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a b s t r a c t

Multiple sclerosis (MS) is a progressive demyelinating disease of the central nervous system (CNS). Many
nerve axons are insulated by a myelin sheath and their demyelination not only prevents saltatory
electrical signal conduction along the axons but also removes their metabolic support leading to irre-
versible neurodegeneration, which currently is untreatable. There is much interest in potential thera-
peutics that promote remyelination and here we explore use of leukaemia inhibitory factor (LIF), a
cytokine known to play a key regulatory role in self-tolerant immunity and recently identified as a pro-
myelination factor. In this study, we tested a nanoparticle-based strategy for targeted delivery of LIF to
oligodendrocyte precursor cells (OPC) to promote their differentiation into mature oligodendrocytes able
to repair myelin. Poly(lactic-co-glycolic acid)-based nanoparticles of ~120 nm diameter were constructed
with LIF as cargo (LIF-NP) with surface antibodies against NG-2 chondroitin sulfate proteoglycan,
expressed on OPC. In vitro, NG2-targeted LIF-NP bound to OPCs, activated pSTAT-3 signalling and induced
OPC differentiation into mature oligodendrocytes. In vivo, using a model of focal CNS demyelination, we
show that NG2-targeted LIF-NP increased myelin repair, both at the level of increased number of
myelinated axons, and increased thickness of myelin per axon. Potency was high: a single NP dose
delivering picomolar quantities of LIF is sufficient to increase remyelination.

Impact statement
Nanotherapy-based delivery of leukaemia inhibitory factor (LIF) directly to OPCs proved to be highly

potent in promoting myelin repair in vivo: this delivery strategy introduces a novel approach to deliv-
ering drugs or biologics targeted to myelin repair in diseases such as MS.

© 2015 Published by Elsevier Ltd.
1. Introduction

There are no effective treatments of central nervous system
(CNS) neurodegenerative diseases, and one block to progress in this
ays post lesion; EM, electron
ultiple sclerosis; NP, nano-
recursor cell; PBS, phosphate
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field is effective systemic delivery of a therapeutic that crosses the
bloodebrain barrier (BBB) and targets specific CNS cells without
off-target effects. One such disease is multiple sclerosis (MS), which
affects 2.3 million people worldwide, often starts in young adult-
hood and is disabling, thus costing the economy an estimated 3
billion US dollars each year [1]. MS pathology consists of inflam-
matory demyelination of CNS axons causing neurological symp-
toms initially, when saltatory conduction for efficient nerve
impulse conductance becomes compromised, and later com-
pounded by the loss of metabolic support from myelinating oligo-
dendrocytes leading to irreversible neurodegeneration. Although
there are now effective immunomodulatory treatments that reduce
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probability of new relapses [2], there are no treatments that reduce,
slow or stop neurodegeneration and associated progressive
disability.

One potential neuroprotective therapeutic strategy is to
enhance repair of demyelination (remyelination), carried out by
endogenous oligodendrocyte precursor cells (OPCs) recruited to
the area of damage, and which differentiate into mature oligo-
dendrocytes (OD) able to remyelinate axons (reviewed in Ref.
[3]). However, in many MS lesions there appears to be a critical
block in the maturation of OPCs to myelinating OD [4,5] and
factors that improve OPC maturation improve remyelination in
animal models of demyelination. Several such pro-maturation
and pro-remyelination factors have been identified, but there
are difficulties in translating these potential drug targets into
practical therapies for patients, as these must cross the BBB to
reach OPCs in the CNS, and ideally should be delivered directly to
OPCs, to avoid off-target effects. Nanotechnology may solve
these problems, by use of nanoparticles (NPs) that can cross the
BBB, loaded with therapeutic cargo (drugs or biologics) and
designed with surface-bound ligands that can be employed to
target NPs to specific cells, providing local high concentrations of
the cargo.

In this study, we test this potential solution of delivery of pro-
remyelinating factors to the CNS using the known pro-
remyelination factor leukaemia inhibitory factor (LIF) as cargo in
poly(lactide-co-glycolide) (PLGA) nanoparticles, targeted using
NG2 chondroitin sulphate proteoglycan antibodies to OPCs.

We chose to use LIF as a robust and accepted pro-remyelination
factor as a proof of principle to test this novel delivery strategy. In
rodents, LIF is well known to promote developmental myelination
[6] and remyelination after demyelinating injury [7e10], by the
mechanism of promoting OD maturation [11,12]. LIF is also known
to play a key regulatory role in self-tolerant immunity, directly
opposing IL-17 production [13], and IL-17 has been shown to
inhibit OPC maturation in rodents [14]. In humans, LIF is detectable
in the CSF of MS patients [15], in T cells and some macrophage/
microglia found in MS lesions [16]. Therefore, overall, LIF is espe-
cially attractive as a therapeutic candidate for the treatment of MS.
Since LIF is rapidly degraded in vivo, and high doses may have
unwanted off-target effects, we sought a method for its targeted
delivery to OPCs using anti-NG2 chondroitin sulphate proteoglycan
antibodies on the surface of modified biodegradable NP loaded
with LIF.

We chose PLGA nanoparticles to provide a biocompatible and
biodegradable material able to maintain both cargo stability and
sustained, controlled release of cargo for a prolonged therapeutic
effect [17]. In vivo, PLGA slowly degrades by hydrolysis to lactic acid
and glycolic acid, monomeric derivatives that feed into metabolic
pathways for eventual release as carbon dioxide and water. The
degradation rate of these polymers, and often the corresponding
cargo release rate, can vary from days (PGA) to months (PLA) and is
easily manipulated by varying the ratio of PLA to PGA. For therapy,
the physiologic compatibility of PLGA, PGA and PLA have been
established as safe in humans; these materials have a history of
over 30 years in various human clinical applications including drug
delivery systems.

In our study, we then asked whether LIF formulated in PLGA NP
targeted to OPC (i) attach to and induce OPC maturation into
mature OD in vitro and (ii) improve reparative remyelination in vivo.
2. Materials and methods

Animal work was carried out in accordance with the University of Edinburgh
regulations under Home Office rules, with local ethics committee consent. Animals/
cells were randomly allocated a treatment group and data was analysed blinded to
treatment group.
2.1. Nanoparticle production

Mouse LIF was encapsulated in avidin-coated PLGA nanoparticles (50:50
PLA:PGA) using a modified version of a previously described water/oil/water double
emulsion technique [18]. Briefly, 50 mg LIF was dissolved in 200 mL PBS and added
dropwise with vortexing to 100 mg PGLA in 2 ml dichloromethane. The resulting
emulsion was added to 4 ml of aqueous surfactant solution containing 2.5 mg/ml
PVA and 2.5 mg/ml avidin-palmitate bioconjugate (previously described [18]), and
sonicated to create an emulsion containing nano-sized droplets of polymer/solvent,
LIF and surfactant. Solvent was removed by magnetic stirring at room temperature;
hardened NPs were then washed 3x in DI water and lyophilized for long-term
storage. NP size and morphology were analysed via scanning electron microscopy
(Philips XL30 system at 10 kV), and a Nanosight imaging/sizing system. Release of LIF
was measured by incubating particles in PBS at 37�C and measuring LIF concen-
trations in supernatant fractions by ELISA. To make targeted NP, they were resus-
pended in 100 ml of biotinylated anti-NG2 antibody (1/2, rabbit, Millipore AB5320B)
in phosphate buffered saline (PBS) and incubated at room temperature for 30 min to
allow conjugation of anti-NG2 antibody to the avidin-coated NP. Antibody-coated
NP were pelleted by centrifugation at 700 rpm for 2 min and excess antibody-
containing supernatant collected and stored at 4�C for reuse up to 3 times. NP
pellets were resuspended in 20 ml PBS to get a stock solution of 15 mg NP/ml. Serial
dilutions in PBS were performed resulting in final concentrations in OPC culture of
300, 30 and 3 mg NP/ml.)

2.2. OPC culture and assays

OPC cultures were prepared from neonatal SpragueeDawley rats as described
[19]. In brief, mixed glial cultures were made from postnatal day1e2 rat pups and
after 10 days isolated by shaking the cultures, relying on differential adhesion of
OPCs compared to macrophages and astrocytes and resulting in cultures of 80e90%
purity. OPCs were seeded on Poly-D-Lysine-coated chamber slides, and maintained
in SATOmedium at 37 �C in 7.5% CO2. OPCswere then cultured in the presence of NPs
e either targeted or non-targeted and containing LIF or empty, compared to negative
control (medium only) or positive control (recombinant LIF at 100 U/ml obtained
from in-house Hybridoma) and binding, activation, and their effect on proliferation,
apoptosis and differentiation assessed.

To detect whether targeted NP bind to OPCs, we used either anti-rabbit fluo-
rescent-tagged secondary antibody (1/1000, AlexaFluor®, Invitrogen) to bind to the
anti-NG2 antibody attached to the NP surface, or streptavidin conjugated to a
fluorescent tag (which binds to the avidin on the surface) (1/1000, AlexaFluor®,
Invitrogen).

To determine whether LIF was being released and having an effect on signalling
within the OPCs, we made use of its downstream signalling molecule STAT3, which
is phosphorylated andmoves to the nucleus when the LIF receptor is activated and is
detectable using antibodies specific for phosphorylated STAT3 at the TYR705 residue
(species: mouse, 1/100, Cell Signalling Technology 9131).

Survival was assessed by culturing OPCs in basic media lacking both serum and
growth factors (DMEM (Gibco 41966-029)) for 24 h in the presence of each of the
four types of NP by TUNEL assay (Invitrogen Click-iT TUNEL Alexa Fluor Imaging
Assay).

Proliferation was assessed by culturing OPCs in basic media (DMEM, as above)
containing 0.5% fetal calf serum but no growth factors in the presence of each of the
four types of NP for 24 h, in the presence of EdU (Invitrogen Click-iT EdU imaging
kit), which incorporates into the DNA of dividing cells.

Differentiation of OPCs was assessed by incubationwith NP for 24 h and then the
media refreshed and differentiation assessed after 4 days in culture, by assessment
of myelin basic protein expression (MBP) (species: rat, 1/300 Serotec MCA409S) by
immunofluorescence staining as MBP is a main protein component of the myelin
sheath and a marker of mature oligodendrocytes, and staining immature OPC with
anti-NG2 antibody (species: mouse, 1/100, Millipore MAB5384).

All cultures were fixed with 4% PFA for immunofluorescence analysis. Confocal
z-stacks were acquired using Leica SPE confocal microscope with a x40 lens, using
Leica acquisition software, and analysed using Image J software. For all experiments
we carried out 3 experiments (from 3 separate rat litters) with duplicates for each
treatment in each. We quantified a minimum of 250 OPCs per condition, from 4 to 8
non-overlapping images. For statistical significance, we used a two-way ANOVA
with Bonferroni multi comparison post-test, with p < 0.05 considered significant.

2.3. Method for stereotactic surgery and tissue processing

We made focal demyelinating lesions in mouse corpus callosum by stereotactic
injection of the myelin toxin lysophosphatidylcholine(LPC) and then injected either
LIF-containing NG2 targeted NPs, LIF-containing non-targeted NPs or empty NG2-
targeted NPs into the lesion at day 8, aiming to accelerate the maturation of OPCs
which have already migrated into the lesion into myelinating oligodendrocytes.
Using anaesthetized 12-week-old C57Bl/6 malemice, 2 ml of 1%w/v LPCwas injected
through a hole drilled in the skull at stereotactic coordinates 1.2 mm posterior,
0.5 mm lateral, 1.4 mm deep to the bregma over 4 min using a 30 gauge needle
attached to a Hamilton syringe, driven by a KD Scientific Nano pump, which was left
in situ for 4 min to reduce backflow. On Day 8, we injected 2 ml of the lowest
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concentration of NP that had an effect on OPC differentiation in vitro (3 mg/ml) in a
similar manner, using the same coordinates. Mice were perfused with 2% glutaral-
dehyde/4% Paraformaldehyde (PFA) at day 18 or day 25 after initial lesion. Fixed
brains were cut into 1-mm thick coronal section samples, post-fixed in 4% PFA
containing 0.5% glutaraldehyde for 1 h, then 2% PFA/2% glutaraldehyde at 4 �C
overnight and processed into resin blocks using standard protocols. Sagittal 1 mm
semi-thin sections were cut on a Reichert OMU4 ultramicrotome were stained with
toluidine blue to select suitable areas for investigation. Ultra-thin sections, 90 nm
thick, were stained in uranyl acetate and lead citrate and visualised using a Philips
CM120 Transmission electron microscope. Images were taken with a Gatan Orius
CCD camera.

2.4. Measurements and statistics

We used the gold standard method of detection and measurement of remyeli-
nation e measurement of both the percentage of myelinated fibres within a lesion
and the thickness of the myelin sheaths by electron microscopy. To count the per-
centage of myelinated fibres in the lesion, we took ten photographs from random,
non-overlapping fields within each lesion, accounting for at least 1000 axons per
Fig. 1. STAT-3 signalling in OPC is activated by LIF-NP. Physical properties of LIF-NP accord
PLGA-based NP with embedded LIF and surface avidin for attachment of biotinylated targ
antibody bind to purified OPC, as shown using anti-rabbit secondary antibodies (red) but
sparse staining by anti-streptavidin antibodies against surface avidin (white)). Blue ¼ Hoec
nuclear phospho-STAT-3 at 24 h incubation with targeted LIF-NP (at 300 mg/ml). (i) Dose
activation. (For h and i, Two-way ANOVA with Bonferroni multi comparison post-test; *p
interpretation of the references to colour in this figure legend, the reader is referred to the
mouse, with 5 mice per group (n ¼ 5), and analysed blinded to the treatment group.
To measure g-ratios, we traced the axonal circumference and the whole fibre
circumference (using a graphics pad and pen) of all myelinated axons in 5 non-
overlapping random fields within the lesion (at least 100 axons per mouse), and
divided the two values. Again we used 5 mice per group (n ¼ 5), and analysed the
data blinded to the treatment group. We analysed the data using two-way ANOVA
with Bonferroni multi comparison post-test with p < 0.05 considered significant.
3. Results

3.1. LIF-NP promote differentiation of oligodendrocytes

LIF-NPs were prepared as detailed in Methods. These NPs have
typical spherical morphology (Fig. 1a) and a tight size distribution
with a mean diameter of 126 nm ± 50 s. d. (Fig. 1b). LIF molecules
are embedded within the PLGA matrix and thus protected from
ing to morphology (a), size (b) and release rate of LIF(c). (d) Cartoon of composition of
eting antibody. (e) Four types of NP used. (f) NP with attached biotinylated anti-NG2
non-targeted NPs (without this surface antibody), do not bind OPC (g) (as shown by
hst staining of nuclei. Scale bar: 50 mm (h) Histogram showing significant increases in
response curves at 24 h show that targeted LIF-NP has greatest potency for STAT-3
< 0.05, **p < 0.01, ***p < 0.001; mean ± SEM, n ¼ 3 experiments in duplicate). (For
web version of this article.)
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degradation that normally limits LIF's plasma half-life in vivo to a
few minutes. LIF cargo release during PLGA matrix degradation
showed an initial burst, then prolonged kinetics over several days
(Fig. 1c) [20,21]. The surface avidin molecules allow attachment of
biotinylated anti-NG2 antibodies, to target OPCs (as illustrated in
Fig. 1d). This allowsmultiple targeting ligands per NP ensuring high
valency and avidity of contact together with delivery of multiple LIF
molecules per biorecognition event to ensure relatively high con-
centration of cytokinewithin themicroenvironment of the targeted
cell while avoiding systemic exposure to the therapeutic cytokine.
Accordingly, our nanoparticulate approach to target LIF met our
need for controlled, sustained release of bioactive LIF in low,
physiological doses within the OPC microenvironment.

Next we determined the effect of these LIF-NP when targeted to
NG2þ OPCs by preparing purified primary rat OPCs and assigning
these to six treatment groups: Group 1: untreated controls; Group
2: recombinant LIF (positive control) (100 U/ml); Group 3: NG2-
targeted LIF-NP (300 mg/ml); Group 4: non-targeted LIF-NP
(300 mg/ml); Group 5: NG2-targeted empty-NP (300 mg/ml); and
Group 6: non-targeted empty-NP (300 mg/ml) (illustrated in Fig. 1e).
After confirming NG2-specific attachment of the NG2-targeted NP
to isolated rat OPC (Fig. 1f and g), the different therapeutic groups
were cultured for 24 h then stained for nuclear phospho-STAT-3 as
a surrogate marker of LIF-induced signal transduction [22].
Fig. 2. OPC mature into OD in response to NG2-targeted LIF-NP. (a) The number of MBP þ
24 h increases after treatment with NG2-targeted LIF-NP compared to empty targeted NP. (O
Scale bars:50 mm (b) The percentage of MBP þ OD at 4d after treatment with 3 mg/ml NP d
(positive control). (c) Dose response curves of 300, 30, and 3 mg/ml NP, compared to cont
*p < 0.05, **p < 0.01, ***p < 0.001; mean ± SEM, n ¼ 3 experiments in duplicate). (For in
the web version of this article.)
Compared to untreated controls, both recombinant LIF and NG2-
targeted LIF-NP induced over fourfold increase in nuclear
phospho-STAT-3 staining, significantly greater than in NP groups 4,
5, and 6 (Fig. 1h). Significant dose-dependent effects were seen,
confirming the greatest potency of the NG2-targeted LIF-NP
(Fig. 1i). This positive effect of NG2-targeted LIF-NP on nuclear
localisation of pSTAT3 was maintained over 4 days in culture (after
treatment with NPs for the first 24 h) where OPCs were allowed to
mature into oligodendrocytes (suppl. Fig. 1).

We concluded that LIF-NP released bioactive LIF and that tar-
geting to OPC increased LIF-mediated activation of intracellular
signal transduction to the nucleus for activation of LIF response
genes. This bioactivity is in accordancewith previous studies where
LIF-NP targeted to CD4þ T lymphocytes induced the transcription
factor Foxp3 required for immune self-tolerance [21].

We next asked if signalling induced by LIF-NP treatment resul-
ted in improved OPC biological function. In vivo, for remyelination
to occur, an OPC must survive, proliferate, and differentiate:
accordingly each aspect was assessed in isolated rat OPCs in
response to NP treatment. Supplementary Fig. 2 shows that both
survival and proliferation measured after 24 h of NP treatment
were equivalent across all NP groups. However, differentiation (as
assessed by myelin basic protein (MBP)-positive cells) was
increased by treatment with NG2-targeted LIF-NP (Fig. 2a and
mature OD in 4d cultures of OPC following initial treatment with targeted LIF-NP for
PC e labelled with NG2 (red), OD labelled with MBP (green), blue (Hoechst) ¼ nuclei.
uring the first 24 h, compared to no treatment (negative control), or recombinant LIF
rols as above. (b and c: Two-way ANOVA with Bonferroni multicomparison post-test;
terpretation of the references to colour in this figure legend, the reader is referred to
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Supplementary Fig. 3). In these experiments, OPCwere treatedwith
NPs for 24 h, then cultured for 72 h in fresh growth medium. Tar-
geted LIF-NP treatment significantly increased the number of
MBP þ ODs, in contrast to non-targeted LIF-NP, targeted empty-NP
and untreated controls (Fig. 2b). This confirms requirement for both
(i) LIF cargo and (ii) targeting to NG2þ cells to achieve enhanced
OPC maturation. The NP doseeresponse experiments (Fig. 2c)
revealed high potency of the NG2-targeted LIF-NP where, even at
the lowest dose tested e 3 mg LIF-NP/ml, ~33% of the cells differ-
entiated into MBP þ OD.

Calculation of LIF-NP potencywas based on the release data by 2
days of 300 pg LIF from 1 mg of NP (Fig. 1c) i.e. 3 mg LIF-NP/ml
equates to ~0.9 pg LIF/ml. The potency for inducing differentia-
tion measured at 4 days was higher than for nuclear pSTAT-3
localisation at 24 h where 3 mg/ml targeted LIF-NP lacked signifi-
cant effect, possibly due to delivery of physiologically relevant
doses of LIF over the longer 72 h sustaining signalling cues to OPC
for their functional differentiation to OD. Evidence to support this is
shown in Supplementary Fig. 1, where 3 mg/ml targeted LIF-NP
treatment also showed increased pSTAT3 nuclear localisation in
oligodendroglial cells cultured for 4 days.
3.2. LIF-NP enhance reparative remyelination in vivo

Next we examined if LIF-NP, as well as promoting OPC differ-
entiation in vitro, can also promote remyelination in vivowithin the
CNS. The simplest model of demyelination in the mouse brain is
stereotactic injection of the myelin toxin lysophosphatidylcholine
(LPC) into the corpus callosum. This model has advantage over
Fig. 3. Experimental design measuring effect of LIF-NP on in vivo remyelination. (a) Sc
with either targeted LIF-NP or targeted empty-NP (day 8) (2 ml of a 3 mg/ml solution). Mice w
(b) Representative cross-sectional electron microscopy images of normal myelinated, demy
view of Fig. 4a E/T 18dpl).
more complex models of CNS demyelination such as experimental
autoimmune encephalomyelitis (EAE), where inflammation,
demyelination and remyelination occur simultaneously. LPC pro-
duces a focal area of demyelination and remyelination with a
defined timeline: demyelination by 3 days, migration of OPCs into
the lesion starts at day 6 and differentiation of OPCs into ODs starts
at day 10 with complete spontaneous remyelination by 4 weeks.
Thus, to look for any reparative potential of LIF-NP, we introduced
the NP directly into established lesions at 8d post LPC treatment e
i.e. after OPC ingression but prior to their differentiation.

After lesioning, three treatment groups of mice were estab-
lished, one receiving NG2-targeted LIF-NP, the second receiving
non-targeted LIF-NP and the third containing NG2-targeted empty-
NP: for each, 2 ml of 3 mg/ml NP suspension were infused into the
lesion at identical stereotactic coordinates. This low NP dose was
selected as a stringent test based on the high and specific potency of
targeted LIF-NP for inducing OPC differentiation in vitro. Five mice
of each group were culled at 18d and 25d post lesion (10d, or 17d
post therapy) as outlined in Fig. 3 where representative states of
myelination/demyelination/remyelination are also illustrated. To
quantify remyelination, we used the gold standard method of
measurement of both the percentage of myelinated axons within
the lesioned area and the myelin thickness relative to axon diam-
eter (g-ratio) by electron microscopy. The g-ratio of a normal
mature myelinated axon is constant at ~0.7 since myelin thickness
is tightly regulated according to axon size. In the context of
remyelination, g-ratios approaching 1.0 reflect thinner and less
mature myelin. The experimental data in Fig. 4 shows representa-
tive electron micrographs taken 18d and 25d post lesion for the
hematic showing the experimental timeline: LPC lesion (day 0) followed by treatment
ere culled at either day 18 or 25 and the lesioned site processed for electron microscopy.
elinated, and remyelinating corpus callosum. (The remyelinating image is a low power



Fig. 4. NG2-targeted LIF-NP promote thicker myelin and increased numbers of myelinated axons during myelin repair. (a) Electron micrographs show increased remyelination
in lesions treated with targeted LIF-NP compared to non-targeted LIF-NP or targeted empty-NP. Scale bars:2 mm (b) The percentage of myelinated fibres within the lesion area is
significantly higher in targeted LIF-NP treated animals (L/T), at 25 dpl, compared to non-targeted LIF-NP (L/NonT) or targeted empty-NP treated animals (E/T). (mean ± SEM, n ¼ 5
mice per group, number of axons counted/mouse >1000. Two-way ANOVA with Bonferroni multicomparison post-test **p > 0.01, ***p > 0.001). (c) The mean g-ratio (axon
perimeter/myelinated fibre perimeter) is significantly lower (thicker myelin) in targeted LIF-NP (L/T) treated mice compared to non-targeted LIF-NP (L/NonT) or targeted empty-NP
(E/T) treated mice at 25dpl (mean ± SEM, n ¼ 5 mice per group, number of myelinated axons measured/mouse > 100. Two-way ANOVA with Bonferroni multicomparison post-test
**p < 0.01). (d) Scatter plots showing the correlation of g-ratio and axon diameter for each axon measured at 18 and 25 d, with superimposed logarithmic trendline. (blue ¼ NG2-
targeted LIF-NP therapy, green ¼ non-targeted LIF-NP therapy, red ¼ NG2-targeted empty-NP therapy;. Note y-axis reversed compared to (c). (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)
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three experimental groups (Fig. 4a). The percentage of myelinated
fibres per lesion was significantly higher in the NG2-targeted LIF-
NP group (L/T) compared to either the empty-NP (E/T) group or
the non-targeted LIF-NP (L/NonT) group at 25 days post lesion
(Fig. 4b). Furthermore, myelin was significantly thicker in those
animals receiving LIF-NP compared to empty-NP or non-targeted
LIF-NP at 25 days post lesion, both seen as an average g-ratio
(Fig. 4c) andwith the scatter plot where each axon g-ratio is plotted
against its axon diameter (Fig. 4d). No adverse effects were seen in
any of the treated mice, and those treated with NG2-targeted
empty-NP or non-targeted LIF-NP showed a normal trajectory for
remyelination as seen in untreated controls of this model's histor-
ical controls. Thus, NG2-targeted and non-targeted LIF-NP were
well tolerated whilst the enhanced trajectory of remyelination us-
ing NG2-targeted LIF-NP required both NG2-targeting and LIF
cargo.

CNS remyelination in rodents is significantly more efficient than
in humans, in that the percentage of fibres remyelinated after
demyelinating injury returns to normal (~80% in the mouse corpus
callosum) although the thickness of the myelin sheath remains
thinner. Thus, we believe that acceleration of remyelination to this
extent with significantly faster normalization of the percentage of
myelinated fibres in the lesion and significantly thicker, more
mature myelin is also biologically significant.
4. Discussion

We have shown that, in vitro, NG2-targeted LIF-NP bind to OPCs
and the bioactivity of encapsulated LIF was retained, shown by
activation of STAT-3 signalling pathways downstream of the LIF
receptor, together with promotion of OPC maturation into mature
oligodendrocytes. In vivo, we have shown that NG2-targeted LIF-NP
improve CNS remyelination both in terms of the percentage of fi-
bres remyelinated and their thickness (maturity of sheath): proof of
principle that this novel delivery strategy is efficacious for myelin
repair and as such holds promise for treatment of diseases such as
MS. Notably the concentration of NP with therapeutic efficacy
in vivo occurred using 2 ml of 3 mg/ml NP which equates to around
1.8 fg of LIF, and taking a molecular weight of LIF as 20kD, this
equates to therapeutic efficacy at 9 � 10�20 mol. This high potency
was unexpected. However, there is precedent for a potent effect of
cytokines when delivered from biodegradable particles or cells
interacting in close proximity. Indeed, a recentmathematical model
estimated that potency of a drug or cytokine can be increased by
several orders of magnitude when the cytokine is delivered via a
biodegradable particle targeted toTcells [23,24]. We cannot be sure
that all of our effect is a result of LIF acting directly on OPCs, as these
cells in lesions are closely surrounded by astrocytes and macro-
phages, which although do not express NG2, express LIF receptors
[25,26] and the action of astrocytes and macrophages can also in-
fluence remyelination [27,28]. However, the lack of effect shown by
using non-targeted LIF-NP (of the same concentration) suggests
that this effect is dependent on targeted delivery of LIF to cells using
NG2 antibodies. We added NP intralesionally, as proof of concept
confirming the powerful potential of this delivery system as a tar-
geted approach to deliver bioactive molecules for in situ myelin
repair. For translation into clinical use it is notable that NP delivered
intravenously can cross the BBB [29,30], at least in rodents, or can
be delivered intranasally directly to the CNS [31,32] bypassing the
BBB, supporting the concept that intravenous or intranasal delivery
of LIF-NP targeted to NG2 may promote remyelination of demye-
linated lesions. Moreover, the nanoparticle platform used here is
already in clinical trials (e.g. Clinicaltrials.gov NCT01812746,
NCT01792479).
5. Conclusion

Our experimental approach confirms potent efficacy of LIF-NP
for myelin repair in mice in vivo. This paves the way for a new era
in therapeutic delivery of drugs or biologics (including LIF) targeted
to potently improve the function of OPCs and enhance CNS
remyelination in MS patients. Furthermore, combinations of drugs
and biologics may even be co-encapsulated within the same de-
livery NP, ensuring either simultaneous or even sequential delivery
of pertinent factors controlling OPC behaviour in myelin repair.
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