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Abstract
Neural circuits in the medial entorhinal cortex (MEC) encode an animal’s position and orien-

tation in space. Within the MEC spatial representations, including grid and directional firing

fields, have a laminar and dorsoventral organization that corresponds to a similar topogra-

phy of neuronal connectivity and cellular properties. Yet, in part due to the challenges of in-

tegrating anatomical data at the resolution of cortical layers and borders, we know little

about the molecular components underlying this organization. To address this we develop a

new computational pipeline for high-throughput analysis and comparison of in situ hybrid-

ization (ISH) images at laminar resolution. We apply this pipeline to ISH data for over

16,000 genes in the Allen Brain Atlas and validate our analysis with RNA sequencing of

MEC tissue from adult mice. We find that differential gene expression delineates the bor-

ders of the MEC with neighboring brain structures and reveals its laminar and dorsoventral

organization. We propose a new molecular basis for distinguishing the deep layers of the

MEC and show that their similarity to corresponding layers of neocortex is greater than that

of superficial layers. Our analysis identifies ion channel-, cell adhesion- and synapse-

related genes as candidates for functional differentiation of MEC layers and for encoding of

spatial information at different scales along the dorsoventral axis of the MEC. We also

reveal laminar organization of genes related to disease pathology and suggest that a high

metabolic demand predisposes layer II to neurodegenerative pathology. In principle, our

computational pipeline can be applied to high-throughput analysis of many forms of neuro-

anatomical data. Our results support the hypothesis that differences in gene expression

contribute to functional specialization of superficial layers of the MEC and dorsoventral or-

ganization of the scale of spatial representations.
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Author Summary

Higher brain functions such as spatial cognition are carried out in specialized brain areas.
Within a specialized brain area nerve cells with different functions are organized in layers
and gradients. It is possible that this topographical organization reflects underlying differ-
ences in molecular organization of the brain. However, systematic comparison of the ex-
pression patterns of tens of thousands of genes at the resolution of layers and borders is
challenging. Here we develop a new computational pipeline that addresses this problem.
We apply this pipeline to analysis of the medial entorhinal cortex (MEC), a brain structure
that is important for spatial cognition. Our analysis shows that the MEC is highly orga-
nized at a molecular level, identifies related groups of genes that might underlie functional
specialization, and implicates energy-related genes in vulnerability of certain neuronal
populations to neurological disorders including Alzheimer’s disease. Our computational
pipeline may have general utility for high-throughput and high-resolution analysis of
brain anatomy. Our results support the notion that molecular differences contribute to
functional specialization of higher cognitive circuits.

Introduction
Spatial cognition emerges from interactions between specialized neuronal populations in the
hippocampal-entorhinal system [1]. The medial entorhinal cortex (MEC) is of particular im-
portance for cognitive functions that rely on estimation of spatial position and orientation [2].
Neurons in each layer of the MEC represent distinct information, have differing connectivity,
and can be distinguished by their morphological and biophysical properties [3–7]. For exam-
ple, layer II has a relatively high density of neurons with grid firing fields, whereas deeper layers
contain a higher proportion of neurons with firing also modulated by head direction [3, 8].
Further topographical organization is present orthogonal to cell layers along the dorsoventral
axis in that the scale of spatial representations, local and long-range connectivity, synaptic inte-
gration and intrinsic electrophysiological properties all vary with dorsoventral position [9–15].
While this specialization of encoding and cellular properties is well established, the extent to
which molecular specialization defines neuronal populations within the MEC or contributes to
their distinct functions is not clear.

Insights into molecular substrates for topographical organization in other brain regions
have been gained through large-scale analysis of differences in gene expression [16–21]. Our
understanding of the architecture and functions of MEC may benefit from similar approaches.
While detailed anatomical and histochemical studies have shown that certain genes, including
reelin, calbindin [22] and some cadherins [23], identify cell populations associated with partic-
ular layers of the MEC, we know very little about the identity, laminar or dorsoventral organi-
zation of the vast majority of genes expressed in the MEC. This is a difficult problem to address
for the MEC as its borders with adjacent structures are ambiguous, it has a dorsoventral as well
as a laminar organization and its similarity to other cortical structures is unclear. As a result,
key questions about its molecular organization are currently unanswered. For example, are the
layers and borders of the MEC unambiguously delineated by coordinated expression patterns
of multiple genes? Are genes differentially expressed along the laminar and dorsoventral axes?
Do genome-wide laminar or dorsoventral differences in gene expression lead to mechanistic
predictions regarding the organization of functional properties in the MEC? The MEC is onto-
genetically distinct from both the 3-layered hippocampus, and from neocortex [24], with
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which it shares a similar laminar organization, but does this similarity to neocortex reflect a
common molecular organization?

The topographical organization of the MEC extends to pathological signatures of common
disorders in which it is implicated. Layer II exhibits neuronal loss [25] in patients with mild to
severe Alzheimer’s disease (AD) and altered excitability in animal models [26]. Layer II is also
affected in individuals with schizophrenia where there is evidence of abnormalities in cell size,
organization and RNA expression [27, 28]. In contrast, epilepsy is primarily associated with
loss of layer III neurons in humans [29] and in animal models [30]. Yet, the mechanisms that
predispose different cell populations in the MEC to particular disorders are not known. Given
the evidence of genetic associations with these diseases [31–33], it is possible that the molecular
profiles of particular MEC neurons confer vulnerability. However, testing this hypothesis re-
quires knowledge of the laminar and dorsoventral organization within the MEC of genes that
are causally involved in disease.

To better understand the molecular basis for its function and pathology, we aimed to estab-
lish a genome-wide approach to define the laminar and dorsoventral organization of the MEC
transcriptome. Large-scale investigations into gene expression patterns have previously used ei-
ther in situ hybridization (ISH) or RNA sequencing (RNA-Seq) to identify genes with differen-
tial expression in the neocortex [16, 34], hippocampus [17] and sub-cortical structures
including the striatum [20]. While transcriptomic approaches such as RNA-Seq provide a ro-
bust platform for quantification of transcripts, accurate isolation of cell populations at the reso-
lution of cell layers is challenging [16], limiting the current applicability of this approach. In
contrast, ISH is more useful for identifying patterns of gene expression because the precise lo-
cation of transcripts can be examined. The Allen Brain Atlas (ABA), a high-throughput ISH
database, contains brain-wide data for over 20,000 genes and has been used to identify laminar
borders, and to distinguish regions and cell types in the somatosensory cortex [34], hippocam-
pus [17], and cerebellum [35]. However, in its currently accessible form ABA data is searchable
at best at a resolution of 100 µm [34] and is further limited in its utility for automated compari-
son of laminar gene expression because the magnitude of error in alignment accuracy of brain
sections is comparable to the width of narrow individual cortical layers. Small alignment errors
can therefore easily lead to incorrect assignment of genes to layers, thereby confounding sys-
tematic analysis of differences between layers.

To address these issues, we established a computational pipeline for registration and auto-
mated analysis of ISH data at a resolution of approximately 10 µm, enabling us to compare
precise spatial expression patterns of over 80% of genes in the ABA dataset [34, 36]. We com-
bined analysis of this high spatial resolution data with RNA-Seq analysis of gene expression in
dorsal and ventral regions of the MEC. We demonstrate that while very few genes are uniquely
expressed in the MEC, differential gene expression defines its borders with neighboring brain
structures, and its laminar and dorsoventral organization. We propose a new molecular basis
for distinguishing the deep layers of the MEC and provide evidence that at a molecular level
deep layers of the MEC are relatively similar to those of neocortex. Superficial layers are sub-
stantially more divergent between neocortex and MEC. Analysis of genes with differential
expression suggests roles in layer-specific and dorsoventral specialization of calcium-ion
binding molecules, ion channels, adhesion molecules and axon guidance-related molecules.
We find that differential laminar expression patterns do not extend to genes directly implicat-
ed in disease, but selective expression of related genes may provide a context that confers vul-
nerability to pathology in neurodegenerative diseases such as AD. Our data establish a
genome-wide framework for addressing the organization of circuit computations and pathol-
ogy in the MEC.
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Results

High-resolution and high-throughput anatomical analysis of gene
expression
To be able to systematically compare expression of genes in the adult mouse MEC at laminar
resolution we extended the precision with which the localization of expressed genes in the
ABA dataset can be compared. To achieve this we implemented methods to warp ISH images
and their corresponding processed expression images, in which pixel intensity is used to rep-
resent the relative total transcript count [34], into a standard reference frame (see Materials
and Methods, Fig. 1A-B and S1A Fig.). Our re-registered ABA data set contains at least 1
image meeting our quality criteria and that contains the MEC for 16,639 genes (81.2% of
genes in the ABA sagittal dataset) (S1B Fig.). Non-linear registration provides a striking im-
provement in the spatial resolution at which the localization of gene expression can be com-
pared (Fig. 1C). Prior to re-registration, exploration of the organization of gene expression is
confounded by variability in the shape and size of brain sections used in different ISH experi-
ments. For example, averaging ISH expression images for 1000 genes prior to registration
results in diffuse images without any laminar organization (Fig. 1C). In contrast, following
re-registration of the same images, neocortical layers are clearly distinguishable from one an-
other (Fig. 1C). Other landmarks, for example the white matter border with the striatal re-
gion, the hippocampal pyramidal layer and layer I of the piriform cortex, also become clearly
identifiable (Fig. 1C). Within the MEC, the resolution is such that multiple layers and a dor-
soventral organization can be recognized. Thus, our computational pipeline for image regis-
tration enables high-resolution comparison of gene expression between layers and along the
dorsoventral axes of the MEC, as well as with other brain regions.

To validate gene expression data extracted from the ABA we compared mean pixel inten-
sity values across dorsal and ventral MEC with RNA-Seq data acquired from the same re-
gions (see Materials and Methods, S1A Fig.). Our RNA-Seq analysis detected 20,106 of the
38,553 genes (52.7%) in the Ensembl mouse database (release 73), including 15,496 protein-
coding genes. In comparison, of the 16,639 genes from the ABA dataset for which we success-
fully registered images, our analysis revealed that 9,873 (59.3%) are expressed in the MEC, in-
cluding 8,941 genes that we could identify in the Ensembl database (Fig. 1D). Of the
registered Ensembl genes, 8,064 (90.2%) were also detected by RNA-Seq, indicating a high
degree of consistency between the two approaches (Fig. 1D). This is supported by a signifi-
cant positive correlation between RNA-Seq transcript FPKM (fragments per kilobase of exon
per million fragments mapped [37]) and mean pixel intensity of ABA images (r = 0.40,
p< 2.2 × 10-16) (Fig. 1E). It is possible that the 877 genes that appear to be expressed in ABA
data, but are not detected by RNA-Seq, are false positives, while the 3,297 genes detected
using RNA-Seq that are not detectable in the ABA data, may reflect false negatives in the ISH
data, for example due to errors in probe design, staining or image processing. A further 6,463
genes detected using RNA-Seq that are not in the re-registered ABA dataset (Fig. 1D) include
1,939 pseudogenes and 791 long intergenic non-coding RNAs, as well as 1,855 protein-
coding genes.

Together, these data demonstrate the potential of combining advanced image processing
tools for high resolution alignment and analysis of ISH data sets with RNA-Seq. RNA-Seq en-
ables quantification of thousands of transcripts over a large dynamic range, while automated
analysis of ISH data reveals gene expression at laminar resolution that can be quantified and
compared within and across brain regions.
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Gene expression detected by ISH distinguishes MEC from other brain
regions
Previous investigation using microarrays to compare tissue harvested from multiple brain re-
gions has shown that gene expression in the entorhinal area is most similar to that of neocortex
and hippocampus and least similar to non-telencephalic regions [38]. However, it is not clear if
there are individual genes that distinguish these brain regions, whether differences show lami-
nar or dorsoventral specificity or if this pattern applies to the MEC specifically rather than the
entorhinal area as a whole.

Figure 1. Large-scale extraction of MEC gene expression data. (A) Generation of a reference image (Imref) for image warping. Images were selected
(left), aligned to a template image (red dotted line) by scaling, rotation and translation (Manual Rigid Reg, centre), then registered to each other using non-
linear deformation (MIRT Groupwise Reg, right). Imref was defined as the median of the resulting images (Median, right). (B) The central reference image
(Imref

C, S1A Fig.). (C) Image registration reveals laminar organization of gene expression. Images show the mean pixel intensity (INT) for 1000 ABA
expression images before (left) and after (right) registration of the corresponding pre-processed ISH image to Imref

C. Colors represent pixel intensity
(Colormap adapted from the Matplotlib ‘jet’ colormap). White boxes outline the area corresponding to the MEC, shown at higher magnification. (D) Venn
diagrams indicate the number of genes detected as expressed in the MEC using RNA-seq analysis (Ensembl v73) and/or our re-registered ABA data set.
(E) 2D histogram indicating the number of genes with a particular FPKM and mINT, represented using a log scale (right). White line is the linear regression fit,
which indicates that RNA-seq and ABA expression are positively correlated. Data were averaged across the dorsal and ventral region. Data with zero values
are included in the first histogram bin.

doi:10.1371/journal.pcbi.1004032.g001
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To first determine whether gene expression in the MEC alone shows a relationship to other
brain areas similar to that established by microarray analysis, we used the re-registered ABA
dataset to isolate ISH gene expression data from several brain regions (Fig. 2A). Consistent
with microarray data [38], we found that gene expression in MEC correlates most strongly
with neocortex (r = 0.958, p< 2.2 × 10-16), amygdala (r = 0.936, p< 2.2 × 10-16) and the hippo-
campal pyramidal layer (r = 0.942, p< 2.2 × 10-16) and more weakly with the caudate putamen
(r = 0.887, p< 2.2 × 10-16) (Figs. 2B, S2A-B). The relatively high correlations between the
MEC and the other regions suggests that differential expression of relatively few genes is likely
to underlie functional differences between these areas.

To investigate whether the expression of single genes could distinguish MEC from other re-
gions, we identified genes with at least 4-fold higher mean pixel intensity in MEC compared with
each of the other regions (S2C Fig., Materials and Methods). This analysis revealed 118 genes
that are expressed at higher levels in MEC than neocortex, 93 for piriform cortex and 54 for the
hippocampus, compared with 318 for the amygdala and 1,162 for the caudate putamen. These
numbers decrease as the threshold difference in mean intensity between MEC and the other re-
gions is increased (S2D Fig.). Section-wide average images reveal that the expression within the
MEC of these genes is often not uniform, but can be concentrated in specific layers (e.g. MEC vs
neocortex) or dorsoventrally organized (MEC vs piriform cortex and amygdala) (Fig. 2C). They
also reveal that genes selectively enriched in MEC compared with one region are, on average,
also strongly expressed in other regions (Fig. 2C). Nevertheless, 3 genes could be identified as
uniquely enriched in the MEC compared with the other 5 regions (Fig. 2C), although expression
of each followed a laminar organization and did not mark the MEC as a whole. We also asked if
combinations of expressed genes might better distinguish the MEC from other regions. However,
we found that only in a minority of pairs of genes with converging expression in MEC (14/456)
does expression fully colocalize to the same laminar and dorsoventral regions (S2E-F Fig.).

Together, these data further validate our quantification of MEC gene expression and indi-
cate that few, if any, individual genes or pairs of genes are likely to distinguish the MEC as a
whole from other brain regions. Thus, specific attributes of the MEC are unlikely to be a prod-
uct of highly specific expression of a few genes. Instead, our data are consistent with combina-
torial expression of larger sets of genes defining differences between cell populations in the
MEC and other brain areas (c.f. [39]). Our data also highlight a limitation of regional compari-
son of gene expression in that genes which are co-expressed in a given brain region may not be
colocalized to the same cell layer or dorsoventral area. Therefore, to better understand the lam-
inar and dorsoventral organization of gene expression in the MEC, and the relationship be-
tween the organization of the MEC and neocortex, with which it has the most similar overall
gene expression [38], we took advantage of our pipeline for large-scale comparison of gene ex-
pression to analyze expression at laminar and sub-laminar resolution.

Differential gene expression defines MEC borders with neighboring
structures
Borders of the MEC, which we consider here as the region also previously referred to as the
caudal entorhinal field [4, 40, 41], have typically been defined on the basis of classical cytoarch-
itectonic criteria, chemoarchitecture and connectivity [11, 40, 42]. However, because these cri-
teria don’t always converge, ambiguity exists regarding the definition and location of the
borders with adjacent regions including the parasubiculum [43, 44] as well as with more ven-
tral structures (c.f. [42, 45, 46]). We therefore sought to determine whether ISH data, and in
particular our re-registered ABA sagittal data set, would enable a clearer resolution of dorsal
and ventral MEC borders, which can be viewed unambiguously in the sagittal plane.
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We focused initially on identifying genes that delineate the dorsal border of the MEC. In
some atlases this region is considered as the retrosplenial or perirhinal region [47], and in oth-
ers as the ectorhinal region [34, 36]. However, cytoarchitectonic, histological and electrophysi-
ological studies in rats suggest that part of this region corresponds to the superficial layers of
the parasubiculum [43, 48]. By comparing relative pixel intensity between the dorsal MEC and
adjacent regions (see Materials and Methods, Fig. 3A), we identified a number of genes with ex-
pression that appears to stop at the dorsal border of the MEC (e.g.Wdr16 and Fabp5) (Fig. 3B).
For some of these genes, expression is only absent within a wedge-shaped region before resum-
ing in more dorsal cortical areas (e.g. Nov), a pattern which is highly consistent across different
medio-lateral sections (Figs. 3C, S3A-B). We therefore asked if there are genes that are express-
ed in the wedge-shaped region, but not the adjacent regions. We identified 9 such genes (see
Materials and Methods), including Igfbp6 and Kctd16 (Fig. 3D). All of these genes are also ex-
pressed in the parasubicular region medial to the MEC (Fig. 3E). Of these, 7/9 also have sparse
expression in superficial parts of MEC (Fig. 3D). These observations support the view that the
parasubiculum extends to wrap around the dorsal border of MEC [43, 48].

At the ventral aspect of the MEC, cytoarchitectonic analysis delineates a border with the me-
dial entorhinal field [40, 47]. We asked whether differential gene expression supports the pres-
ence of this ventral border and whether it can clarify its position. By analyzing gene expression

Figure 2. Identification of MEC-enriched genes. (A) Locations on the central reference image (Imref
C) for which mean pixel intensities (mINT) were

extracted from the MEC, neocortex (Neo), hippocampus (Hip), piriform cortex (PF), caudate putamen (CP) and amygdala (Ag). (B) Bars indicate Pearson’s
correlation coefficients between mINTMEC and mINT[OTHER] for all genes in the re-registered ABA data set. (C) Images show the average pixel intensities
throughout sagittal sections corresponding to the central reference section of genes that have at least 4-fold higher mINT* in MEC than in neocortex (red
frame), hippocampus (green), piriform cortex (blue), amygdala (magenta) or caudate putamen (cyan) individually. Just 3 genes are expressed at higher
levels in MEC than other brain regions pooled together (yellow frame). Lower bar charts indicate the proportion of genes in each list that are expressed in
each other region, given the same inclusion criteria.*Inclusion criteria: mINTMEC� 2 and mINTnorm

MEC � 0.8 (� 0.99 if mINTMEC< 5) and mINTOTHER < 5.

doi:10.1371/journal.pcbi.1004032.g002
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in regions either side of the approximate location of this border (Fig. 3F), we identified genes
with expression that drops off sharply (Fig. 3G, S3C-D Fig.). These genes include apparently
layer-specific genes such as Nef3, Cutl2 and Col5a1 in layers II, III and V/VI respectively. We
also identified genes with the converse pattern of high ventral expression and low MEC expres-
sion, including Kctd6, Sema3c and LOC241794 (Fig. 3H). These expression patterns are consis-
tent across different mediolateral sections (S3C-D Fig.). Thus, the ventral border of the MEC
can be identified by genes with sharply increased or reduced expression.

Figure 3. Differential gene expression defines the borders of MECwith neighboring regions. (A) Boxes indicate the dorsal (orange) and ventral (red)
regions from which mean pixel intensities (mINT) were extracted for identification of genes defining the dorsal border of the MEC. (B) Example cropped ISH
images downloaded from the ABA API are shown (left) adjacent to mean expression pattern for genes expressed in MEC but not the wedge-shaped region
dorsal to MEC (right). Arrows indicate regional borders. (C) Raw ISH images show the dorsal border of MEC layer II marked out by the gene Nov at different
medio-lateral positions (left) and in the coronal plane (right). Values in mm indicate distance from Bregma. (D) Example cropped ISH images downloaded
from the ABA API are shown for genes expressed in the wedge-shaped region dorsal to MEC but not the most dorsal MEC region. (E) Raw ISH sagittal (Sag)
and coronal (Cor) images from the ABA indicate the continuity of the wedge-shaped region with the more medial parasubicular region for the genes Igfbp6
and Kctd16. (F) Boxes highlighting regions used to identify the ventral border of the MEC. See (A). (G-H) Example cropped ISH images downloaded from the
ABA API (see Materials and Methods) are shown adjacent to images of the mean expression pattern for genes expressed in MEC but not the more ventral
region (G), or in the ventral region but not MEC (H).

doi:10.1371/journal.pcbi.1004032.g003
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Differential gene expression defines MEC layers and intra-laminar
organization
Cytoarchitectonic and developmental studies indicate that the MEC is a type of periarchicortex
(paleocortex), a transitional structure between 6-layered neocortex and 3-layered archicortex,
with 5 cytoarchitecturally distinct cell body layers [24, 40, 45]. However, while layer II and III
are easily distinguished by their cytoarchitecture and connectivity (cf. [40]), differentiation of
cell populations within layers V and VI is less well established, although there is evidence that
the cell bodies and dendrites of distinct cell types are differentially distributed within these lay-
ers [4, 6, 40, 49]. Layer IV corresponds to the cell free lamina dissecans [40]. To better define
the laminar organization of the MEC, and to be able to compare its structure to other cortical
regions, we therefore asked if differential gene expression distinguishes the superficial from
deep layers or clarifies laminar borders within the deep layers (Figs. 4 and S4).

We first identified 159 genes specifically expressed in layers II, III or V/VI (see Materials and
Methods and S4A-C Fig.). We refer to these genes, which show no consistent expression in other
layers, as layer-specific genes (see Materials and Methods). We initially analyzed deep layers
(V—VI) together because their divisions and borders are not easily distinguished by cytoarchi-
tectonic criteria. Since genes with layer-specific expression patterns are of particular interest as
neuroscience tools for isolating laminar functions, we examined their likely validity. Almost all
layer-specific genes could be detected in our RNA-Seq analysis (149/159 with mean FPKM
� 0.1) and 62/159 had substantial levels of expression (mean FPKM� 10). We also identified a
further set of 622 genes, which we define as strongly differentially expressed (DE)(see Materials
and Methods, S4B Fig.). These genes are expressed at higher levels in at least one layer than an-
other, but are not necessarily exclusive to one layer. Both layer-specific and DE genes show con-
sistent expression patterns across mediolateral sections (S6 Fig.). Only 37 of the layer-specific
genes and 144 of the DE genes are amongst the 1000 most viewed genes in the ABA [50]. Thus,
layers of the MEC can be distinguished by layer-specific and DE genes, many of which have re-
ceived little previous attention suggesting they may represent new targets for future exploration.

Further examination of genes specific to the deep layers revealed three separate divisions of
layers V and VI. First, a narrow zone at the deep border of layer IV is distinguished by expres-
sion of 5 genes, including Etv1, Grp andNts (Figs. 4A, S4D). A second narrow zone of cells that
is adjacent to the white matter is delineated by the expression of 8 genes, including Jup and
Nxph4 (Figs. 4A, S4D). Finally, the wide intervening region is distinguished by 20 genes, includ-
ing Thsd7b, Cobll1 and Col5a1 (Figs. 4A, S4D). Because layer V has been suggested to have a nar-
row superficial and wider deep zone [40], we refer here to the two more superficial subdivisions
as layer Va (narrow) and Vb (wide), and we refer to the layer bordering the white matter as layer
VI [40]. This delineation of layers Va, Vb and VI is supported by patterns of expression within
the deep layers for the larger set of DE genes (layer Va (n = 24), Vb (n = 55) and VI (n = 13);
S4E Fig.). A further 27 DE genes are expressed in both layer Va and VI, but not Vb (S4E Fig.).
Thus, patterns of gene expression enable differentiation of divisions within the deep layers.

Previous cytoarchitectonic and electrophysiological studies have indicated that within layer II
a subset of cells are clustered in islands [51–54]. In mice, neurons within islands express calbin-
din, whereas neurons outside islands express reelin [22, 53, 54]. Cells in these islands are of par-
ticular interest as they differ from reelin-positive cells in both their electrophysiology and
projection targets [22, 53, 54]. Taking all DE genes within MEC, we found 30 genes that within
layer II are predominantly expressed in apparent islands (Figs. 4A, S4F). Of these, just 8 are also
specific to layer II within the MEC (S4G Fig.), including the calcium-binding protein, calbindin
(Calb1). A further 19 are strongly expressed in the MEC deep layers but not layer III. The island
genes include 13 genes that are expressed in the wedge-shaped patches of presumed
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parasubiculum adjacent to dorsal MEC, 3 of which we identified earlier (e.g.Mrg1, S4F Fig.). We
also identified 37 genes with the converse, ‘Inter-island’, pattern (S4F Fig.). Of these genes 23 are
specific to layer II, including Reln (reelin) and Il1rapl2 (S4G Fig.). A further 11 are also strongly
expressed in the MEC deep layers, in particular in layer Va. The remaining layer II-specific genes
do not appear to be uniquely expressed in either island or inter-island regions (S4G Fig.). Thus,
differential gene expression distinguishes cell populations within layer II, shows that cells within
and outside islands may be distinguished from cells in other layers by expression of common
genes and provides evidence of similarities between the layer II island cells and parasubiculum.

Deep layers of MEC and neocortex show greater molecular similarity
than superficial layers
What is the relationship between laminar organization of the MEC and other regions of cere-
bral cortex? While MEC has greatest similarity in gene expression to neocortex and also shares

Figure 4. Laminar and intralaminar organization of MEC defined by differential gene expression.
(A) Composite image shows high-intensity pixels for 6 exemplar genes with layer-specific expression. Pixels
outside of the MEC and parasubicular region are made semitransparent. Images for the genes Dcc andWfs1
were re-registered for a second time after manual pre-processing to improve the quality of registration for this
figure. (B) Schematic showing a refined genomic atlas of the layers and borders of MEC. The region between
layer III and V is the lamina dissecans (LD).

doi:10.1371/journal.pcbi.1004032.g004
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a similar laminar structure, classic ontogenetic evidence indicates that the two regions are de-
velopmentally distinct [24]. However, it is unclear if these ontogenetic differences are associat-
ed with later molecular differences between specific layers of the mature cortices.

To address this we first systematically examined overall expression in visual cortex and so-
matosensory (SS) cortex of genes with layer-specific expression in MEC. When we averaged ex-
pression of all genes selectively expressed in layers V/VI of MEC we found them to have a
similar laminar organization in neocortex (Fig. 5A). In contrast, mean expression in neocortex
of genes localized specifically to layer II or III of the MEC has a less distinct laminar organiza-
tion (Fig. 5A). To quantify these differences we measured the distribution of gene expression
intensity as a function of distance from the corpus callosum to the pial surface (Fig. 5B, Materi-
als and Methods). We found that the three groups of MEC layer-specific genes have differing
expression patterns in neocortical regions (Figs. 5C, S5A; Mixed Model Analysis, F = 12.3,
p< 0.001). To assess the degree to which the laminar organization of each group of MEC
layer-specific genes is maintained in neocortex, we first calculated the ratio of their expression
in deep layers (V and VI) to superficial layers (II-IV). We then calculated the difference be-
tween these ratios and their expected values of 1 for deep genes, and zero for superficial genes.
This difference was significantly smaller for deep layer-specific genes compared with superficial
layer-specific MEC genes (Fig. 5D; MANOVA, p = 0.002 and p = 0.004 for effect of MEC
layer-specific group in visual and SS cortex respectively). A similar relationship is apparent

Figure 5. Molecular similarity between neocortex and MEC is greater for deep than superficial layers. (A) Mean expression patterns of layer-specific
genes with images in the ABA re-registered data set corresponding to the central reference plane. Scale bar 1mm. (B) Schematic of the central reference
image showing the MEC, visual and SS regions overlaid by a color-coded map representing the normalized distance from the inner white matter (0) to the
brain surface (1). Pixel intensities were extracted from all locations and binned into 20 groups according to normalized distance. (C) Plots of the distribution of
pixel intensities for each MEC layer-specific gene group (see (A)) as a function of distance from the inner white matter border. Error bars represent standard
error of the mean. There is a main fixed effect of layer-specific group on neocortical expression (Mixed Model Analysis, F = 22, p< 0.001). Arrows indicate
regions of deep and superficial (Sup) neocortex. Laminar boundaries were estimated using individual and mean expression profiles of MEC and SS layer-
specific genes (S5 Fig.). (D) Genes with deep layer-specific expression in MEC show significantly more similar expression patterns in their equivalent
neocortical layers than in superficial layers (MANOVA, Overall effect of layer-specific group: F(4,174) = 3.3, p = 0.012; Between-subjects effects of layer-
specific group: Vis F = 6.7, p = 0.002; SS: F = 6.0, p = 0.004. Tukey’s HSD Vis: Deep< LII: p = 0.002; Deep vs. LIII: p = 0.051; SS Deep< LII: p = 0.04; Deep
vs. LIII: p = 0.051). (E) Correlation matrix color represents the Pearson’s correlation coefficient (r) between mean pixel intensity (mINT) in particular layers of
MEC, visual and SS cortices for all genes in the re-registered ABA data set.

doi:10.1371/journal.pcbi.1004032.g005
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when we consider the expression patterns of individual genes (S5B, C, D Fig.). Around 92% of
deep layer-specific MEC genes are expressed in the neocortex and 61–64% of all these genes
are enriched in deep visual and SS cortex, respectively (S5C Fig.). In contrast, 77% of superficial
layer genes are expressed in SS or visual cortex, but just 28–43% are enriched in superficial lay-
ers (S5C Fig.). Thus, our analysis of layer-specific genes supports the idea that deep layers of
MEC have greater similarity to neocortical regions than superficial layers.

To investigate whether the relationship between layers of the MEC and neocortex extends be-
yond layer-specific genes, we took all genes in the re-registered ABA data set and examined the
correlations in pixel intensity between layers in different cortical regions (Fig. 5E). MEC deep
layers together correlate most strongly with neocortical layer VI (r = 0.96,0.94, p< 2.2 × 10-16),
while layer II and III of MEC are more strongly correlated with neocortical layer V (r = 0.93–
0.95, p< 2.2 × 10-16) than II or III (r = 0.90–0.91, p< 2.2 × 10-16) (Fig. 5E). To establish whether
these correlations differ from those between neocortical regions, we investigated correlations be-
tween visual and SS cortices across all genes. We found that all corresponding layers correlated
strongly (r> 0.96, p< 2.2 × 10-16) (Fig. 5E). Similarly, when we examined expression patterns
of SS cortex layer-enriched genes [34, 36], we found a similar laminar organization of expression
between SS and visual cortex (S5E Fig.). Thus, while laminar organization of gene expression is
maintained between neocortical regions, gene expression within superficial layers of MEC, in
particular, diverges from corresponding layers of neocortex.

Given the overall similarity between gene expression in deep layers of MEC and neocortex,
we examined possible relationships between particular deep layers in each region. Of genes
specifically expressed in particular deep layers we found that MEC layer VI-specific genes are
almost always also expressed in layer VIb of neocortical regions (n = 7/8; Figs. 5A, S5D) (c.f.
[55]). Meanwhile, layer Vb-specific genes are more commonly expressed in layer VIa of neo-
cortex than layer V (S5D Fig., n = 15 vs 7 / 19). Moreover, MEC deep layers together correlate
most strongly with neocortical layer VI (r = 0.96,0.94, p< 2.2 × 10-16), and more weakly with
layer V (r = 0.94, 0.91, p< 2.2 × 10-16)(Fig. 5E). This is consistent with our observation that
MEC layer Vb genes are more commonly expressed in layer VIa of neocortex than layer V, as
the layer Vb region occupies the majority of the area of the MEC deep layers. Thus, at the level
of gene expression MEC layers Vb and VI can be considered most closely related to neocortical
layers VIa and VIb, respectively.

In summary, our analysis provides molecular evidence for an organization in which deep
layers of MEC and neocortex implement similar gene expression programs, whereas superficial
layers of MEC and neocortex express more diverse sets of genes.

Excitability and communication-related genes show laminar organization
Our analysis suggests specialized gene expression in different layers of the MEC. If this reflects an
underlying functional organization then it could be reflected in the functions associated with
layer-specific or DE genes. Given known differences in electrical intrinsic properties, morpholo-
gy, connectivity and organization of cells between MEC layers [4, 6, 40, 45], we hypothesized that
genes involved in cell excitability and communication might be differentially expressed across
layers. To test this, we focused initially on DE genes as their greater number gives more statistical
power in identifying over-represented gene attributes. We identified Gene Ontology (GO) anno-
tations and pathways that are overrepresented amongst DE genes (n = 722 Ensembl-identified
genes) relative to all genes expressed in the MEC (n = 9,057 Ensembl-identified genes). To reduce
redundancy and identify diverse functions of interest, we clustered enriched terms into groups.
Consistent with our prediction, genes associated with neuronal projections (n = 75, padj = 1.85 ×
10-9), particularly synapses (n = 45, padj = 4.57 × 10-5), and those involved in calcium ion binding
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(n = 61, padj = 2.72 × 10-7), cell adhesion (n = 54, padj = 9.48 × 10-8), and axon guidance (n = 23,
padj = 3.14 × 10-4) are overrepresented amongst DE genes (Fig. 6A). We also found strong enrich-
ment of genes involved in ion channel activity (n = 46, padj = 7.05 × 10-7) and synaptic transmis-
sion (n = 25, padj = 2.36 × 10-4) (Fig. 6A). Amongst ion transport-related genes, cation channel
activity (n = 34, padj = 3.82 × 10-5) is particularly enriched whereas anion channel activity is not.
We asked if attributes enriched among DE genes were also identifiable amongst layer-specific
genes. In addition to being significantly overrepresented amongst all DE genes, cell adhesion,
axon guidance and calcium ion binding-related genes were also significantly overrepresented
amongst the group of layer-specific genes (Fig. 6B). Given critical roles of these genes in neuronal
signaling, these data support the idea that laminar differences in gene expression within the MEC
support laminar organization of computations within MECmicrocircuits.

Are genes within the functional groups that are overrepresented amongst DE genes enriched
in particular layers or are they distributed across layers? Comparison of expression patterns for
individual genes revealed genes with enriched expression in each layer (Fig. 6C, Materials and
Methods). This analysis highlights a number of genes of potential functional importance. For
example, ion channel-related genes include the potassium channel subunits Kcna4 and
Kcnmb4, which control excitability and are enriched in layers II and Vb respectively, while
axon guidance/adhesion-related genes enriched in layer II include Lef1, Lhx2 and Dcc as well as

Figure 6. Functionally grouping of genes with laminar organization. (A) Enriched functional clusters of gene ontology (GO) and KEGG pathway terms.
Overrepresented annotations were identified using an overrepresentation analysis in GOElite [102]. Colors reflect terms clustered based on kappa similarity
[103]. Only the most significant annotations (FDR< 0.01) that are sufficiently different from other terms in cluster (kappa score< 0.7) are shown. (B) Colors
indicate the log2 fold enrichment of the term in the layer-specific list, or lists for individual layers, compared with all MEC-expressed genes. Asterisks indicate
significance at * α = 0.05, ** α = 0.01, *** α = 0.001. (C) Colors represent the normalized proportion of high-intensity (� 2 x mINTMEC) pixels in each layer for
genes in each of the indicated overrepresented groups. Data were normalized by dividing the proportion for each layer by the sum across layers.

doi:10.1371/journal.pcbi.1004032.g006
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the ephrin receptor gene Epha4 (Fig. 6C). A possible role for the latter genes could be to control
guidance of axons to newborn granule cells in the dentate gyrus [56]. Cell adhesion-related
genes are also selectively expressed and significantly overrepresented in all layers and include
several cadherins and protocadherins (Fig. 6B-C). These data suggest that subsets of each func-
tional group of DE genes are expressed in each layer.

Together these data reveal candidate categories of genes that are most likely to distinguish the
functions of different layers within the MEC. Our analysis also identifies molecules with highly
specific laminar expression that could contribute to particular electrical and synaptic properties.

Gene expression in MEC is systematically organized along the
dorsoventral axis
Topographical organization of intrinsic features along the dorsoventral extent of the MEC has
received considerable interest because the characteristics of grid cells vary systematically along
this axis [9, 10, 12, 13, 57]. The extent to which gene expression parallels this organization is
not currently known. We took two approaches to addressing this issue, one using our re-
registered ABA dataset, with its advantage of high spatial resolution, and the other using RNA-
Seq analysis, which enables quantification across a wide dynamic range and the ability to test
the reproducibility of gradients. This combined approach therefore enabled us to question not
only dorsoventral differences in gene expression, but also their laminar organization.

We first calculated the ratio of pixel intensity between dorsal and ventral regions in images
from the re-registered ABA dataset (Fig. 7A). We defined genes with at least 20% more expres-
sion in the dorsal than ventral area as being expressed higher dorsally (D>V) and those with at
least 20%more in the ventral area as being expressed higher ventrally (V>D) (see Materials
and Methods, S7A Fig.). As a result, we identified 3,188 D>V genes compared with 1,352 V>D
genes (Fig. 7B). We next used RNA-Seq analysis to compare gene expression from microdis-
sected regions of dorsal and ventral MEC. This also identified genes with dorsoventral differ-
ences in their expression (Fig. 7C), of which 1,467 D>V genes and 1,198 V>D genes satisfied
our criteria of 20% more expression in one of the areas than the other. Of these genes 452 and
347, respectively, had statistically significant differences in expression (Cuffdiff 2 [58]:
FDR< 0.05) across 4 replicate samples (Fig. 7C).

To establish whether similar populations of dorsoventrally expressed genes are identified by
RNA-Seq and in the re-registered ABA dataset, we correlated the ratio of dorsal to ventral expres-
sion determined by each method. First, to avoid confounds from genes with different expression
between layers, we focused on genes expressed in only one layer. We found that measures of dif-
ferential expression are strongly correlated between ABA and RNA-Seq datasets for layer II, III
and V/VI (Fig. 7D, LII: slope = 0.85, r = 0.74, p = 0.0007, LIII: slope = 1.5, r = 0.97, p = 0.0002,
LV/VI: slope = 2.4, r = 0.77, p = 0.0038). Second, we compared gene expression for all genes
found to be significantly differentially expressed across biological replicates in RNA-Seq data.
We again found a significant correlation between the datasets (S7B Fig., r = 0.52, p< 2.2 × 10-16).

Do dorsoventral differences in gene expression manifest differently across layers? Average
images indicate that layer II has the strongest D>V pattern, while the deep layers have the stron-
gest V>D pattern (Fig. 7B). To test this, we compared the average ratio of ventral to dorsal ex-
pression for all layer-specific genes. We found significant differences in the ventral to dorsal
ratio for deep layer-specific genes compared to layer-II or III-specific genes (1-way ANOVA
F = 7.47, p = 0.0008. Post-hoc Tukey’s HSD LII vs. Deep p = 0.0016, LIII vs Deep: p = 0.010),
with deep layers enriched for a V>D expression pattern (Fig. 7E). Indeed, while 20.6% of layer
II and 14.3% of layer III-specific genes show significant D>V expression, only 1.8% of deep
layer genes do (Figs. 7D, S7C).
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Together our data provide convergent evidence for systematic organization of gene expres-
sion along the dorsoventral axis of the MEC, identify dorsally and ventrally enriched sets of
genes, and suggest differences in the laminar organization of dorsoventral gradients.

Functional organization along the dorsoventral axis of the MEC
Are the roles of genes with differential dorsoventral expression related to the cellular and sys-
tem-level organization of function in the MEC? Taking all significant D>V and V>D genes
identified by RNA-Seq, we investigated their possible functions using a GO and pathway analy-
sis. By using clustering to distinguish enriched terms into key groups of interest (see Materials
and Methods), we found that D>V genes are enriched for a number of attributes, particularly
axon ensheathment (n = 15, padj = 2.08 × 10-7) and channel activity (n = 32, padj = 2.81 × 10-7)
(Fig. 8A). We next used the re-registered ABA data set to examine the expression patterns of
the identified gene groups. The D>V pattern found using RNA-Seq is replicated for the major-
ity of axon ensheathment- (n = 9/12) and channel activity-related genes (n = 19/24) that show
expression in the re-registered ABA dataset (Fig. 8B). We then investigated the layers in which
gradients are strongest. Axon ensheathment genes show consistent D>V gradients in the

Figure 7. Dorsoventral organization of gene expression in MEC. (A) Boxes overlaid on MEC region of the central reference image indicate the regions
from which pixel intensity was measured and a mean calculated. Pixel intensity was also measured from the adjacent lateral image if present in the re-
registered ABA data set. Intensities for dorsal and ventral regions were averaged across the 2 planes to give a mean (mINT) in the dorsal and ventral regions.
(B) Average images indicate mean expression patterns for genes with higher dorsal (D>V) and higher ventral (V>D) expression that have images in the
central plane. Genes were classified based on the following criteria: All: mINTMEC � 2, D>V: log2(V/D) mINT� -0.2630, V>D: log2(V/D) mINT� 0.2630.
(C) Identification of dorsoventrally patterned genes using Cuffdiff 2 differential expression analysis [58] of RNA-Seq data. Scatterplot shows log2(Ventral
FPKM/Dorsal FPKM) as a function of absolute FPKM. Significant genes (FDR< 0.05) are indicated in red. Only genes with mean FPKM� 1 across samples
and that had a sufficient number of reads for analysis were included. (D) Scatterplots show log2(V/D) mINT for ABA images of genes with layer-specific
expression as a function of log2(V/D) FPKM for corresponding RNA-Seq data points. Slopes (m) were obtained using a linear regression analysis. Black
outlines indicate genes with FDR< 0.05 using Cuffdiff 2 analysis. (E) The ratio of ventral to dorsal expression is significantly higher for deep-layer specific
genes than superficial layer specific genes (1-way ANOVA F = 7.47, p = 0.0008. Post-hoc Tukey’s HSD LII vs. Deep p = 0.0016, LIII vs. Deep: p = 0.010).

doi:10.1371/journal.pcbi.1004032.g007
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superficial (n = 11/12) and deep (n = 9/12) layers (Fig. 8B). In contrast, genes involved in chan-
nel activity are more likely to show D>V gradients in the superficial (n = 22 / 24) than in the
deep (9/24) layers (Fig. 8B).

In contrast to D>V genes, genes with V>D expression in the RNA-Seq data set are most
strongly enriched for the neuroactive ligand-receptor pathway (n = 24, padj = 4.04 × 10-13),
which is related to G-protein coupled receptor activity (n = 35, padj = 2.2 × 10-9), and for the ex-
tracellular region (n = 44, padj = 2.16 × 10-9) (Fig. 8C). Of the 11 identified neuroactive ligand-
receptor pathway genes that are expressed in our re-registered ABA data set, 7 have consistent
overall V>D patterns in the ABA (Fig. 8D) while 3 show no detectable expression. A total of
15/24 extracellular region-related genes are consistent with ABA data (Fig. 8D), with a further
12 showing no detectable expression. A possible reason for the discrepancies between ABA and
RNA-Seq measures is that in the ABA analysis of the overall V>D gradient, V>D gradients
that are only present in the deep layers may go undetected. This is because in some ABA im-
ages, ventral deep layers become narrower towards the medial border of the MEC and therefore
ventral gene expression may be overshadowed by expression in the superficial layers or may
not be present in the image. In support of this, we found that most V>D gradients found using
RNA-Seq could be detected in ABA data when gene expression was specifically measured in
the deep layers (Neuroactive: 8/11, Extracellular: 20/24, Fig. 8D).

MEC vulnerability to disease
Pathological changes in the MEC have been observed in a number of neuro-developmental
and neurodegenerative disorders. Whereas layer III appears to be most consistently affected in
epilepsy patients and in animals models of epilepsy [29, 30], cell number and disrupted organi-
zation within layer II are consistently reported in Alzheimer’s disease (AD) [51, 59], as well as
in Huntington’s (HD) and Parkinson’s disease (PD) [60], schizophrenia [61] and autism [62].
This laminar specificity suggests that particular features of these layers, whether genetic or net-
work-based, hard-wired or experience-driven, confer vulnerability. One possibility is that
genes with mutations causally linked to particular disorders have layer-enriched expression.
Alternatively, broadly expressed causal genes might cause specific pathology in layers with en-
riched expression of genes that confer vulnerability.

To address whether normal adult gene expression in the mouse provides insight into vul-
nerability, we first explored the laminar expression patterns of genes involved in signaling
pathways that are disrupted in disease. Images showing the average expression pattern of
genes involved in KEGG neurodegenerative disease pathways (AD, HD and PD) [63] indicate
high expression in layer II, particularly in dorsal regions (Fig. 9A). To test whether this reflects
significant enrichment of neurodegenerative disease pathway genes in layer II, we took all DE
genes that exhibit high expression in layer II (see Materials and Methods) and compared re-
presentation of disease-related genes to their representation in the MEC as a whole. We found
that AD, PD, and HD pathway genes are all overrepresented amongst layer II-enriched genes
(Fig. 9C, Exact Fisher Test with Benjamini-Hochberg correction: Log2 Fold Enrichment
> 1.19, padj < 0.024). Thus, basal gene expression may confer vulnerability of layer II in
neurodegenerative diseases.

In the absence of KEGG pathway information, we used several database resources to
identify genes related to schizophrenia [64, 65], autism [66] and epilepsy [67] (see Materials
and Methods). Average images reveal weak, if any laminar organization for schizophrenia and
epilepsy-related genes, with some evidence of layer II enrichment for autism-related genes.
However, an enrichment analysis shows that schizophrenia-related genes are overrepresented
amongst layer III-enriched genes (Fig. 9C), while both autism- and schizophrenia-related
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Figure 8. Functional grouping of genes with dorsoventral organization. (A, C) Overrepresented non-redundant GO terms for genes identified as being
expressed at significantly higher levels in (A) dorsal (D>V) and (C) ventral (V>D) regions using Cuffdiff 2 analysis of RNA-Seq data [58]. Terms were
clustered based on kappa similarity [103]. Only the most significant terms p< 0.001 from each cluster that are sufficiently different from each other (kappa
score< 0.7) are shown. (B, D) Genes of functional interest show corresponding patterns of (B) D>V and (D) V>D expression in ABA data. Heat plots
indicate the normalized mean pixel intensity (mINTnorm) for a gene across all MEC layers as a function of dorsoventral position. Normalization was performed
by setting all values to the range [0, 1]. All RNA-Seq defined D>V and V>D genes with mINTMEC� 2 in the re-registered data set are included. Colored bars
beneath heat plots indicate whether the difference between dorsal and ventral regions was at least 20% (see legend). Plots also shown for individual layers
(see S4 Fig.); data not shown for those with mINT[layer] < 2. Where ISH was performed with multiple probes for one gene, data from both are shown. SP:
signaling pathway.

doi:10.1371/journal.pcbi.1004032.g008
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genes are enriched amongst RNA-Seq defined D>V genes (Fig. 9C), suggesting that pathology
related to these diseases could show dorsoventral differences.

Since layer II enrichment of AD pathway genes corresponds with layer II vulnerability to
AD, we explored whether genes with variants that have been established to confer increased
risk of AD show layer-specific expression. AD possesses several key genetic risk factors, name-
ly APP, PSEN1, and PSEN2 [68], but meta-analyses of genome-wide association studies have
also shown that ApoE, ABCA7, Clu, Bin1, Cd33, Cd2ap, Epha1,Ms4a6A-E, Picalm, Sorl1,
Ptk2b, NME8, FERMT2, CASS4, Inpp5d, Dsg2,Mef2c and Cr1 are strongly associated with
late-onset AD [69–71]. We found that 16 out of the 20 of these genes that are in our re-
registered ABA data set are expressed in the MEC. However, none are specifically expressed in
layer II and only a minority show strong differential expression across layers (Fig. 9D). Pathol-
ogy in layer II is therefore unlikely to be the result of layer-specific expression of AD risk
genes. It could instead reflect enriched expression of signaling pathways linked to neurodegen-
eration in AD (Fig. 9A). Indeed, further analysis of the laminar expression patterns of AD
pathway genes (Fig. 9E, Materials and Methods) reveals that almost all those with moderate
laminar enrichment show highest expression in layer II, and that many (n = 16 / 26) are

Figure 9. Laminar organization of disease-relatedmolecular pathways. (A-B) Expression patterns of disease-related genes. Images showmean
normalized pixel intensity (INTnorm) across all genes that are members of KEGG pathways associated with the indicated disorder (A) and genes linked to the
indicated diseases (B). Pixel intensity values for each image were normalized to the mean pixel intensity of the MEC region prior to averaging. Scale bar
500µm. (C) Colors indicate log2 fold enrichment of disease associations amongst layer-enriched genes (Number of enriched genes: LII:288, LIII:63, LV/
VI:152) (left) and amongst RNA-seq Cuffdiff 2-measured [58] significant (FDR< 0.05) D>V and V>D genes (right). Asterisks indicate FDR< 0.05 after a
two-way Exact Fisher’s test followed by Benjamini-Hochberg correction for multiple testing. Schizophrenia-related genes are overrepresented amongst layer
III-enriched genes (Log2 Fold Enrichment = 2.22, padj = 0.025) and both schizophrenia and autism-related genes are overrepresented amongst D>V genes
(Schiz: 1.34, padj = 0.013, Aut: 1.56, padj = 6.1 × 10-4). (D) AD susceptibility genes do not show laminar organization. Averaged image for AD susceptibility
genes (left) [68–71] and heat maps representing the distribution of laminar expression (centre). Colors indicate the relative proportion of high-intensity
(� 2 x mINTMEC) pixels in each layer. (E) AD pathway genes show dominant layer II expression. Heat map colors indicate the relative proportion of high-
intensity (� 2 x mINTMEC) pixels in each layer for genes with at least moderate laminar enrichment.

doi:10.1371/journal.pcbi.1004032.g009
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mitochondrion-associated genes, suggesting that cells in layer II may have higher energy de-
mands than cells in other layers. This is consistent with the strong cytochrome oxidase stain-
ing observed in layer II [48]. Given that mitochondrial dysfunction is a feature of
neurodegenerative disease [72] and that genes related to metabolism are altered in the MEC of
patients with mild cognitive impairment [73] and AD [74], layer II vulnerability could be due
to or compounded by enriched expression in layer II of signaling pathways that confer vulner-
ability to AD pathology.

Discussion
To investigate the molecular organization of the MEC we combined a new pipeline for large-
scale comparison of gene expression at high spatial resolution with RNA-Seq analysis. We
show that differences in gene expression define the dorsal and ventral borders of MEC, its lay-
ers and its dorsoventral organization. We find that the MEC is closely related to neocortex
through gene expression. This similarity is strongest for the deep layers, whereas superficial
layers appear more specialized. Enriched topographical organization of genes related to synap-
tic communication and excitability indicates that laminar and dorsoventral organization of
spatial coding within the MEC may have specific molecular substrates. Identification of lami-
nar organization of AD-related pathways, but not risk genes, suggests that specific layers of the
MEC may be particularly vulnerable to triggers of pathology in AD and other neurodegenera-
tive diseases. The data sets generated by our study are a new resource for investigating molecu-
lar substrates for spatial coding and computation by the MEC and the structures with which it
interacts, while the computational pipeline we have developed may have general applications
for neuroanatomical investigation requiring comparison of many probes at high
spatial resolution.

Gene expression defines laminar organization of function and pathology
within the MEC
By developing a pipeline for automated comparison of brain sections at 10 µm resolution we
were able to identify genes whose expression pattern delineates the borders and layers of the
MEC (Fig. 3 and Fig. 4). Validation of this pipeline against RNA-Seq data indicates that relative
expression levels estimated with the two approaches are consistent (Fig. 1 and Fig. 7). Recent
work using double ISH labeling validates the layer-specific expression patterns we find for cad-
herins in the MEC [23], while other well-characterized genes such as reelin and calbindin [22,
75] also have expected expression patterns. Our analysis identifies a further 767 genes with
layer-specific or enriched expression and 799 genes with dorsoventral expression. Nevertheless,
our current analysis is limited by the availability of genes in the ABA data set (20,495 / 38,553
Ensembl genes, most of which are protein-coding), by the likelihood of false negative data in
the ABA ISH data where true gene expression has been missed (estimated 3,297 / 14,054 by
comparison with RNA-Seq data) and by limitations in image processing and registration accu-
racy that prevent us making use of the entire ABA data set. While our analysis is restricted to
sections in parasagittal planes containing the MEC, it could be extended to include other brain
regions through additional planes and to other species including humans [76]. In principle our
approach could also be extended to analysis of images from three-dimensional datasets ob-
tained using different methods [77, 78].

Our results resolve dorsal and ventral borders of the MEC, provide molecular evidence for
laminar divisions of its deep layers, and identify numerous new molecular markers for the
well-established separation of the superficial layers. While dorsal and ventral borders can be
distinguished unambiguously in sagittal images, medial and lateral borders are better
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resolved in horizontal sections, so demarcation of these borders may require use of additional
horizontal data sets. Delineation of deep layers is of particular interest as they are believed to
relay hippocampal output to neocortex (c.f. [4]), but their organization and functional prop-
erties have received relatively little attention. We distinguish a narrow region deep to the lam-
inar dissecans as layer Va, consistent with that described by [45]. We also identify a distinct
division of the deeper layers into Vb and VI, a narrow region of cells that appears continuous
with neocortical layer VIb (Fig. 4). We suggest that the divisions previously reported within
layer V [6, 40, 79] correspond to the superficial layer Va and a deeper layer Vb that we identi-
fy here. Definitive laminar delineations within the deep layers will require analysis of shared
gene expression, dendritic morphology and axonal connectivity. Our results also identify
new markers for island cells and, to our surprise, suggest their similarity to neurons in the
parasubiculum. It will be interesting to establish whether this similarity extends to functional
properties [43].

Our analysis and data sets provide a resource for future functional investigation of laminar
organization of functions in the MEC. This includes identification of markers for distinguish-
ing cell populations (Fig. 4), particularly for layer III and the deep layers, for which there are
currently few specific markers. Our delineation of layers Va, Vb and VI identifies several genes
in each layer whose promoters may be usable for generation of driver lines to target that cell
population. We also identify common expression patterns between MEC and neocortex that
may underlie shared functional roles (Fig. 5). For example, the cortical layer VI-specific immu-
noglobulin heavy chain gene, TIGR accession TC146068 [34], also shows expression in MEC
layer Vb. It is unlikely that this similarity in expression between deep layers of MEC and neo-
cortex reflects biased selection of exemplar genes [80] as it is present when considering all ex-
pressed genes as well as those with laminar selectivity (Fig. 5). Instead, our analysis
demonstrates that deep layers of MEC show greater similarity to corresponding cortical layers
than do more superficial layers. Because our analysis includes the majority of protein-coding
genes (Fig. 1), it also leads to novel predictions about gene expression underlying specialized
function. As well as identifying candidates for electrophysiological differences between neurons
from different layers [6], many cell adhesion and axon guidance molecules are enriched
amongst patterned genes (Fig. 6). Of particular interest are cell adhesion-related genes such as
Cdh13, Lef-1 and Dcc that show a similar expression pattern to Reln, which marks the subset of
excitatory layer II cells that project to the dentate gyrus [22]. One possibility is that these genes
play roles in forming connections with new born granule cells.

Genome-wide views of cortical organization can inform investigation of disease mecha-
nisms by identifying convergent expression of molecular components of disease pathways [34,
81]. We found no evidence of layer-specific expression of genes causally implicated in disease
pathology (Fig. 9). Instead, our analysis suggests that differential gene expression may underlie
layer-specific pathology by predisposing specific cell populations to disease-causing mecha-
nisms. For example, enriched expression of energy-related genes may reflect susceptibility of
this layer to degeneration in AD. These functional and pathological predictions should be test-
able in future experimental studies.

Dorsoventral organization of gene expression identifies molecular
candidates for differences in grid scale
The dorsoventral organization of the resolution of grid firing fields and the corresponding or-
ganization of excitable and synaptic properties of layer II stellate cells [9, 10, 12, 13] suggests
that cellular mechanisms for grid firing may be identifiable by comparison of key features of
dorsal and ventral MEC circuits. However, until now there has been little evidence for
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molecular differences that could underlie this organization (cf. [12]). We provide converging
evidence from re-registered ABA data and from RNA-Seq data for systematic coordination of
gene expression along the dorsoventral axis of the MEC. Consistent with key roles of superficial
layers in the generation of grid fields, D>V gradients were most often found in layer II and III
(Fig. 7). We also found evidence for genes with the opposite V>D pattern of expression, but
these were most prominent in deeper layers, suggesting that control of dorsoventral differences
by molecular pathways differs across layers. A potential caveat of our analysis is that dorsoven-
tral differences in gene expression could reflect differences in the proportions of certain cell
types. While approaches such as transcriptomic analysis of isolated cells will be required to re-
solve this, our finding that many layer-specific genes are not significantly differentially express-
ed along the dorsoventral axis, while dorsoventral genes have continuous rather than all or
nothing changes in intensity (Fig. 8), argues for gradients reflecting coordination of gene ex-
pression levels within populations of a single neuron type.

By taking a genome-wide approach to differences in gene expression we obtained unbiased
estimates of gene functions that are enriched among dorsoventral genes. Strikingly, we found
enrichment among genes with higher dorsal expression of axon ensheathment and ion channel
activity (Fig. 8). This is in accordance with previous evidence for dorsoventral differences in
synaptic transmission and ionic conductances [12, 13, 15], and in immunolabelling for myelin
[48]. Enrichment of 10–20 genes associated with each function indicates that the correspond-
ing cellular differences may involve coordinated control of gene expression modules. For exam-
ple, our analysis extends candidates for dorsoventral differences in excitability from HCN and
leak K+ channels [12], to include non-selective cation channels such as Trpc5 [82] and voltage-
dependent potassium channels such as Kcnq3 [83] and Kcnk1 (Twik1) [84]. Similarly, we iden-
tify myelin-related genes such asMbp and Plp1, as well as related adhesion molecules such as
Cntn2 (Tag-2), as candidates for dorsoventral differences in coordination of axon ensheath-
ment [85]. Future gene manipulation studies will be required to establish causal roles of these
genes in dorsoventral tuning of cell properties and of spatial firing. They may also provide in-
sight into the role of topographic gene expression in the development and maintenance of to-
pographical connectivity between the MEC and hippocampus. Additional investigation will
also be required to establish whether dorsoventral coordination of transcription is comple-
mented by similar coordination of translational and post-translational mechanisms.

Specialization of cortical circuits for spatial computation
Neurons in the MEC encode representations of space [9] that are critical for spatial learning
and memory [86]. An unresolved question is whether this computation requires a specialized
cortical circuit, or whether it is an example of a generic computation to which canonical corti-
cal circuits can easily be adapted. Evidence for the former comes from findings that in layer II,
which contains the highest density of cells with grid firing fields, excitatory stellate cells are
only able to communicate indirectly via inhibitory interneurons [87–89], whereas in other cor-
tical regions excitatory layer II principal neurons synapse with one another [90]. Consistent
with this view our molecular analysis suggests considerable divergence between superficial lay-
ers of MEC and neocortex. In contrast, deeper layers of MEC appear much more similar to
neocortex. Together with the dorsoventral organization of ion channel and axon ensheathment
genes, our findings suggest that specialization important for spatial circuits is particularly strik-
ing within the superficial layers of the MEC. The functions within the MEC of the individual
genes and functional gene groups that we identify as having laminar and dorsoventral organi-
zation have for the most part not been investigated and likely will be important targets for
future exploration.
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Materials and Methods

Ethics statement
All animal experiments were carried out according to guidelines laid down by the University of
Edinburgh’s Animal Welfare Committee and in accordance with the UK Animals (Scientific
Procedures) Act 1986.

RNA-Seq data collection and analysis
Brains were rapidly extracted from 13 male 8-week-old C57Bl/6JolaHsd mice and maintained in
modified oxygenated artificial cerebrospinal fluid (ACSF) of the following composition (mM):
NaCl 86, NaH2PO4 1.2, KCl 2.5, NaHCO3 25, CaCl2 0.5, MgCl2 7, glucose 25, sucrose 75), at
approximately 4ºC. One 400 µm thick sagittal slice containing the right MEC was cut from
each brain using a Leica Vibratome VT1200 system [91]. Dorsal and ventral regions were
microdissected under a dissection microscope (S1A Fig.), with care taken to avoid inclusion of
ventral entorhinal cortical regions, parasubicular or postrhinal regions and subicular regions.
Tissue sections were collected into separate RNase-free eppendorf tubes before being quickly
frozen on dry ice. Frozen tissue was stored at -80ºC for several weeks before RNA extraction.

We compared RNA from dorsal and ventral MEC of 4 groups of mice. To minimize the ef-
fects of inter-animal variability and variability in the dissection, whilst maintaining sufficient
power to detect dorsoventral differences, samples were pooled with 3 or 4 mice in each group.
RNA was extracted using RNeasy Lipid Tissue Mini Kit (Qiagen Cat:74804). RNA integrity was
assessed using a Agilent 2100 Bioanalyzer. All sample RINs were between 7.1 and 8.5. cDNA
was synthesized and amplified using the Ovation RNA-Seq System V2 (NuGEN Cat:7102) using
120 ng of starting material for each sample. The samples were fragmented and sequenced by the
Ark-Genomics facility using Illumina HiSeq with multiplexed paired-end analysis on two lanes.
Raw data were processed using Casava 1.8. Sequenced fragments were aligned using TopHat
v2.0.8. After sequencing and alignment, absolute RNA expression and differential expression
were computed using Cuffdiff 2 software on the output BAM files [58]. We chose Cuffdiff 2 to
ensure accurate counting of transcripts in the presence of alternatively splicing. Reported gene
expression therefore reflects the summed expression of all transcripts/isoforms of a gene. Cuff-
diff 2 was run on the Edinburgh Compute and Data Facility (ECDF)[92] cluster on 4 cores each
with 2GB of RAM. The reference genome used was Ensembl 73, downloaded 12th Nov 2013.

Transcripts were classified as expressed if their mean fragments per kilobase of exon per mil-
lion fragments mapped (FPKM) [37] across samples� 0.1 (c.f. [16]) in at least one of the dorsal
or ventral regions (Fig. 1D). We also only considered transcripts for inclusion if Cuffdiff 2 anal-
ysis revealed them to have a minimum number of 10 alignments in a locus (default value).
Transcripts were only tested for differential expression if mean FPKM across samples� 1.

ABA image processing and data extraction
The steps for processing and extraction of data from ABA images are summarized in S1 Fig.
and described in detail below. Code used in this section is available at https://github.com/
MattNolanLab/Ramsden_MEC.

Image download from ABA. Images were downloaded from the ABA database using the
application programming interface (API: http://www.brain-map.org/api/index.html). Since the
ABA sagittal reference atlas begins at 3.925mm laterally, and as the MEC is located between ap-
proximately 3.125 and 3.5 mm laterally, images between 0 and 1400 μm (refers to distance
from most lateral point) were selected for download for each image series. Two files were
downloaded for each image: an ISH image file and a corresponding expression image file.
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Images were downloaded using the API files: http://www.brain-map.org/aba/api/imageseries/
[enterimageseries].xml and http://www.brain-map.org/aba/api/image?zoom=3& top=0&left=
0& width=6000& height=5000&mime=2&path=[path specified in xml file]. Images were ap-
proximately 500KB each. Approximately 120,000 images were downloaded in total and they
were stored on a cluster provided by ECDF [92].

Preprocessing and cerebellar segmentation. ABA images, of variable dimensions, were
first downsized by a factor of 1.25 and pasted onto the center of a new image of 1200 (width) x
900 pixels (height) using the Python Image Library. ISH images were then processed to im-
prove image segmentation and registration (S1A Fig.: steps 2–5). No further changes were
made to the expression image files until application of a segmentation mask (step 6).

Image preprocessing proceeded as follows. (a) Background subtraction was carried out on
the ISH images using ImageJ [93](S1A Fig.), with radius set to 1 pixel as this is approximately
the size of a cell at the chosen resolution. (b) Images were thresholded using the ImageJ
‘Min_error’ automatic thresholding method such that all visible objects in the image, including
anatomical features and cells with very low staining, were retained. The aim of this step was to
minimize gene expression-specific information in the images whilst retaining anatomical detail
to facilitate image registration based on landmark features. (c) To aid feature extraction, a
smoothing filter (ImageJ) was applied to the images to smooth them prior to processing.

Because the cerebellum could impair performance of the registration algorithm we devel-
oped an automated segmentation workflow to remove the cerebellar region from images prior
to registration (S1A Fig.). (d) An edge detection algorithm was applied to background-
subtracted images (FeatureJ Edge detection [94]). This image was thresholded to provide two
outlined regions: the forebrain and cerebellum. These regions occasionally featured internal
gaps caused by very low pixel intensity brain regions. We used an ImageJ algorithm to identify
the two regions as objects (defined by the complete perimeter) and to fill in any such gaps
(ImageJ/Process/Binary/Fill Holes). These regions could then be detected as separate objects,
using the ImageJ particle analysis tool (ImageJ/Analyze/AnalyzeParticles), and only the largest
object, corresponding to the forebrain, was subsequently included in the segmentation mask.
This mask could then be applied to the ISH and corresponding expression images.

Segmentation failed for images with low ISH labeling (because of edge detection failures),
where the cerebellum and forebrain overlapped (due to mounting errors), and where erroneous
staining prevented typical boundary detection. It was not feasible to examine all images and
check those in which segmentation had failed, so we developed a method for automatically de-
tecting successful segmentation. For each image within an image series, we used a binary sup-
port vector machine (SVM) classifier with a linear kernel to classify image masks based on
success. To classify images, it is first necessary to extract features of the image that represent
the patterns found in them. We used the VLFeat toolbox in Matlab [95] and custom-written
code [96] to extract scale invariant feature transform (SIFT) features [97] from the images. The
toolbox extracts SIFT features at 4 different scales to provide a spatial histogram that contains
information about the positioning of features in space (PHOW features). For each image a fea-
ture histogram containing 4000 values was generated for input to the classifier. The SIFT fea-
ture library was provided by [96]. We trained the SVM classifier on PHOW feature vectors
from 800 correctly segmented images and 250 poorly segmented images and used a further 800
positive and 250 negative images for validation and tuning of the regularization parameter.
The classifier was able to separate positive and negative validation images with over 98% accu-
racy with a tuned regularization parameter. We therefore used the SVMmodel with the same
parameters to obtain a score for all remaining (~120,000) images that estimated their chance of
success. The majority of images were assigned positive scores but we flagged any image with a
score below 1 (11% of images) as being potentially erroneous.
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Generation of reference images. To enable the extraction of information from 2D ISH im-
ages with precision, we generated reference images for five planes covering the medio-lateral
extent of the MEC and its borders (S1A Fig.). The central image (C) was our primary data ex-
traction image, images in the adjacent lateral plane (L1) supplemented this information, while
images in more lateral (L2) and in medial (M1 and M2) planes were used for reference but not
for data extraction.

Reference images were generated using hand-selected ISH images that were chosen based
on (1) relatively uniform expression in the MEC, (2) good tissue quality, and (3) medium ISH
staining intensity. Approximately 15–20 images were chosen for each of the 5 reference images
(See Figs. 1A, S1A). Pre-processed images were rigidly aligned using an ImageJ plugin “Align
Image by Line ROI” (http://fiji.sc/Align_Image_by_line_ROI) [93]. Given images in which the
user has marked 2 corresponding points on each image, this plugin finds an optimal transfor-
mation (translation, rotation, scale) in closed form that aligns the images into the
same location.

Images then underwent group registration using a Matlab library, the Medical Image Regis-
tration Toolbox [98] (Fig. 1A). Images were registered by two-dimensional non-linear defor-
mation to one another, with the aim of finding the group match with the greatest similarity.
We chose to group register 15–20 images to capture a sufficient degree of variance without re-
quiring excessive memory (* 5GB RAM) or time (* 20 hours). A Gaussian filter with a win-
dow size of 13 and a standard deviation of 3 was applied iteratively three times to each,
followed by contrast enhancement, to enhance image structures at the relevant spatial scale.
We chose to use cubic β-splines to represent the possible class of transforms and mutual infor-
mation as the similarity measure, as it is relatively resistant to differences in contrast. The out-
put of group registration is a series of transforms that correspond to each image. We generated
reference images by applying these transforms and then calculating the median of the trans-
formed images (S1A Fig.).

Classifying images based on their medio-lateral location. The images downloaded from
the Allen Brain Atlas could be assigned either to one of the five reference image groups or to a
sixth group for images not containing MEC. To ensure the ~120,000 images were appropriately
classified based on medio-lateral extent, we used classification to identify, for each image series,
the image most similar to our central reference image, Imref

C. We used a Support Vector Ma-
chine (SVM) library for Matlab [95] with a linear kernel and binary classification. The SVM
provided a score for each image across all image series reflecting the chance that the image was
approximately in the same medio-lateral plane as Imref

C. We could then compare scores for all
images that had been downloaded for a given image series and choose the image with the high-
est score. Images from each image series that corresponded to more medial and lateral refer-
ence images could then be identified based on their relative medio-lateral location (calculated
using the ABA API database xml file corresponding to the relevant image series using the posi-
tion and referenceatlasindex xml tags), since images within image series were always separated
by 100, 200 or 400 μm.

The procedure for the SVM followed several stages. (a) A Gaussian filter was applied to pre-
processed ISH images, with a window size of 15 and a standard deviation of 3. (b) We trained
the SVM classifier with PHOW features extracted from images manually classified for 501
genes into mediolateral groups. (c) We optimized the regularization parameter of the SVM and
tested performance with a further 483 genes. After training, all the remaining images were run
through the SVM and assigned a score. The highest scoring image from each image series was
then assigned to an Imref

C folder for manual inspection. Any images that did not belong in
Imref

C were removed. Images that were distantly located from Imref
C images were placed in a

No-ML folder. We manually checked this folder and any images that appeared to match a
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reference image were moved to the appropriate folder. Records were kept of all movements
and this process of checking continued until we were satisfied that images had been assigned to
a reference with*95% accuracy.

Registration gene images to a reference image. Each pre-processed ISH image was Gauss-
ian-filtered and contrast-enhanced to facilitate extraction of large anatomical features and then
1-to-1 registered to its respective reference image, also Gaussian filtered, using the MIRT
toolkit (S1A Fig.). 1-to-1 registration is unlikely to be as accurate as group registration but
group registration would be unfeasible, in terms of memory and time required, for the number
of images involved (* 20,000). Images were registered using cubic β-splines with mainly de-
fault settings, with the exception of the transformation regularization weight, which sets a limit
on the scale of the deformation. We increased this from the default value of 0.01 to 0.1 to pre-
vent large deformations. MI was used as a similarity measure because of its invariance to differ-
ences in contrast. The output of the algorithm was a transform describing the deformation of
all points.

Apply registration transformation to expression images. The transform, calculated using
the thresholded images, was also applied to the original ISH images (for visual assessment of
registration success), as well as to the expression images (for extracting pixel intensity). All im-
ages underwent the same procedure.

Image quality check. To assess the accuracy of registration we used several measures auto-
matically collected from all images: an MI-related score from the registration algorithm, a
cross-correlation score on the final image, and a classification score from a classifier trained on
poorly registered images. The MI score of the final deformation for each image reflects its simi-
larity to the reference image. There is a clear distinction between the distribution of scores be-
fore and after registration (S1A Fig.). To determine how well these scores represent correct
alignment, we chose a random sample of 100 images and manually rated their registration ac-
curacy, then plotted their scores against the final mutual information result. This allowed us to
set a threshold so that we could flag images that were potentially poorly registered. A total of
17% of images in the central plane were flagged compared with 14% in the L1 plane.

The MI score reflects registration accuracy across the whole image and therefore could over-
estimate the accuracy of registration in the MEC. Therefore as a second test we used the Matlab
function (normxcorr2) to cross-correlate the MEC-containing region of a registered image with
a larger region of the respective reference image. This cross-correlation function provides both
a normalized maximum fit score and the location of the maximum fit, thereby enabling us to
estimate the offset between the posterior MEC border within the registered image and within
the reference image. We validated scores by using the image set used for validation of MI analy-
sis. The majority of images were given a high manual rating of 5 and had a cross-correlation
offset of near zero. A total of 7% of central images were flagged as having an offset that was po-
tentially too large.

To detect image flaws including holes in the tissue created by bubbles, and aberrant detec-
tion of the pial surface as an RNA-expressing cell, which artificially increases the mean pixel in-
tensity of the image, we used an image classifier. We decided to use image features to capture
erroneous elements in the expression images that could subsequently be detected using an
SVM. Features were extracted from the region including the MEC and immediate surround.
We then trained a binary SVM classifier with a radial basis function kernel on all the images
that we had visually assessed as having significant errors (n=* 50) against high quality images
(n = 300). We used the LIBSVM package in Matlab for this [99]. We used cross validation to
optimize the regularization parameter, C, and the hyperparameter of the radial basis function,
gamma. We then tested all images with the classifier, giving a probability estimate that each
image was erroneous. We again compared the probability estimate with visual assessment of a

Molecular Topography of Medial Entorhinal Cortex

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004032 January 23, 2015 25 / 38



subset of the images used previously to estimate accuracy for the MI score, and flagged images
with scores greater than 0.13. The classifier distinguishes images with large registration errors
and pial surface errors from high-quality images (S1A Fig.). However, this method is naive to
anatomy and not particularly sensitive to minor misalignment errors as it extracts features
from the entire MEC region that are scale and alignment-invariant. 29% of images were flagged
based on these results. Images were assigned error statuses and defined as not meeting the qual-
ity criteria if they had poor MI scores or were flagged by at least 2 of the other error measures.
Error statuses were updated for all visually assessed images. In summary, 15,447 / 20,032 (77%)
genes had images meeting these quality criteria in the central plane and 12,814 (64%) had im-
ages meeting the criteria in the L1 plane (S1B Fig.).

Extraction of pixel intensities from ABA images. Custom python scripts were written for
all analysis of 8-bit ABA expression TIFF images. Expression images were used instead of raw
ISH images because stages of processing that control noise, background illumination and con-
trast invariance across the images have already been performed as part of development of the
ABA [34, 36, 100] (see ABA Informatics Data processing white paper). In addition, pixel inten-
sity information represents overall expression level of individual cells that have been detected
as expressing the gene of interest and should not contain structural information present in
brightfield images that is not gene-specific, such as densely fibrous regions,

Genes were classified as being expressed if the mean expression in either the custom-defined
dorsal or ventral region was� 1 (scale up to 255). All data presented are based on pixel intensi-
ty values from 8-bit grayscale expression images. Expression images have been shown with a
16-color lookup table for visualization purposes. Average images are shown either based on ab-
solute intensity or intensity normalized by the mean of the MEC region, as indicated.

Regional gene expression was estimated by manually outlining regions using Bezier lines
(ImageJ), using the selections to create a binary mask (black on white pixels) that could be im-
ported using custom Python or Matlab scripts, then using the mask to select elements of the
original expression images.

Some genes are represented more than once in the ABA dataset, either because multiple
probes have been used to detect different transcripts (n = 351 / 20,334 genes), or where ISH ex-
periments with a single probe have been replicated (n = 1,011 genes). Where multiple probes
are used to target a single gene we analyze images for each probe separately, but in population
analyses we report the gene once whether only 1 probe or all probes were detected. For replica-
tions we found that relative intensities across different regions were similar in each image set,
but overall image intensities could vary. We therefore analyzed average images generated by
obtaining the mean relative pixel intensity across regions of interest for each image series and
multiplying this by the mean pixel intensity of each whole image averaged across all relevant
image series.

We extracted pixel intensity information from central and adjacent lateral images, which
showed highly similar patterns of gene expression. Comparisons in mean pixel intensity be-
tween corresponding MEC layers of central and adjacent lateral images showed correlations of
at least 0.945, which was higher than correlations with non-corresponding layers (< 0.938).
When relative mean pixel intensities were compared between corresponding layers we found
correlations of at least 0.66, compared with< 0.21 for non-corresponding layers.

Comparison of ABA and RNA-Seq expression. To compare the results from ABA data
and RNA-Seq data, we first used the Ensembl Biomart database to match Ensembl data from
RNA-Seq to Entrez IDs and Gene symbols. To correlate ABA and RNA-Seq expression, we
took the mean pixel intensity of the dorsal and ventral regions, averaged across the Imref

C and
Imref

L1 planes (where images were available) and compared this to the mean FPKM of RNA-
Seq dorsal and ventral samples (S1A Fig.).
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Data analysis and statistics
We describe below methods used for analyses associated with each main figure. Pearson corre-
lation coefficients and linear regression analyses were performed using the statistics linear re-
gression package, lm, in R.We define absolute intensity as the pixel intensity measurement in
8-bit images (range 0–255), and relative intensity as a measure reflecting the ratio of pixel in-
tensities between two or more regions, for example layers or brain regions.

ABA regional comparisons and combinatorial analysis (Fig. 2). The neocortical, hippo-
campal, caudate putamen, amygdala, piriform and MEC regions were manually outlined using
the central composite reference image and Allen Mouse Reference Atlas [34, 36] as guides.
Genes with a mean pixel intensity in MEC� 5 were defined as being MEC-enriched if their rel-
ative intensity compared to the comparison regions was� 0.8. Genes with mean pixel intensity
in MEC< 5 and� 2 were defined as being MEC-enriched if their relative intensity was� 0.99.
In both cases the mean intensity of the compared brain region also had to be< 5. The propor-
tion of MEC-enriched genes also expressed in the other brain regions was calculated by finding
genes that did not satisfy these criteria. MEC-unique genes were identified using the same
thresholds applied in comparison to all regions.

We identified pairs of genes with overlapping expression by first finding all genes that are
enriched in the MEC relative to at least one other brain region and pairing them with each
other. We then identified those pairs for which at least one of the pair was present in all five
MEC-enriched lists. Images of genes were overlaid using ImageJ and manually inspected for
degree of overlap. To aid visual assessment, genes with MEC expression< 5 were only included
if expression was restricted to a particular subregion, as uniform expression at this intensity ap-
pears to most likely reflect non-specific ISH staining or uneven illumination across the tissue.

Detection of borders (Fig. 3). To identify genes defining the dorsal and ventral borders of
MEC, we outlined regions dorsal and ventral to the approximate location of the borders using
the central reference image (Fig. 3A, 3F). All gene images meeting the quality criteria in the re-
registered data set with mean pixel intensity< 15 in one region and with a differential pixel in-
tensity of> 15 between the regions were selected for manual validation. We supplemented this
search with an ABA differential expression search [34, 36] (Target structure: Parasubiculum,
Contrast structure: Medial Entorhinal Cortex), with an expression threshold of 3.5, which iden-
tified an additional 8 genes that demarcated the dorsal border of the MEC.

Identification of layer-specific and differentially expressed (DE) genes (Fig. 4). Genes
were defined as layer-specific if they show no consistent expression in other MEC layers or dif-
ferentially expressed (DE) if they show substantially higher expression in at least one layer than
in another. Exact criteria for identification of layer-specific and DE genes are as follows.

(1) Comparison of laminar regions within the re-registered ABA dataset. Layers were de-
fined using the composite central and adjacent lateral reference images (S4A Fig.). We primari-
ly used data from the central reference image, only using information from the lateral plane
when no central image was available. Since layers possess multiple types of cells that may them-
selves differentially express genes, we compared both average expression across layers, and the
distribution of high-intensity expression. For each image a high-intensity pixel was defined as
having intensity�mean + 2 x S.D of all pixels in the MEC. The absolute pixel intensity
(Lxabs = Lxrel x 3 x MECmean, where x refers to layer) and proportion of high-intensity pixels
were then calculated for each of the layers II, III and V/VI. Relative laminar mean intensity
(Lxrel) and relative proportion of high-intensity pixels (Lxprop) were calculated by dividing
layer measures by their sum. We also identified the first (Lmax = maximum of (LIIrel + LIIprop,
LIIIrel + LIIIprop, LVrel + LVprop)) and second highest expressing layers (Lmid (not Lmin or
Lmax)). We then calculated an absolute mean pixel intensity difference between these layers
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(Lmaxdiff = ((Lmaxrel-Lmidrel)
2 x Lmaxabs / 255) x 30) and the joint expression of the two high-

est expressing layers (Lmaxabsjoint = ((Lmaxrel + Lmidrel−Lminrel)
2 x Lmaxabs / 255) x 30). These

values acted to penalize low absolute pixel intensities. We did not initially distinguish layers V
and VI as the border between these layers is not clearly defined in the sagittal plane. Only genes
with a mean overall pixel intensity� 1 and mean pixel intensity� 2 in at least one layer
were evaluated.

To quantify laminar differences in expression we calculated patterning scores (PS) as
follows:

1. We assigned weights to the measures relative intensity (wrel = 0.4), relative proportion of
high-intensity pixels (wprop = 0.5) and absolute pixel intensity (wabs = 1- (wrel + wprop)). If
the image had no high-intensity pixels, wrel = 0.9.

2. We calculated a PS for single layer enrichment: PSsingle = wrel x Lmaxrel + wprop x Lmaxprop
+ wabs x min([Lmaxabs,1])

3. We calculated a PS for joint layer enrichment: PSjoint = wmean x (Lmaxrel + Lmidrel) + wprop

x (Lmaxprop + Lmidprop) + wabs x min([Lmaxabsjoint,1])

Genes with PSsingle � 0.65 or PSjoint � 0.88 (n = 1,314) were marked as candidates for DE
genes, including the subset of layer-specific genes.

(2) Cross correlation of genes within the registered data set. We also used the re-registered
data set to find genes with similar patterns of intensity to genes identified through differential
laminar expression, but that may have been missed in the previous analysis due to their occu-
pation of very small areas. Using a SciPy cross-correlation function (Alistair Muldal:https://
github.com/oleg-alexandrov/projects/blob/master/fft_match/norm_xcorr.py), we used Nxph4
as the seed gene to find other layer VI genes andMrg1 as the seed to find other potential island
genes. To identify genes only expressed in the narrow VI layer, we compared a small dorsal re-
gion and searched only images with mean pixel intensity� 1 and< 5 that had a sum of squares
difference (SSD) of zero with the target gene. We checked images for the 30 genes with the
highest cross-correlation. For island genes, we searched using a small dorsal region including
layer II and checked the top 50 genes with mean intensity� 1 and SSD = 0.

(3) Identification of genes through ABA search tools. Since our aim was to make this re-
source as comprehensive as possible, we extended our search beyond our re-registered data set
to make use of ABA differential expression tools and knowledge of cortex-enriched genes [34,
101]. We initially identified strongly differentially expressed ‘seed’ genes through manual ex-
ploration using the ABA differential expression tool, Fine structure Annotation and Anatomi-
cal Gene Expression Atlas (AGEA; http://mouse.brain-map.org/agea) (total checked = 922).
Taking at least 8 genes with the strongest expression for each layer, we used the ABA Neuro-
Blast tool to identify all other genes with an expression correlation of at least 0.5 with any one
of these ‘seed’ genes in the retrohippocampal (RHP) region. This provided us with over 4,000
potential DE genes, but no clear indication of their laminar expression profile. We visually as-
sessed all those that did not have an image meeting the quality criteria in our re-registered
ABA data set (n = 959). For the identification of layer-specific genes we also scanned all those
that our analysis suggested had borderline differential expression (n = 163) or that had a Neu-
roBlast expression correlation greater than 0.7 (n = 1,288).

Given the potential for images to be poorly registered in both ABA and our re-registered
data set, we also visually inspected differentially expressed neocortical genes (n = 302) using
lists provided by [101](http://www.nature.com/nrn/journal/v8/n6/suppinfo/nrn2151.html)
and those annotated as having a ‘high’ specificity score in the Somatosensory cortex Annota-
tion on the ABA website (http://help.brain-map.org/download/attachments/2818169/
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SomatosensoryAnnotation.xls?version=1&modificationDate=1319171046372) [34, 36] to de-
termine whether they also showed laminar specificity in MEC.

(4) Visual validation. To minimize the number of false positives in the data, all candidate
layer-specific and DE genes were validated through visual inspection. Layer-specific genes were
confirmed as showing consistent expression in a single layer using the original ISH image and,
where possible, images in more lateral and medial planes. Genes with DE expression had to
show consistently higher expression in at least one layer than in another. For ABA re-registered
data, 703 / 1314 candidates could be added to the set of DE genes. An additional 4 genes with
layer-specific expression were identified using cross-correlation and an additional 36 DE in-
cluding 10 layer-specific genes using the cortex-enriched lists referred to above. The Neuro-
Blast data identified an additional 121 DE genes, 13 of which were layer-specific. During
manual validation of DE genes, we also recorded particular patterns of gene expression, includ-
ing island or inter-island expression and specific laminar expression within the deep layers.

To generate final lists of layer-specific genes, we included all genes visually validated as
layer-specific, independent of PS score. For DE genes, we included all layer-specific genes, all
genes in the re-registered ABA data set that had a single layer PS� 0.65 or joint PS� 0.88 and
that were visually assessed as strongly differentially expressed, and all genes acquired using
ABA tools and cortex layer-enriched lists that we validated as showing differential expression.
See S4B Fig. Layer-specific and DE genes showed consistent expression patterns across medio-
lateral sections (S6 Fig.).

Analysis of laminar similarities and differences between MEC and neocortex in ABA
data (Fig. 5). Taking the neocortical region used in our analysis of regional expression, we as-
sociated all pixel intensities for each gene image with a normalized location relative to the cor-
pus callosum (or subicular border for MEC) and the nearest point along the pial surface. For
all MEC layer-specific genes (S4C Fig.), we calculated mean pixel intensities at different nor-
malized locations throughout the three cortical regions (Fig. 5B). We plotted histograms by
binning the distances into 20 regions. Statistically significant differences in the laminar gene
list expression patterns were detected using Mixed Model Analysis in SPSS (v21) with an un-
structured covariance matrix. Fixed effects were the list of genes, location and their interaction.
Random effects were the list of genes and location with image series as subject.

To test whether deep and superficial layer-specific expression patterns correspond between
MEC and neocortex, we used genes previously identified as having ‘high’ specificity in SS corti-
cal layers [34] (S5E Fig.) to divide the cortical regions into deep (layers V/VI) and superficial
(II-IV) regions (cf. [101]). We also used these genes to estimate an approximate border be-
tween visual and SS cortex. For each gene with mean pixel intensity� 2, we calculated the ratio
of pixel intensity in the deep region to the superficial region. If gene expression in MEC and vi-
sual or SS cortex corresponds, we would expect this ratio to be 1 for MEC deep layer-specific
genes and 0 for MEC superficial layer genes. To test this prediction, we subtracted the ratio for
each gene from the expected value and performed a MANOVA using SPSS (v21) with type of
MEC specificity as the between-subjects variable and the visual and SS results as dependent
variables. Post-hoc tests were performed with Tukey’s HSD. The percentage of genes that are
enriched in superficial or deep regions was calculated by including genes with a deep: superfi-
cial ratio of less than 0.4 or greater than 0.6 (50% difference). Genes with mean intensity< 2 in
the neocortical region were not included in the analysis.

To calculate the correlations between cortical layers across all ABA genes, we used the esti-
mated laminar boundaries described previously to generate binary array masks corresponding
to each layer. Pixel intensities were averaged across all pixels within laminar boundaries then
Pearson correlation coefficients calculated.
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Functional analysis for genes with laminar organization (Fig. 6).We used the GOElite
gene ontology tool [102] with recent versions of the GO OBO database and gene annotation
file formus musculus (24/1/2014) and Kyoto Encyclopaedia of Genes and Genomes (KEGG)
database [63] to extract all enriched terms. For the reference set for DE genes, all DE genes and
genes with weak differential or uniform expression and threshold mean intensity� 2 in MEC
(n = 9,057 Ensembl identifiers) were included. This ensured we were not simply selecting for
brain-enriched genes but for genes differentially expressed within the MEC. Terms were de-
fined as enriched if associated with a p value< 0.05 after a one-sided Fisher overrepresentation
test followed by Benjamini-Hochberg false discovery rate adjustment for multiple tests.

To reduce redundancy and identify clusters of meaningful GO and KEGG terms we calcu-
lated a kappa similarity measure (described in [103]) to identify terms sharing a higher propor-
tion of genes than chance. We then used hierarchical clustering (adapted from code written by
Nathan Salomonis: http://code.activestate.com/recipes/578175-hierarchical-clustering-
heatmap-python/) on the kappa similarity matrix to cluster terms with at least 5 genes and
fewer than 100 genes into groups. Within each cluster we then extracted all kappa similarity
scores. Only terms with less than modest overlap (kappa< 0.7) with a more significant term
and fewer than 100 genes were presented in the summary figure (Fig. 6A). Clusters were la-
belled using their most significant term. To establish the significance of the over or under re-
presentation of layer-specific genes in the selected lists we used R implementation of a 2-way
Exact Fisher test (fisher.test) followed by multiple corrections analysis (p.adjust.M). In heat-
plots, data are shown for images in the plane corresponding to the central reference image,
where available, or for the adjacent lateral plane.

Investigating dorsoventral differences in gene expression (Fig. 7). For analysis of RNA-
Seq data Cuffdiff 2 [58] was used to identify all differentially expressed genes with an FPKM of
at least 1 and difference in expression of at least 20% (log2(1.2) = 0.2630). Differences in the di-
rection of differential expression between genes with different layer-specific expression (Fig. 4)
were detected using ANOVA followed by post-hoc Tukey’s HSD tests, performed in R.

For analysis of ABA images dorsal and ventral regions were manually outlined using the
two primary custom reference atlases. Average pixel intensities within each region and across
central and the adjacent lateral sections containing MEC were calculated for each ABA image
series. Only ABA images with a threshold mean intensity� 2 in the dorsal or ventral region
were included in the differential expression analysis. We used a threshold log fold enrichment
of 0.2630 (increase of 20%) to define differential dorsoventral expression, the same value used
for RNA-Seq.

For comparison between Cuffdiff 2 analysis and ABA analysis, Cuffdiff 2 results were
matched to ABA Entrez values or gene official symbols using the Ensembl Biomart tool. Two
comparisons were made: one specific to ABA layer-specific genes, and the other only including
genes determined to be significantly differentially expressed according to RNA-Seq data.

Functional analysis for dorsoventral genes (Fig. 8). A similar method was used to that de-
scribed above for laminar genes. For the reference set we included all genes with an FPKM� 1
in MEC that had a sufficient number of alignments in a locus (measured using Cuffdiff 2) to be
tested for differential expression (Ensembl identifiers = 13,954).

To estimate the presence of gradients in MEC in re-registered ABA data, we divided the
MEC region in both the central and adjacent lateral planes into 5 subregions along the dorso-
ventral axis. For each layer and subregion, we calculated the mean pixel intensity and used
these values to calculate linear regression gradients (SciPy stats.linregress) for each layer and
across the whole MEC. For heatmaps, genes were sorted according to this gradient and color-
coded according to whether their dorsoventral difference was sufficiently large for them to be
defined as D>V or V>D-expressed in the analysis performed in Fig. 6.
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Disease analysis of layer-patterned genes (Fig. 9). Genes involved in pathways for Alzhei-
mer’s disease, Huntington’s disease and Parkinson’s disease were acquired from the KEGG
pathway database [63]. This tool contains manually drawn pathways of molecules known to be
perturbed, either through environment or genes, in certain diseases, as well as molecules that
are therapeutic markers or diagnostic markers. Autism-related genes include mouse genes for
which the human homolog has a score of 1–4 (high-low evidence) or syndromic in the SFARI
AutDB database (n = 238 (Ensembl)). Schizophrenia genes include the results of a computa-
tional analysis of meta-analysis results from [64, 104] (n = 175 (Ensembl)). Epilepsy genes in-
clude those associated with any form of epilepsy in the Disease database (n = 90 (Ensembl))
[67]. Genes that have been causally associated with early or late-onset AD were obtained from
key reviews and meta-analyses in the AD literature [69, 72, 105].

To generate lists of layer-enriched genes we took all DE genes and identified those visually
validated as being enriched in particular layers. We computed the significance of over or
underrepresentation of disease genes amongst layer-enriched genes using Fisher’s Exact
Test in R, as described for gene ontologies in Fig. 6. To determine the associated ontology
terms of all AD pathway genes with at least moderate layer enrichment we used a PSsingle
threshold of 0.60.

Supporting Information
S1 Fig. Generation of high-resolution data set from ABA ISH data. Related to Fig. 1.
(A) Pipeline for image processing stages involved in extracting pixel intensity information
from images in the Allen Brain Atlas (ABA): (1) Raw ISH and corresponding expression im-
ages were downloaded from the ABA using the API http://www.brain-map.org/api/index.html
(see Materials and Methods). (2) Raw ISH images were pre-processed to improve registration
performance. This involved scaling (to approx. 10µm per pixel), background subtraction,
thresholding, median filtering and Gaussian blurring. The cerebellar region was removed using
object segmentation. (3) Generation of the reference images (Imref). For each ML region 15–20
images were chosen (central images shown here). These images were manually aligned using
rigid registration (ImageJ) to a template image (red dotted line), then registered using non-line-
ar deformation. Imref was defined as the median of the resulting images (lower). (4) Images
were classified using an SVM with a linear kernel into groups based on their medio-lateral ex-
tent. (5) The registration procedure. For each gene a registration transformation is calculated.
The effect of registration is shown for 2 example ISH images before and after 1-to-1 registration
using MIRT to Imref

C, the median image produced in (4). (6) The registration transformation
generated by MIRT is applied to the corresponding expression image. (7) Image quality was as-
sessed using several metrics. 1. The mutual information-related (MI) score reached during reg-
istration reflects the similarity between the reference image and registered image. Images with
poor MI scores were flagged (red region) and only included in subsequent analyses after visual
checks. 2. An SVM was trained on poor images and high quality images. The resulting model
was then applied to unchecked images and a probability of being erroneous assigned. Those
with a probability of being erroneous of greater than 0.13 were also flagged (red) and only in-
cluded after checking. (8) Pixel intensity data were extracted from images using custom-made
python scripts. (9) Data from ABA images were compared to RNA-Seq analysis data. Images
show examples of the brain slices from which dorsal and ventral regions were removed and
used for RNA-Seq analysis. Arrows indicate the cuts marking the border between the dorsal
and ventral region. (B) Table summarizing the number of images (unique genes) satisfying the
quality criteria (Materials and Methods) in the two planes used for analysis: C and L1.
(TIFF)
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S2 Fig. Gene expression differences across brain regions. Related to Fig. 2. (A) Scatter plot of
absolute mean pixel intensity (mINT) in neocortex as a function of mINT in MEC across all
genes in the ABA re-registered data set (red: slope = 0.918, r = 0.958, p< 2.2 × 10-16). (B) Re-
sults of linear regression used to determine the relationship between expression in MEC and
neocortex (red), hippocampus (green), amygdala (magenta), piriform cortex (blue) and cau-
date putamen (cyan). Shaded regions indicate the areas in which 95% of data points fall.
(C) Heat plots show the distribution of relative mean pixel intensities in MEC compared with
other brain regions (mINTnorm

MEC). A result of 1 indicates that expression is unique to MEC,
0.5 indicates equal expression and 0 indicates expression only in the other brain region. Only
genes with mINTMEC � 5 are shown. MEC-enriched genes are defined as those where mIN-
Tnorm

MEC � 0.8. (D) Plot shows the effect of fold-change threshold on the number of genes de-
tected as being enriched in MEC compared with each other region. At thresholds of 3.5, 4 and
4.5 the numbers of genes that distinguish MEC from each area are: Neo [149, 118, 96], Hip [73,
54, 43], Amygdala [354, 318, 288], Caudate [1253, 1162, 1057], Piriform [98, 93, 81]. (E) Ex-
pression images for examples of genes with different expression patterns in all regions except
MEC. Within MEC this expression is overlapping (upper), partially overlapping (mid) or re-
stricted to different layers (lower). Overlay images were created by taking 8-bit grayscale origi-
nal images for each, performing contrast enhancement (1% saturated pixels) then smoothing
for viewing purposes using ImageJ functions. Images were merged using the ‘Color: Merge’
function and brightness/contrast adjusted where appropriate. White boxed outline regions in
MEC shown at higher magnification. (F) Bar chart showing the relative numbers of pairs of
genes, out of all pairs identified as having potentially overlapping gene expression in MEC but
not other regions, manually sorted according to particular pattern of overlap or with additional
non-specific expression in other regions.
(TIFF)

S3 Fig. Gene expression-based border demarcations throughout the medio-lateral extent.
Related to Fig. 3. (A-D) Example cropped ISH images downloaded from the ABA API (see
Materials and Methods) are shown for genes with expression patterns that distinguish the
(A-B) dorsal and (C-D) ventral borders of the MEC. Images corresponding to the central refer-
ence image are shown adjacent to more lateral and more medial images. (A) Dorsal-MEC+ve,
(B) Dorsal-Para, (C) Ventral-MEC+ve and (D) Ventral-MEC-ve.
(TIFF)

S4 Fig. Layer-specific gene expression in MEC. Related to Fig. 4. (A) Schematic shows the
central reference image overlaid with ROIs corresponding to layers II (red), III (green) and
V/VI (blue) of MEC. (B) Table summarizes the number of layer-specific and differentially ex-
pressed (DE) genes detected. (C-G) Example cropped ISH images downloaded from the ABA
API (see Materials and Methods) are shown adjacent to images of the mean expression pattern
of genes with images in the central plane of the re-registered ABA data set. Patterns include:
(C) Layer-specific gene expression in each of the three major laminar regions. (D) Deep-layer
specific patterns including layer Va, layer Vb and layer VI. (E) Enriched expression in particu-
lar deep layers or combinations of deep layers. (F-G) Sub-laminar expression patterns within
MEC layer II, including island and inter-island patterns. (F) All DE genes with this pattern.
(G) Layer II-specific genes.
(TIFF)

S5 Fig. Neocortical expression patterns of MEC layer-specific genes. Related to Fig. 5.
(A) Normalized intensity of MEC layer-specific genes plotted as a function of distance from
the inner white matter border in MEC, visual or SS cortex. There is a main fixed effect of MEC
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layer-specific group on normalized neocortical expression (Mixed Model Analysis, F = 28.8,
p< 0.001). For each gene, pixel intensities were normalized to the sum across the whole region.
Error bars represent standard error of the mean. (B) Plots show the distribution of absolute
pixel intensities for individual MEC layer-specific genes in each region (LII: upper, red, LIII:
mid, green, LV/VI: lower, blue). (C) Table showing summary statistics for differences in neo-
cortical expression pattern. (D) Examples of section-wide images downloaded from the ABA
API (see Materials and Methods) of genes with layer-specific expression patterns. (E) As
Fig. 5C and (A), for genes enriched in SS layer II/III, IV, V, VIa and VIb.
(TIFF)

S6 Fig. Consistent layer-specific gene expression throughout the medio-lateral extent.
Related to Figs. 4 and 5. (A-B) Images show the mean expression patterns of genes in the re-
registered ABA data set that show (A) layer-specific or (B) layer-enriched gene expression in
each of the three major laminar regions. Images are shown for the central (C), adjacent lateral
(L1) and adjacent medial (M1) sections. (C) Example ISH images at different mediolateral ex-
tents are shown for layer-specific genes in layers II, III and V/VI.
(TIFF)

S7 Fig. Dorsoventral gradients in MEC. Related to Fig. 7. (A) Histogram shows the distribu-
tion of differences in dorsoventral expression (log2 (mINT Ventral / mINT Dorsal)) for all
genes (black) with mINT� 2 in the ABA re-registered data set. Colored boxes indicate the
scores corresponding to genes classified with differential expression: D>V (purple) or V>D
(orange). (B) The log fold change in ABA mINT between ventral and dorsal regions is plotted
as a function of log fold change in RNA-Seq mean FPKM for genes found with Cuffdiff 2 to
have statistically significant (FDR< 0.05) dorsoventral differences in RNA-Seq mean FPKM.
Colors represent number of genes. The linear regression line is indicated in magenta. (C)
Table shows dorsoventral differences in ABA and RNA-Seq expression for all layer-specific
genes identified as D>V or V>D according to Cuffdiff 2 analysis.
(TIFF)

S1 Dataset. ABA and RNASeq results in Fig. 1.
(XLS)

S2 Dataset. Brain region data for Fig. 2.
(XLS)

S3 Dataset. Border genes for Fig. 3.
(XLS)

S4 Dataset. Differentially expressed and layer-specific genes in Fig. 4.
(XLS)

S5 Dataset. Gene expression in neocortical layers in Fig. 5.
(XLS)

S6 Dataset. Gene ontology terms for differentially expressed genes in Fig. 6.
(XLS)

S7 Dataset. Genes with dorsoventral gradients in Fig. 7.
(XLS)

S8 Dataset. Gene ontology terms for genes with dorsoventral gradients in Fig. 8.
(XLS)
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S9 Dataset. Gene lists for disease-associated genes in Fig. 9.
(XLS)

S10 Dataset. Combinatorial gene expression in MEC for S2 Fig.
(XLS)
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