To show the potential of the introduced logic we give a small example of
properties that can be specified. We pose the question whether or not during
any evolution the agents can always synchronize when they are ready to do
so.

In other words, given an arbitrary CSA, Π, and an arbitrary rule r : 〈u, v〉 →
〈u′, v′〉, we would like to check whether or not it is true that, whenever during
an evolution of Π, a configuration with an agent w1, where u ⊆ w1, is reached,
then in the same configuration there is also an agent w2 with v ⊆ w2 (so rule r
can actually be applied). If this is true we say that Π is safe on synchronization
of rule r.

This property can be expressed in the proposed temporal logic by the following
formula.

AG((u⊕>) → (u⊕ v ⊕>)).

Taking a CSA, Π0, from C. If we consider the introduced CSA-semantics we
have that:

39

T γ
C ,Π0 |= AG((u⊕>) → (u⊕ v ⊕>))

iff for any e ∈ Eγ
C (Π0) we have T γ

C , e |= G((u⊕>) → (u⊕ v ⊕>))

iff for any e = 〈Π0,Π1, . . . ,Πi, . . .〉 ∈ Eγ
C (Π0) and any i ≥ 0 we have

T γ
C ,Πi |= (u⊕>) → (u⊕ v ⊕>).

This means that if any configuration present in a γ-evolution of Π0 satisfies
u⊕> then it will also satisfy u⊕ v ⊕>.

In fact, we know that T γ
C ,Πi |= u ⊕ > iff CΠi

= C1 + C2, C1, C2 ∈ M(M(A))
and C1 = {(u + u′, 1)}, i.e., the configuration of Πi contains an agent w that
contains u.

Similarly, T γ
C ,Πi |= u⊕ v ⊕> iff CΠi

= C ′
1 + C ′

2 + C ′
3, C

′
1, C

′
2, C

′
3 ∈ M(M(A))

and C ′
1 = {(u+u′′, 1)}, C ′

2 = {(v+v′, 1)}, i.e., the configuration of Πi contains
two agents w1 and w2 such that u ⊆ w1 and v ⊆ w2, which precisely indicates
that Π0 is safe on synchronization of rule r : 〈u, v〉 → 〈u′, v′〉.

7 Prospects

In this paper we have defined a basic model of Colonies of Synchronizing
Agents, however several enhancements to this are already in prospect. Primary
among these is the addition of space to the colony. Precisely, each agent will
have a triple of co-ordinates corresponding to its position in Euclidean space
and the rules will be similarly endowed with the ability to modify an agent’s
position. A further extension of this idea is to give each agent an orientation,
i.e. a rotation relative to the spatial axes, which may also be modified by the
application of rules.

The idea is to make the application of a rule dependent on either an abso-
lute position (thus directly simulating a chemical gradient) or on the relative
distance between agents in the case of synchronization. Moreover, in the case
of the application of a synchronization rule, the ensuing translation and ro-
tation of the two agents may be defined relative to each other. In this way
it will be possible to simulate reaction-diffusion effects, movement and local
environments.

Some additional biologically-inspired primitives are also planned, such as agent
division (one agent becomes two) and agent death (deletion from the colony)
(as, for instance, done in [5]). These primitives can simulate, for example,
the effects of mitosis, apoptosis and morphogenesis. In combination with the

40

existing primitives, it will be possible (and is planned) to model, for example,
many aspects of the complex multi-scale behaviour of the immune system.

With the addition of the features just mentioned, it will also be interesting to
extend the investigation and proofs given above to identify further classes of
CSAs demonstrating robustness and having decidable properties. Moreover,
we plan to investigate classes of CSAs where model-checking based on the pre-
sented temporal logic can be efficiently implemented, e.g., having an associated
temporal structure that can be algorithmically constructed in efficient time
and space. We would also like to extend the investigation to design efficient
algorithms that implement distributed computations, as used, for instance, in
the area of amorphous computing [1].

Acknowledgement

In concluding, we thank the anonymous referees for their valuable comments.

References

[1] H. Abelson, D. Allen, D, Coore, C. Hanson, G. Homsy, T.F. Knight, R. Nagpal,
E. Rauch, G.J. Sussman, R. Weiss, Amorphous Computing, Communications
of the ACM, 43, 5, 2000.

[2] A. Alhazov, Minimizing Evolution-Communication P Systems and EC P
Automata, New Generation Computing, 22, 4, 2004.

[3] M. Ben-Ari, A. Pnueli, and Z. Manna, The Temporal Logic of Branching Time,
Acta Informatica, 20, 1983.

[4] F. Bernardini, R. Brijder, G. Rozenberg, C. Zandron, Multiset-Based Self-
Assembly of Graphs, Fundamenta Informaticae, 75, 2007.

[5] F. Bernardini, M. Gheorghe, Population P Systems, Journal of Universal
Computer Science, 10, 5, 2004.

[6] F. Bernardini, M. Gheorghe, Cell Communication in Tissue P systems:
Universality Results, Soft Computing, 9, 9, 2005.

[7] M. Cavaliere, Evolution-Communication P Systems, Proceedings of Workshop
on Membrane Computing 2002, LNCS 2597, 2003.

[8] J. Dassow, Gh. Păun, Regulated Rewriting in Formal Language Theory,
Springer-Verlag, Berlin, 1989.

[9] A. Ilachinski, Cellular Automata - A Discrete Universe, World Scientific
Publishing, 2001.

41

[10] R. Freund, Gh. Păun, O.H. Ibarra, H.-C.Yen, Matrix Languages, Register
Machines, Vector Addition Systems, Proc. Third Brainstorming on Membrane
Computing, Sevilla, 2005, RGCN Report 01/2005.

[11] S. Greibach, Remarks on Blind and Partially Blind One-Way Multicounter
Machines. Theoretical Computer Science, 7, 3, 1978.

[12] D. Hauschildt, M. Jantzen, Petri Net Algorithms in the Theory of Matrix
Grammars, Acta Informatica, 31, 1994.

[13] J.E. Hopcroft, J.D. Ullman, Introduction to Automata Theory, Languages, and
Computation, Addison-Wesley, 1979.

[14] J. Kelemen, A. Kelemenová, A Grammar-Theoretic Treatment of Multiagent
Systems, Cybernetics and Systems, 23,6, 1992.

[15] J. Kelemen, A. Kelemenová, Gh. Păun, Preview of P Colonies - A Biochemically
Inspired Computing Model, Proceedings of Workshop on Artificial Chemistry,
ALIFE9, Boston, USA, 2004.

[16] J. Kelemen, Gh. Păun, Robustness of Decentralized Knowledge Systems: A
Grammar-Theoretic Point of View, Journal Expt. Theor. Artificial Intelligence,
12, 2000.

[17] C. Mart́ın-Vide, Gh. Păun, J. Pazos, A. Rodriguez-Patón, Tissue P Systems,
Theoretical Computer Science, 296, 2, 2003.

[18] Gh. Păun, Membrane Computing - An Introduction, Springer-Verlag, Berlin,
2002.

[19] Gh. Păun, Introduction to Membrane Computing, in Applications of Membrane
Computing, G. Ciobanu, Gh. Păun, M.J. Pérez-Jiménez, eds., Springer-Verlag,
Berlin, 2006.

[20] G. Rozenberg, A. Salomaa, eds., Handbook of Formal Languages, Springer-
Verlag, Berlin, 1997.

[21] J. Van Benthem, Temporal logic, in Handbook of Logic in Artificial Intelligence
and Logic Programming: Epistemic and Temporal reasoning, Oxford University
Press, 1995.

[22] http://nusmv.irst.itc.it/

[23] http://psystems.disco.unimib.it

42

