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SUMMARY
BRAF and MEK inhibitors are effective in BRAF mutant melanoma, but most patients eventually relapse with
acquired resistance, and others present intrinsic resistance to these drugs. Resistance is often mediated by
pathway reactivation through receptor tyrosine kinase (RTK)/SRC-family kinase (SFK) signaling or mutant
NRAS, which drive paradoxical reactivation of the pathway. We describe pan-RAF inhibitors (CCT196969,
CCT241161) that also inhibit SFKs. These compounds do not drive paradoxical pathway activation and inhibit
MEK/ERK in BRAF and NRASmutant melanoma. They inhibit melanoma cells and patient-derived xenografts
that are resistant to BRAF and BRAF/MEK inhibitors. Thus, paradox-breaking pan-RAF inhibitors that also
inhibit SFKs could provide first-line treatment for BRAF and NRASmutant melanomas and second-line treat-
ment for patients who develop resistance.
INTRODUCTION

Malignant melanoma is the most deadly form of skin cancer.

Current estimations are that each year there are >76,000 cases

of melanoma with >9,000 deaths in the U.S. (www.cancer.org;

American Cancer Society). In 2008, >100,000 cases with

22,000 deaths were estimated in Europe (Forsea et al., 2012),

and >12,000 cases with �1,500 deaths were estimated in

Australia (http://www.melanoma.org.au; Melanoma Institute

Australia). Critically, 43%–50%of melanomas carry somatic mu-

tations in BRAF, and those in another 20% carry mutations in

NRAS (www.sanger.ac.uk/genetics/CGP/cosmic/). The mutant
Significance
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BRAF-selective inhibitors and a BRAF plus MEK inhibitor comb
line targeted therapies for relapsed patients, and a compound
proteins are active and constitutively activate the RAS-RAF-

MEK-ERK pathway, driving cancer cell proliferation and survival

and, thereby, tumor progression.

Vemurafenib is an orally available and clinically active small-

molecule inhibitor of BRAF that achieves increased progres-

sion-free and overall survival of patients with BRAF mutant mel-

anoma, but not those with BRAF wild-type melanoma (Chapman

et al., 2011; Flaherty et al., 2010; Sosman et al., 2012). However,

despite initially impressive responses, most patients treated with

vemurafenib develop acquired resistance after a relatively short

period of disease control. Furthermore,�20% of patients having

BRAF mutant melanoma present intrinsic resistance and do not
but themajority of patients will eventually develop resistance
nhibitors, despite the presence of a BRAFmutation. Here, we
active in tumors from patients who developed resistance to
ination. These compounds, therefore, provide vital second-
from the series is being developed to enter clinical trials.
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respond to vemurafenib. Thus, resistance is a persistent clinical

problem in the management of BRAF mutant melanoma, and

second-line treatments are urgently required for patients with

both intrinsic and acquired resistance to BRAF inhibitors.

Many mechanisms of resistance to BRAF inhibitors have been

described, but in the majority of cases, it results from reactivation

of the MEK/ERK pathway (Girotti et al., 2013; Johannessen et al.,

2010; Nazarian et al., 2010; Shi et al., 2012; Straussman et al.,

2012; Vergani et al., 2011; Villanueva et al., 2010; Wilson

et al., 2012). Thus, amplification or upregulation of growth factors

or receptor tyrosinekinases (RTKs),whichsignal through theSRC-

family kinases (SFKs), can lead to pathway reactivation and resis-

tance. Similarly, acquisition of secondary mutations in NRAS,

which signals through CRAF (a close relative of BRAF), can also

lead to resistance. In addition, amplification of mutant BRAF or

alternative splicing of mutant BRAF mRNA, upregulation of the

MEK kinase COT, or mutations in MEK can also drive resistance.

In addition to resistance, BRAF inhibitors mediate a curious

paradox. Although they inhibit MEK/ERK signaling in BRAF

mutant cells, they activate MEK/ERK signaling in RAS mutant

cells. This is because, in the presence of oncogenic RAS,

BRAF inhibitors drive the formation of BRAF-CRAF hetero- and

homodimers containing one partner that is drug bound and

one partner that is drug-free. The drug-bound partner drives acti-

vation of the drug-free partner through scaffolding or conforma-

tional functions, activating CRAF and, consequently, stimulating

MEK and ERK hyperactivation (Hatzivassiliou et al., 2010; Hei-

dorn et al., 2010; Poulikakos et al., 2010). In some contexts, par-

adoxical activation of the pathway can stimulate tumor growth

and progression.

To overcome both resistance and paradoxical activation of the

MEK/ERK pathway, strategies to achieve increased inhibition of

the pathway by combined targeting of BRAF andMEKhave been

tested. The combination of dabrafenib, a BRAF inhibitor, with

trametinib, a MEK inhibitor, was recently approved by the U.S.

Food and Drug Administration for treating patients with mutant

BRAF melanomas, based on phase II clinical trial data that

show that the combination achieved higher response rates,

longer median progression-free survival, and less cutaneous

toxicity than dabrafenib alone (Flaherty et al., 2012; Long et al.,

2014). However, despite these improved responses, patients

on this drug combination still develop resistance, and most

patients relapse after �9 months of treatment; furthermore, a

recent study reported that, in these patients, resistance can be

mediated by acquired mutations in MEK2 (Wagle et al., 2014).

Independent of the mechanisms of resistance, there is an urgent

need for second-line treatments for BRAF mutant melanoma

patients who develop resistance to BRAF inhibitor mono- and

combination therapies.

RESULTS

CCT196969 and CCT241161 Are pan-RAF Inhibitors
with Anti-SRC Activity
As previously described, we have pursued a drug discovery

program in which we designed, synthesized, and characterized

inhibitors of the inactive conformation of BRAFV600E (Ménard

et al., 2009; Niculescu-Duvaz et al., 2009; Suijkerbuijk et al.,

2010; Whittaker et al., 2010b; Zambon et al., 2010). Here, we
86 Cancer Cell 27, 85–96, January 12, 2015 ª2015 The Authors
describe two further inhibitors, CCT196969andCCT241161 (Fig-

ure 1A; synthesis and characterization are described in the

Supplemental Experimental Procedures available online). These

compounds were found to inhibit BRAF, CRAF, and SFKs

(Table 1). Since resistance to BRAF and BRAF/MEK inhibitors

can be driven by RTKs signaling through SFKs, or mutant

NRAS signaling through CRAF, we selected these compounds

for further study. CCT196969 inhibits BRAF at 100 nM and

BRAFV600E at 40 nM, while CCT241161 inhibits BRAF at

252 nM and BRAFV600E at 15 nM (Table 1). CCT196969 inhibits

CRAF at 12 nM, SRC at 26 nM, and LCK at 14 nM, while

CCT241161 inhibits CRAF at 6 nM, SRC at 15 nM, and LCK at

3 nM (Table 1). Neither compound inhibits MEK1 or the MEK1

kinase COT (Table 1), and, in a panel of protein kinases, they

only inhibit SRC, LCK, and the p38 mitogen-activated protein

kinases (MAPKs) (Figure 1B). Both inhibit MEK and ERK in

WM266.4 cells (BRAF mutant), but not D35 cells (BRAF/RAS

wild-type) (Figure 1C), and both inhibit growth of BRAF mutant

melanoma cells more potently than PLX4720, an analog of the

BRAF-selective inhibitor vemurafenib that has superior bioavail-

ability in mice (Su et al., 2012a) (Figure 1D).

CCT196969 and CCT241161 Are Well Tolerated
pan-RAF Inhibitors
A comprehensive safety profile analysis on CCT196969 shows

that the compound is extremely well tolerated at the doses as-

sessed and does not produce any significant adverse effects

in vivo. A single dose at 20 mg/kg does not produce any clinical

signs and produces no observed adverse effects in CD-1 mice.

When administered at 40 mg/kg, we observed slight, transient

tachypnoea 1 hr after dosing, but no effect on body weight, so

40 mg/kg is defined as the maximum tolerated dose (single

dose). At 20 mg/kg daily 3 24 days, we observed no clinical

signs or body weight loss, and at 25 mg/kg daily for 19 days,

we did not observe any mortality, although tachypnoea with

decreased activity and excitation were seen. However, as

mentioned earlier, the treated group did not show any body

weight loss or reduction in food intake. In addition, at the end

of the study, microscopical examination of tissues did not

identify any treatment-related changes.

Oral dosing at 10 mg/kg/day results in plasma concentrations

�1 mM at 24 hr and 14 hr, for CCT196969 and CCT241161,

respectively (Figure S1A; Table S1), with areas under the curve

of �416,000 and �275,000 nM.hr, respectively. These com-

pounds are equally orally bioavailable at �55%, and even at

10 mg/kg/day, we achieve plasma levels well above the half-

maximal inhibition of cell proliferation (GI50) values for BRAF-

selective-inhibitor-resistant cells (GI50 = 0.4 mM, mean value

from Figure 2A) and NRAS mutant melanoma cells (GI50 =

0.6 mM, mean value from Figure 2A). We confirm that doses of

30 mg/kg for 4 days do not cause significant weight loss (Fig-

ure S1B), so we selected 20 mg/kg/day (7 days/week; no week-

end break) based on efficacy and tolerability. Critically, at these

doses, we achieve tumor regression with BRAF mutant A375 tu-

mor xenografts in nude mice (Figure 1E), although CCT196969 is

also effective at 10mg/kg/day (data not shown). CCT196969 and

CCT241161 achieve plasma exposures of �40 mM and �50 mM,

respectively (Table S2), which are similar to those seen for

vemurafenib in humans (Flaherty et al., 2010). Note, also, that
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Figure 1. CCT196969 and CCT241161 Are BRAF Inhibitors

(A) Chemical structures of CCT196969 and CCT241161.

(B) Efficacy of PLX4720, CCT196969, and CCT241161 (1 mM) against a panel of 63 protein kinases. Color bar shows percent activity compared to DMSO.

(C) Phospho-MEK (pMEK), phospho-ERK (pERK), and ERK2 in WM266.4 and D35 cells treated for 24 hr with DMSO (D), CCT196969, or CCT241161.

(D) BRAFV600E A375 cell proliferation assay (CellTiter Glo) with PLX4720, CCT196969, or CCT241161.

(E) BRAFV600E A375 xenograft growth in nude mice treated with vehicle, CCT196969, or CCT241161 14 days after cell injection. ***p% 0.001 (t test, two-tailed).

(F) BRAFV600E and BRAFT529N,V600E kinase inhibition by CCT196969 and CCT241161.

(G) Growth of Ba/F3 cells ([3H]-thymidine incorporation) expressing BRAFV600E or BRAFT529N,V600E treated with CCT196969 or CCT241161.

Bars represent SEM. See also Figure S1 and Tables S1–S3.
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1 hr after the last dose was administered at the end of the

therapy experiments, the concentration of drug in the tumors

was �7 mM for CCT196969 and 6.5–10 mM for CCT241161

(Table S3), levels that are well above the GI50 values for growth

inhibition of cancer cells.

To directly test if CCT196969 and CCT241161 are BRAF inhib-

itors, we replaced the ‘‘gatekeeper’’ threonine 529 (T529) in
BRAF with asparagine to block drug binding without compro-

mising kinase activity (Whittaker et al., 2010a). We saw that

CCT196969 is 753-fold and CCT241161 is 42-fold less active

against BRAFT529N,V600E than BRAFV600E (Figure 1F), demon-

strating that the T529N substitution impairs binding of these

drugs to BRAFV600E. To test the effects of these mutations in

cells, we used Ba/F3 cells. As we have shown previously,
Cancer Cell 27, 85–96, January 12, 2015 ª2015 The Authors 87



Table 1. IC50 Values of CCT196969 and CCT241161

Kinase CCT196969 (mM ) CCT241161 (mM)

BRAF 0.1 0.03

V600E-BRAF 0.04 0.015

CRAF 0.01 0.006

MEK1 >10 >10

COT >10 >10

SRC 0.03 0.01

LCK 0.02 0.003
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pan-RAF/SFK Inhibitors of Drug-Resistant Melanoma
Ba/F3 cells grow in an interleukin-3 (IL-3)-dependent manner,

but when transformed with BRAFV600E and BRAFT529N,V600E,

their growth becomes IL-3 independent but dependent on onco-

genic BRAF (Whittaker et al., 2010a). Critically, we show that the

growth of Ba/F3 cells transformed with BRAFT529N,V600E is 48-

fold and 19-fold less sensitive to CCT196969 and CCT241161,

respectively, than cells transformed with BRAFV600E (Figure 1G),

demonstrating directly that these drugs inhibit BRAFV600E in

cells.

CCT196969 and CCT241161 Are Paradox Breakers
Taken together, the aforementioned data confirm that

CCT196969 and CCT241161 are orally available, well-tolerated

BRAF inhibitors that directly inhibit BRAFV600E in cells. We

show that CCT196969 and CCT241161 are active against mela-

noma and colorectal cancer cell lines that are mutant for BRAF

(Figures 2A and 2B). In addition, unlike the BRAF-selective inhib-

itors PLX4720 and SB590885, but in common with the MEK in-

hibitor PD184352, CCT196969 and CCT241161 are also active

against RAS mutant melanoma and colorectal cancer cells (Fig-

ures 2A and 2B). In general, CCT196969 and CCT241161 are not

active against cancer cells that are wild-type for BRAF and

NRAS, but curiously, SK-Mel 23 cells are sensitive to these com-

pounds (Figure 2A). The reasons for this are unclear, but ERK

activity is elevated in these cells and sensitive to CCT196969

and CCT241161 (Figure S2), suggesting that their growth de-

pends on this pathway, presumably due to events upstream of

RAS. Notably, in contrast to previously described BRAF inhibi-

tors (Hatzivassiliou et al., 2010; Heidorn et al., 2010; Poulikakos

et al., 2010), CCT196969 andCCT241161 inhibit rather than acti-

vate MEK in NRAS mutant cells (Figure 2C), and they inhibit

NRAS mutant cell growth more efficiently than does PLX4720

(Figure 2D). Furthermore, in contrast to the BRAF inhibitor

PLX4720, CCT196969 and CCT241161 inhibit the growth of

NRAS mutant DO4 tumor xenografts in nude mice (Figure 2E).

Thus, CCT196969 and CCT241161 are paradox-breaking pan-

RAF inhibitors that are active against both BRAF mutant and

NRAS mutant melanomas.

CCT196969 and CCT241161 Inhibit BRAF-Inhibitor-
Resistant Melanoma Cell Lines
We tested whether our compounds are active in melanomas that

are resistant to BRAF inhibitors. A375 cells that are continually

exposed to PLX4720 developed resistance as demonstrated

by the regrowth of cells after 20 days, but no cells are able

to grow in parallel cultures exposed to CCT196969 or

CCT241161 (Figure 3A). Note that A375 cells that have devel-
88 Cancer Cell 27, 85–96, January 12, 2015 ª2015 The Authors
oped resistance to PLX4720 following continual exposure to

the drug are still sensitive to CCT196969 and CCT241161 (Fig-

ure 3B), andmore important, CCT196969 andCCT241161 inhibit

the growth of PLX4720-resistant A375 xenografts (A375/R) in

mice (Figure 3C), without causing any body weight loss to the

mice (Figure S3A). Next, we induced resistance to PLX4720 in

a patient-derived xenograft (PDX) from a patient (patient #1;

Table S4) who presented stage III BRAF mutant melanoma and

had a tumor removed for palliation. The tumor was propagated

in immunocompromised mice, and the mice were then treated

with PLX4720 until the tumor developed resistance (Figures 3D

and S3A). Note that despite its resistance to PLX4720, this tumor

remains sensitive to CCT196969 and CCT241161 (Figure 3E).

We also examined our inhibitors in samples from a second pa-

tient (patient #2; Table S4), who presented stage IV BRAFmutant

metastatic melanoma and achieved a partial response to vemur-

afenib but relapsed after only 3 months. A cell line derived from

a vemurafenib-resistant melanoma is resistant to PLX4720

but sensitive to CCT196969 and CCT241161 (Figure 3F), so we

treated this cell line and two other cell lines (biological repli-

cates)—derived from two patients who developed resistance

to vemurafenib—with PLX4720, CCT196969, or CCT241161

and performed reverse phase protein arrays (RPPAs) to examine

the phosphorylation of 25 proteins. For most of the proteins, we

did not observe significant differences following treatment with

any of the compounds, but MEK, ERK and SRC phosphorylation

were strongly suppressed by CCT196969 and CCT241161, but

not by PLX4720 (Figure 3G; Table S5). We confirm that

CCT196969 and CCT241161 inhibit MEK, ERK, and SRC in the

cells from patient #2, whereas PLX4720 does not (Figure 3H).

Next, we compared the inhibition of SRC in these resistant

cells treated with CCT196969 and CCT241161 or three other

pan-RAF inhibitors (RAF265, TAK632, and MLN2480) (K. Galvin,

2012, Am. Assoc. Cancer Res., conference; Nakamura et al.,

2013; Su et al., 2012b), or another BRAF inhibitor (ARQ736)

(Y.Z. Yu et al., 2010, Am. Assoc. Cancer Res., conference),

which have entered clinical trials. Notably, all six compounds

inhibit ERK, but only CCT196969 and CCT241161 also inhibit

SFKs (Figure S3B), and CCT196969 inhibits the growth of the

cells more potently than any of the other inhibitors (Figure S3C).

We also assessed SRC inhibitor 1, a selective SFK inhibitor (Bain

et al., 2007) in these resistant cells. Although SRC inhibitor 1 is

inactive alone, it increases the activity of the pan-RAF inhibitor

TAK632 against these cells (Figure S3D). This confirms that con-

current inhibition of RAF and SFKs cooperates to inhibit the

growth of cells that are resistant to BRAF-selective inhibitors.

We also testedwhether inhibition of p38MAPKby CCT196969

and CCT241161 contributed to the inhibition of growth of

the cells. We show that the cells are highly resistant to the

p38 MAPK inhibitor SB203580 (50% inhibitory concentration

[IC50] = 29.4 mM) and that SB203580 does not cooperate with

the pan-RAF inhibitors RAF265 or MLN2480 to inhibit the growth

of the cells (Figure S3E). Thus, p38 MAPK does not appear

to play a role in regulating the growth of these cells, so inhibition

of p38 MAPK by CCT196969 and CCT241161 does not

contribute to the inhibition of their growth.

Notably, CCT196969 and CCT241161 induce caspase 3 and

PARP cleavage, demonstrating that they induce apoptosis,

whereas PLX4720 does not (Figure 3I). Finally, we show that
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Figure 2. CCT196969 and CCT241161 Inhibit RAS Mutant Cells

(A) Cell growth inhibition by CCT196969 or CCT241161 (expressed as log2 GI50 in micromolar) in cells carrying BRAF (red), RAS (blue), or neither (green)

mutation. *, melanoma cell line; ^, colorectal carcinoma cell line; >, breast cancer cell line. WT, wild-type.

(B) Heat map showing sensitivity of cancer cell lines bearing mutations in BRAF, NRAS, or KRAS (shown in the grid below the heat map) presented as GI50 values

determined after a 5-day exposure to each compound (BRAF inhibitors PLX4720 and SB590885, MEK inhibitor PD184352, and our compounds CCT241161 and

CCT196969) and analysis by sulphorhodamine B staining. Values were log2-transformed, and hierarchical clustering was performed with ‘‘one minus Pearson

correlation’’ using Gene E (www.broadinstitute.org/cancer/software/GENE-E/).

(C) Phospho-MEK (pMEK), phospho-ERK (pERK), and ERK2 in D04 cells treated for 24 hr with DMSO (D), CCT196969, or CCT241161.

(D) NRAS mutant D04 cell proliferation assay (CellTiter Glo) with PLX4720, CCT196969, or CCT241161.

(E) NRAS mutant D04 xenograft growth in nude mice treated with vehicle, PLX4720, CCT196969, or CCT241161 10 days after cell injection. ***p% 0.001 (t test,

two-tailed).

Bars represent SEM. See also Figure S2.
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xenografts grown from the cells of patient #2’s tumor are

resistant to PLX4720, whereas CCT196969 and CCT241161

achieve complete inhibition of these xenografts (Figure 3J)

without causing any body weight loss to the mice (Figure S3A).

CCT196969 and CCT241161 Inhibit the Growth of PDXs
from Patients with Acquired and Intrinsic Resistance to
BRAF Inhibitors
Next, we tested CCT196969 and CCT241161 in a tumor from a

patient with stage IV BRAF mutant melanoma who achieved a

complete response to vemurafenib but relapsed after 15 months

with acquired resistance (patient #3; Table S4). We show that tu-

mors from this patient express the melanoma markers HMB45

and S100 before and after treatment (Figure S4A). Note that,

compared to the pretreatment tumor, ERK and SFK phosphory-

lation is elevated in the resistant tumor (Figure 4A), and cells from

the resistant tumor are not inhibited by PLX4720, whereas they

are sensitive to CCT196969 and CCT241161 (Figure 4B).

Furthermore, CCT196969 and CCT241161 inhibit ERK and

SRC and induce tumor regression in a PDX from the resistant tu-

mor (Figures 4C and 4D), again without causing body weight loss

in the mice (Figure S4B). Note that PLX4720 does not inhibit ERK
or SRC in this PDX (Figure 4C), and accordingly, neither does it

inhibit the growth of this PDX (Figure 4D).

We also tested CCT196969 and CCT241161 in a PDX from a

patient with stage IV BRAF mutant melanoma who had achieved

a partial response to vemurafenib but who then relapsed with

acquired resistance after only 5 months (patient #4; Table S4).

Again, we confirm that the tumors from this patient express

melanoma markers before and after vemurafenib treatment

(Figure S4A), that ERK and SFK phosphorylation is elevated in

the resistant tumor (Figure 4E), and that a PDX from the resistant

tumor is resistant to PLX4720 but sensitive to CCT196969

and CCT241161 (Figure 4F). Note that also here, CCT196969

and CCT241161 do not cause body weight loss in the mice

(Figure S4B).

Subsequently, we tested CCT196969 and CCT241161 in a

PDX from a patient with stage IV BRAF mutant melanoma who

did not respond to vemurafenib and was diagnosed with pro-

gressive disease due to intrinsic resistance (patient # 5; Table

S4). As before, the tumors from this patient expressed mela-

noma markers before and after treatment (Figure S5A), and

ERK and SFK phosphorylation was elevated in the tumors

following vemurafenib treatment (Figure 5A). Note that cells
Cancer Cell 27, 85–96, January 12, 2015 ª2015 The Authors 89
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Figure 3. CCT196969 and CCT241161 Inhibit SFK in Patient-Derived Resistant Cells

(A) A375 cell colony formation with DMSO, PLX4720, CCT196969, or CCT241161 (0.5 mM) after 7 or 20 days.

(B) A375/R cell proliferation assay (CellTiter Glo) with PLX4720, CCT196969, and CCT241161.

(C) A375/R xenograft growth in nude mice treated with vehicle, PLX4720, CCT196969, or CCT241161. ***p % 0.001 (t test, two-tailed).

(D) Patient #1 PDX growth in NSG mice treated with PLX4720.

(legend continued on next page)
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from this patient’s resistant tumor are more sensitive to

CCT196969 and CCT241161 than to PLX4720 (Figure 5B), and

critically, a PDX from the resistant tumor was more sensitive to

CCT196969 and CCT241161 than to PLX4720 (Figure 5C).

Also in this experiment, we did not observe any loss in body

weight in the mice (Figure S5B).

Thus, CCT196969 and CCT241161 inhibit both BRAF and

SRC. Moreover, they inhibit the growth of PDXs from tumors

that are resistant to BRAF inhibitors and have increased pSFK.

Critically, we find that SFK phosphorylation is increased,

particularly in the plasma membrane, in six of another seven

melanomas from patients who presented acquired or intrinsic

resistance to vemurafenib (Figure S5C; data not shown). Thus,

we show that SFK phosphorylation is increased in nine of the

ten tumors we examined, confirming the critical role of SRC

signaling in resistance.

CCT196969 and CCT241161 Inhibit the Growth of a
Melanoma with Acquired Resistance to Dabrafenib and
Trametinib
The aforementioned data show that SFK signaling is increased in

the majority of BRAF-inhibitor-resistant tumors, and furthermore,

that tumors with increased SFK phosphorylation are sensitive to

CCT196969 and CCT241161. However, not all resistant tumors

show increased SFK phosphorylation, so we tested CCT196969

and CCT241161 in a PDX from a patient with stage IV BRAF

mutant melanomawho achieved a partial response to dabrafenib

plus trametinib but relapsed after only 5 months (patient #13;

Table S4). Again, this patient’s tumors expressed melanoma

markers before and after treatment (Figure S6A), and critically,

although ERK phosphorylation is elevated in this resistant tumor,

SFKphosphorylation is not (Figure 6A), suggesting that resistance

is mediated by events downstream of SFKs. We confirm that the

BRAFV600E mutation persists in the resistant tumor, but addition-

ally, we observed an acquired NRASQ61Rmutation that is not pre-

sent in the pretreatment tumor (Figure 6B). Critically, a PDX from

this patient is resistant to dabrafenib plus trametinib but sensitive

to CCT196969 and CCT241161 (Figure 6C), and no body weight

loss was observed in the mice (Figure S6B).

DISCUSSION

Acquired resistance and intrinsic resistance to BRAF inhibitors

are persistent problems in the treatment of BRAF mutant

melanomas (Chapman et al., 2011; Flaherty et al., 2010, 2012;

Sosman et al., 2012), even when BRAF and MEK inhibitors are

combined (Flaherty et al., 2012). The advent of immunotherapies

based on anti-CTLA-4 (e.g., ipilimumab) or anti-PD-1 (e.g., nivo-
(E) Growth of PLX4720-resistant PDX from patient #1, from (D), in mice treated wit

(t test, two-tailed).

(F) Patient #2 cell proliferation assay (CellTiter Glo) with PLX4720, CCT196969, o

(G) RPPA quantification for pMEK, pERK, and pSFK in three vemurafenib-resistan

and CCT241161 (1 mM; 4 hr).

(H) pMEK, pERK, ERK2, pSFK, and SRC in patient #2 cells treated with DMSO,

(I) PARP and caspase 3 in patient #2 cells treated with DMSO, PLX4720, CCT19

(J) Patient #2 cell xenograft growth in nudemice treated with vehicle, PLX4720, CC

tailed).

Bars represent SEM. See also Figure S3 and Tables S4 and S5.
lumab and pembrolizumab) has recently revolutionized the

treatment of melanoma, with excellent clinical results (A. Ribas

et al., 2014, ASCO, conference; Weber et al., 2013; Wolchok

et al., 2013), suggesting that patients who develop resistance

to BRAF inhibitors should be considered for immunotherapy as

a second line of treatment. However, recent evidence (Ackerman

et al., 2014) shows that outcomes with ipilimumab following

BRAF inhibitor discontinuation are poor, indicating that immuno-

therapies may provide better efficacy as first-line rather than

second-line treatments. Consistent with this hypothesis, pa-

tients #3, #4, #5, and #13, described earlier, all eventually failed

on BRAF inhibitor or BRAF plus MEK inhibitor combinations and

were subsequently treated with ipilimumab, but none responded

to this second-line treatment. Thus, there is a critical lack of sec-

ond-line treatment options for patients who develop resistance

to currently approved targeted therapies.

Here, we describe CCT196969 and CCT241161, BRAF/CRAF

inhibitors that are also active against SFKs. These agents block

BRAF mutant and NRAS mutant melanoma cell growth in vitro

and in vivo. They are active against treatment-naive BRAF

mutant tumors, against melanomas that are resistant to BRAF-

selective drugs, and against a sample from a patient who was

resistant to a BRAF/MEK inhibitor combination. The inhibitors

are active in tumors from patients with acquired or intrinsic

resistance. Critically, pERK was increased in all of the resistant

patient tumors, consistent with resistance being mediated by

MEK/ERK pathway activation. SFK phosphorylation was also

increased in nine of 11 resistant tumors, but in the patient whose

resistance was associated with an acquired mutation in NRAS,

SFK phosphorylation was not increased.

In many patients, BRAF-inhibitor resistance is mediated by

MEK/ERK pathway reactivation driven by upregulation of RTK

signaling or acquisition of mutations in NRAS (Fedorenko et al.,

2011; Girotti et al., 2013; Johannessen et al., 2010; Nazarian

et al., 2010; Van Allen et al., 2014; Vergani et al., 2011; Villanueva

et al., 2010; Wagle et al., 2011, 2014). RTKs signal through SFKs,

RAS signals through CRAF, and CCT196969 and CCT241161

are equipotent against BRAFV600E, CRAF, and SFKs. Accord-

ingly, we posit that our inhibitors are active against tumors

when resistance is mediated by upregulation of RTKs because

they signal through SFKs, which are inhibited by our compounds

(Figure 7). Conversely, they are active against tumors when

resistance is mediated by mutant NRAS because it signals

through CRAF, which is also a target of our compounds (Fig-

ure 7). Furthermore, because our compounds inhibit both

BRAF and CRAF (Figure 7), they do not induce paradoxical acti-

vation of the MEK/ERK pathway and so are also active against

NRAS mutant tumors.
h PLX4720, CCT196969, or CCT241161 7 days after cell injection. ***p% 0.001

r CCT241161.

t patient-derived cell lines treated with DMSO (vehicle), PLX4720, CCT196969,

PLX4720, CCT196969, or CCT241161 (1 mM; 4 hr).

6969, or CCT241161 (1 mM; 4 hr).

T196969, or CCT241161 16 days after tumor implant. ***p% 0.001 (t test, two-
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Figure 4. CCT196969 and CCT241161 Inhibit Tumors with Acquired Resistance to Vemurafenib

(A) pERK and pSFK in pre- and postvemurafenib treatment tumors from patient #3. Scale bars, 50 mm.

(B) Patient #3 tumor cell proliferation assay (CellTiter Glo) with PLX4720, CCT196969, and CCT241161.

(C) pERK, ERK2, and pSFK in patient #3 PDX in mice treated with PLX4720, CCT196969, or CCT241161.

(D) Growth of patient #3 PDX in NSG mice treated with PLX4720, CCT196969, or CCT241161.

(E) pERK and pSFK in pre- and post-vemurafenib treatment tumors from patient #4. Scale bars, 100 mm.

(F) Growth of patient #4 PDX in NSG mice treated with PLX4720, CCT196969, or CCT241161 21 days after tumor implant. ***p % 0.001 (t test, two-tailed).

Bars represent SEM. See also Figure S4.
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Figure 5. CCT196969 and CCT241161 Inhibit PDX from a Patient with Intrinsic Resistance to Vemurafenib

(A) pERK and pSFK in pre- and post-vemurafenib treatment tumors from patient #5. Scale bars, 50 mm.

(B) Growth of cell lines from patient #5 tumor (CellTiter Glo) with PLX4720, CCT196969, and CCT241161.

(C) Growth of PDX from patient #5 in NSG mice treated with PLX4720, CCT196969, or CCT241161 21 days after tumor implant. ***p% 0.001 (t test, two-tailed).

Bars represent SEM. See also Figure S5.
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Thus, we have developed pan-RAF/SFK inhibitors that are

orally available and well tolerated at therapeutic doses. They

are active against treatment-naive BRAF and NRAS mutant tu-

mors and against a range of tumors that are resistant to BRAF

and BRAF plus MEK inhibitors, critically achieving regressions

in a range of tumors. We also note that they were active in

PDXs from patients who subsequently failed ipilimumab treat-

ment. For treatment-naive patients, the presence of a BRAF or

NRAS mutation may serve as a predictive biomarker to select

patients who could benefit from treatment with these inhibitors.

For patients whose tumors are resistant to current BRAF

and MEK inhibitors, upregulated RTK signaling evidenced by

increased SFK phosphorylation or pathway reactivation evi-

denced by increased ERK phosphorylation may provide predic-

tive biomarkers to select patients for treatment. The presence of

an NRAS mutation may also serve as a predictive biomarker

for patient selection in the resistant setting. Thus, we posit that

these inhibitors could provide first-line therapy for treatment-
naive patients and second-line therapy for a range of patients

with relapsed melanoma. We aim to conduct phase I clinical

trials with this series of inhibitors starting in 2015.

EXPERIMENTAL PROCEDURES

Cell Culture

Cell lines were cultured under standard conditions and routinely monitored for

mycoplasma contamination by PCR and were not used if found to be positive.

A375/R was derived from A375 cells (Girotti et al., 2013). All of the cell lines

were cultured in Dulbecco’s modified Eagle’s medium or RPMI medium,

both supplemented with 10% fetal bovine serum and 1% penicillin/strepto-

mycin. Cell lines from patient samples were established from fresh tumor

biopsies.

Kinase Assays

A DELFIA-based (PerkinElmer) 96-well assay was used to measure BRAF

kinase activity as described elsewhere (Niculescu-Duvaz et al., 2006). Assays

were performed in duplicate with an 11-point concentration response, and

IC50 values were determined using GraphPad Prism software (GraphPad
Cancer Cell 27, 85–96, January 12, 2015 ª2015 The Authors 93
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Figure 6. CCT196969 and CCT241161 Inhibit Tumors with Acquired Resistance to Dabrafenib plus Trametinib

(A) pERK and pSFK in PDX from patient #13 before and after treatment with dabrafenib plus trametinib. Scale bars, 100 mm.

(B) Sequencing electropherograms confirming BRAFV600E and NRASQ61R mutations in PDX from patient #13.

(C) Growth of PDX from patient #13 in NSG mice treated with dabrafenib plus trametinib (dab + tram), CCT196969, or CCT241161 21 days after tumor implant.

***p % 0.001 (t test, two-tailed).

Bars represent SEM. See also Figure S6.
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Software). IC50 values are the mean of three independent assays. The inhibi-

tion of BRAF, BRAFV600E, CRAF, SRC, LCK, MEK1, and COT were determined

using Z9-LYTE Kinase Assay Kits, and the IC50 values (concentration in micro-

molar) for CCT196969 and CCT241161 against each kinase are presented in

Table 1.

Short-Term Growth Inhibition Assays

Cultured cells were seeded into 96-well plates (2,000 cells per well). At 24 hr

later, serial dilutions of the BRAF inhibitors PLX4720 and SB590885, the

MEK inhibitor PD184352, or our compounds CCT241161 and CCT196969

were added. Cells were incubated for a further 72 hr, and viability was

measured by CellTiter-Glo assays (Roche). Relative survival in the presence

of drugs was normalized to the untreated controls after background

subtraction.

Tritium-Labeled Thymidine Incorporation

Cell proliferation was assessed by measuring tritium-labeled thymidine incor-

poration. A total of 10,000 Ba/F3 cells were seeded into the wells of 96-well

plates, and compounds were added to the desired concentration as

described by Whittaker et al. (2010a). Assays were performed in quadrupli-

cate with 10-point dilution series, and IC50 values were calculated using

GraphPad Prism software. Values reported are the mean of three indepen-

dent assays.

Long-Term Cell Proliferation Assays

Cells were seeded into six-well plates (53 104 cells per well) and cultured both

in the absence and presence of drugs as indicated. Assays were performed

independently at least three times, and average results are represented.

RPPA

The three cell lines derived from tumors displaying resistance to vemurafenib

were incubated with DMSO (control), PLX4720, CCT196969, or CCT241161

(1 mM; 4 hr). Protein extracts were prepared in CLB1 lysis buffer (Zeptosens-

Bayer Technology Services), and samples were analyzed by Zeptosens

RPPA as described elsewhere (van Oostrum et al., 2009).

Histology and Immunohistochemistry

Tumors were formalin-fixed and prepared as described elsewhere (Dhomen

et al., 2009) for staining with hematoxylin and eosin, rabbit pSRC (Invitrogen

44660G) and pERK (Cell Signaling 20G11). Positive and negative controls

were included in each experiment. The scoring of the pattern and intensity

of staining was performed in a blinded manner.
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Tissue, Cell Lysates, and Immunoblots

Tissue and cell lysates were prepared with NP-40 buffer containing 5% b-mer-

captoethanol, 150 mM NaCl, 50 mM Tris, pH 7.5, 2 mM EDTA, pH 8, 25 mM

NaF, 1% NP-40, protease inhibitors (Complete, Roche), and Phosphatase In-

hibitor Cocktails 2 and 3 (Sigma-Aldrich). All lysates were freshly prepared and

resolved by SDS gel electrophoresis for western blotting. Primary antibodies

were: ERK2 from Santa Cruz Biotechnology (clone C-14) and p-ERK1/2

T202/Y204 (clone D13.14.4E), p-SFK Y416 (clone D49G4), cleaved caspase

3 (clone 5A1E), caspase 3 (clone 3G2), cleaved PARP (clone D64E10), PARP

(clone 46D11), and pMEK S217/221 (clone 41G9), all from Cell Signaling.

Specific bands were detected using fluorescent-labeled secondary antibodies

(Invitrogen; Li-COR Biosciences) and analyzed using an Odyssey Infrared

Scanner (Li-COR Biosciences).

Mouse Xenografts and In Vivo Drug Studies

All procedures involving animals were approved by Cancer Research UKMan-

chester Institute’s or the Institute of Cancer Research’s Animal Welfare and

Ethical Review bodies in accordance with the Animals (Scientific Procedures)

Act 1986 and according to the guidelines of theCommittee of the National Can-

cer Research Institute (Workman et al., 2010). Five- to 6-week-old female nude

micewere injected subcutaneously with either 13 106 A375/R, or A375, or D04

or 5 3 106 patient #2 cells. Tumors were allowed to establish for 7 days, sizes

were matched, and then the mice were randomly allocated to groups of eight

to ten animals. No blinding was used in the treatment schedules for these

studies. Based on literature precedents, groups of eight to ten animals were

used to provide sufficient animals per cohort to provide statistically significant

data while keeping the number of animals used to a minimum. Treatment was

by oral gavage daily with vehicle (5% DMSO, 95% water), 90 mg/kg PLX4720,

20 mg/kg CCT196969, or 20 mg/kg CCT241161. All the inhibitors were admin-

istered 7 days/week, with no weekend break. Tumor size was determined by

calipermeasurementsof tumor length,width, anddepth; volumewascalculated

as volume = 0.5236 3 length 3 width 3 depth (in millimeters). In accordance

with our license to perform animal experiments, animals were excluded from

the experiments if they displayed signs of distress, excessive body weight

loss (>20%), or illness.

Patient Samples and Patient-Derived Xenografts

Tumor samples were collected under the Manchester Cancer Research

Centre (MCRC) Biobank ethics application #07/H1003/161+5, with full

informed consent from the patients. The work presented in this article was

approved by MCRC Biobank Access Committee applications 12_JOBR_01

and 13_RIMA_01. Metastatic melanoma tumor samples from patients #1,



Figure 7. Model Showing Targets of Vemurafenib, Dabrafenib,

Trametinib, CCT196969, and CCT241161
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#2, #3, #4, #5, and #13 were obtained immediately after surgery. For patients

#1, #3, #4, #5, and #13, necrotic parts of the tumor were removed, and 53 53

5mm pieces were implanted subcutaneously in the right flank of 5- to 6-week-

old female IL-2 NSGmice. When the PDXs reached�1,400 mm3 volume, they

were excised, and viable tissue was dissected into 5 mm cubes and trans-

planted into additional mice using the same procedure. Genomic and histolog-

ical analyses had confirmed that the tumors at each point were derived from

the starting material. Following transplantation, tumors were allowed to grow

to �60–80 mm3, which was generally 14 to 21 days after the trocars had

been implanted. Animals were randomized before initiation of treatment, for

23–30 days, by daily orogastric gavage of the following groups: PLX4720

(45 mg/kg); dabrafenib (25 mg/kg) plus trametinib (0.15 mg/kg); CCT196969

(20 mg/kg); CCT2141161 (20 mg/kg); vehicle (5% DMSO, 95% water). All

the drugs were administered 7 days/week and without weekends off.

Kinase Assays

The IC50 assays for kinases were performed at Invitrogen using the Z’-LYTE

kinase assay platform (10 points with 3-fold dilutions, or 5 points with 10-

fold dilutions, in duplicate). The IC50 values were calculated using nonlinear

regression with XL-Fit data analysis software, version 4.1 (IDBS).

Sanger Sequencing

Tumor gDNA was prepared using the QIAGEN DNA extraction kit. gDNA was

subsequently amplified by PCR, and the products were sequenced using

dye-terminator chemistry as described elsewhere (Turajlic et al., 2012). Se-

quences were visualized using Sequencher software. Oligonucleotide primer

sequences are available on request.
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