

Edinburgh Research Explorer

Algebraic Effects and Effect Handlers for Idioms and Arrows

Citation for published version:
Lindley, S 2014, Algebraic Effects and Effect Handlers for Idioms and Arrows. in Proceedings of the 10th
ACM SIGPLAN Workshop on Generic Programming. ACM, New York, NY, USA, pp. 47-58. DOI:
10.1145/2633628.2633636

Digital Object Identifier (DOI):
10.1145/2633628.2633636

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Proceedings of the 10th ACM SIGPLAN Workshop on Generic Programming

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 05. Apr. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/43712287?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1145/2633628.2633636
https://www.research.ed.ac.uk/portal/en/publications/algebraic-effects-and-effect-handlers-for-idioms-and-arrows(d16d3628-285c-4d66-8035-3c126f02da8d).html

Algebraic Effects and Effect Handlers for Idioms and Arrows

Sam Lindley
The University of Edinburgh

Abstract
Plotkin and Power’s algebraic effects combined with Plotkin and
Pretnar’s effect handlers provide a foundation for modular pro-
gramming with effects. We present a generalisation of algebraic
effects and effect handlers to support other kinds of effectful com-
putations corresponding to McBride and Paterson’s idioms and
Hughes’ arrows.

1. Introduction
In previous work [7], we advocated Plotkin and Power’s algebraic
effects [19, 20] and effect handlers [21] as a foundation for modular
programming with effects. We introduced a statically typed effect
handler calculus λeff along with a sound, terminating, small-step
operational semantics, and used it as the basis for practical imple-
mentations of handlers in Haskell, ML, and Racket.

Our calculus λeff (and standard algebraic effects and handlers)
provide a means for programming with monadic effects [16]. In this
work, we adapt λeff to accommodate other kinds of effectful com-
putations corresponding to McBride and Paterson’s idioms (also
known as applicative functors) [15] and Hughes’ arrows [6]. The
resulting calculus, λflow, extends λeff with flow effects, which ex-
plicitly track dependencies between the results of an effectful oper-
ation and subsequent effectful computation, allowing us to encode
idiom and arrow computations. Crucially, λflow adds support for
effect handlers for idiom and arrow computations.

One reason arrow computations and idiom computations are of
interest is that they admit more instances than monadic computa-
tions. Every monad is an arrow and every monad is also an id-
iom. But there exist arrows that are not monads and idioms that
are not monads. For instance, non-monadic arrows are often used
in functional reactive programming, and non-monadic idioms in
parser combinators, in both cases providing more space and time
efficient implementations than monadic alternatives.

The λflow calculus combines the benefits of λeff (modular sup-
port for handling multiple effects) and our earlier work on the arrow
calculus [11, 12] (providing a uniform foundation for programming
with idioms, arrows, and monads with a single effect).

Just as λeff gave us a firm basis for implementing practical im-
plementations of standard effect handlers, we hope that λflow can
provide a firm basis for implementing practical implementations of

[Copyright notice will appear here once ’preprint’ option is removed.]

idiom and arrow handlers, and in particular support modular effect-
ful programs, combining idiom, arrow, and monad computations.

Our main contributions are as follows:

• We introduce flow effects as a means for distinguishing abstract
idiom, arrow, and monad computations.

• We provide a uniform foundation for programming with id-
ioms, arrows, and monads with multiple effects, generalising
both λeff and the arrow calculus.

• A direct consequence of our formulation is that the inclusions
between abstract idiom and abstract arrow computations, and
abstract arrow and abstraction monad computations of Lindley
et al. [12] are strict. Abstract monad programs are strictly more
expressive than abstract arrow programs, which are in turn
strictly more expressive than abstract idiom programs.

• We introduce idiom and arrow handlers, as a generalisation of
standard monadic effect handlers.

• We give an embedding of arrow calculus (and its extensions to
support monads and idioms) into λflow.

The remainder of the paper is structured as follows. Section 2
introduces the key ideas of our approach by first presenting abstract
effectful computations as computation trees, and then describing
flow effects in terms of computation trees. Section 3 describes λeff ,
first focusing on abstract computations, and then on effect handlers.
Section 4 presents flow effects and Core λflow, the fragment of
λflow for expressing abstract idiom, arrow, and monad computa-
tions. Section 5 describes handlers in λflow for idiom, arrow, and
monad computations along with soundness results for λflow. Sec-
tion 6 gives an embedding of the arrow calculus into λflow. Sec-
tion 7 discusses related work. Section 8 discusses future work.

2. Effects as Computation Trees
2.1 What is an Effectful Computation?
Plotkin and Power [19, 20] introduced algebraic effects for mod-
elling the semantics of effectful computations. They gave an ab-
stract categorical treatment. We will be much more concrete, and
after our initial example consider only free algebras.

An algebraic effect is given by a signature of operations along
with a set of equations on those operations. For example, we might
define an algebraic effect for read only boolean state with the
following signature:

{get : 1→ Bool}

and equations:

get()(get()(p, q), r) = get()(p, r) = get()(p, get()(q, r))
get()(p, p) = p

Note that when specifying equations in the algebraic approach,
operations are typically written in a continuation passing style

1 2014/5/16

(CPS), exposing their algebraic structure. Thus get()(p, q) corre-
sponds to a term that a functional programmer would typically
write in direct style as let x ← get () in if x then p else r. This
continuation passing style corresponds directly to a view of alge-
braic computations as trees, such that:

• nodes are labelled with operations;
• there is an edge labelled with each possible return value in the

domain of the operation associated with a parent node;
• each such edge is connected to the corresponding continuation

of the computation;
• leaves are labelled with final return values; and
• trees are quotiented modulo the equations.

For example, the CPS term get()(get()(1, 2), 3) is given by the
computation tree:

get ()

get ()

1

True

2

False

True

3

False

which by the first equation is equivalent to the CPS term get()(1, 3),
whose computation tree is:

get ()

1

True

3

False

Following our previous work [7] on handlers for algebraic ef-
fects, we consider only algebraic effects for which there are no
equations. We call these abstract effects and algebraic computa-
tions over them abstract computations. Thus an abstract computa-
tion is a plain unquotiented tree.

Abstract effects are closely related to monads, which Moggi
successfully advocated [16] as a tool for modelling the semantics
of effectful computation. Indeed, an abstract effect over an effect
signature Σ is exactly the free monad construction over the functor
generated by Σ [22].

2.2 Idioms are Oblivious, Arrows are Meticulous, Monads
are Promiscuous

In previous work [12], we analysed the relative expressiveness
of abstract idiom, arrow, and monad computations, proving that
abstract idiom computations are less expressive than abstract arrow
computations, which in turn are less expressive than abstract monad
computations. We also gave an informal characterisation of the
differences in terms of control flow and data flow, which we will
now develop into a crisp characterisation in terms of constraints on
abstract computation trees.

We say that the data flow is dynamic if the value passed to an
operation can depend on the results of prior operations. We say
that the control flow is dynamic if which operation to invoke (or
whether to invoke an operation at all) can depend on the results
of prior operations. The nature of data flow and control flow for
idioms, arrows, and monads is given in Table 1.

Idioms are entirely static. Arrows have static control flow but
dynamic data flow. Monads are entirely dynamic.

control flow data flow
idiom static static
arrow static dynamic
monad dynamic dynamic

Table 1. Flow for Idioms, Arrows, and Monads

Now we consider how this characterisation relates to abstract
computation trees. First let us define some effect signatures:

GB = {get : 1→ Bool
beep : 1→ 1 }

GP = {get : 1 → Bool
put : Bool→ 1 }

Monadic trees and abstract computation trees are the same
thing, as monads impose no restrictions on dependencies. For ex-
ample, the CPS term, noisey = get(True, beep(False)) represents
monad tree:

get ()

True

True

beep ()

False

()

False

Arrow trees are those monadic trees for which the control
flow is static. Concretely, this means that the tree must be com-
pletely balanced, and at each level of the tree each node must
be labelled with the same operation (though the parameters to
the operations may differ). For example, the CPS term, flip =
get(putFalse(True), putTrue(False)) represents the arrow tree:

get ()

put False

True

()

True

put True

False

()

False

Idiom trees are those arrow trees for which not only is the con-
trol flow static, but so is the data flow. Concretely, this means
at each level of the tree the parameters of the operations on
each node are identical. For example, the CPS term, reset =
get(putFalse(True), putFalse(False)) represents the idiom tree:

get ()

put False

True

()

True

put False

False

()

False

Remark Just as abstract monadic effects correspond exactly with
the free monad construction over an effect signature, so abstract
arrow effects correspond exactly with the free arrow construction

2 2014/5/16

over an effect signature, and abstract idiom effects correspond
exactly with the free idiom construction over an effect signature.

Remark An obvious omission from Table 1 is the case where
control flow is dynamic, but data flow is static. We are not aware
of a corresponding structure in the literature, and it seems rather
strange to have dynamic control flow without dynamic data flow
as well, so we will refer to such computations as strange. We can
give a characterisation of strange computations in terms of abstract
computation trees.

Strange trees are those abstract computation trees for which
control flow is dynamic, but data flow is static. Concretely, this
means that the tree must be completely balanced, and at each level
of the tree the parameters of the operations on each node must be
identical.

Remark From the structure of abstract computation trees, it is
apparent that there is one other place that results may flow to: the
leaves of the tree. We refer to this kind of flow as memory. We say
that the memory is dynamic if the values at the leaves depend on the
results of prior computations and static if it does not. Idiom, arrow,
and monad computations all have dynamic memory. One might
conceive of distinguishing other kinds of effectful computation that
have static memory. The leaves of such computations are all the
same; hence they must always have the same return value. This
notion does not seem particularly useful, as we can always achieve
the same behaviour by considering computations with unit return
type paired up with the constant return value.

An idiom tree that has static memory flow is a monoid tree. It
amounts to a free monoid. For example, the CPS term reset′ =
get(putFalse(True), putFalse(True)) has the monoid tree:

get ()

put False

True

()

True

put False

True

()

False

Figure 2.2 illustrates the decomposition of each of our example
trees into control flow, data flow, and memory flow. Dynamic flow
is represented as a tree. Static flow is represented as a list.

2.3 Flow Effects
In order to distinguish static an dynamic control and data flow, we
will introduce special effect annotations which we call flow effects.
The two flow effects are c, for dynamic control flow, and d, for
dynamic data flow. We explain how they fit into λflow in Section 4.

3. An Effect Calculus
As a foundation for constructing a calculus of effects and handlers
for idioms, arrows, and monads, we start with the λeff -calculus [7],
which provides an effect type system and operational semantics
for standard monadic algebraic effects and effect handlers. In this
section, we recapitulate the details of λeff .

3.1 Abstract Effects
In this subsection, we introduce Core λeff , the fragment of λeff that
describes abstract effects in isolation from their handlers. This sub-
language allows us to write abstract computations over an effect
signature. We deviate slightly from our previous presentation [7].

Apart from superficial differences in lexical syntax, we omit com-
putation products and unit, as they are orthogonal to the current
work, and we adopt direct-style (as opposed to CPS) operations as
primitive.

The syntax of types is as follows:

(values) A,B ::= 1 | A1 ×A2

| 0 | A1 +A2

| {C}E
(computations) C ::= [A] | A→ C
(effect signatures) E ::= {op : A→ B}] E | ∅
(environments) Γ ::= x1 : A1, . . . , xn : An

Following Levy’s call-by-push-value [9], types are partitioned into
value types (A,B) and computation types (C). The primary benefit
we gain from a call-by-push-value approach is that it makes an
explicit distinction between supplying an argument to a function
and forcing a suspended computation. Effects are associated only
with the latter.

Value types (V,W) comprise unit (1), product (A1 × A2),
empty (0), sum (A1 + A2), and thunk types ({C}E). In {C}E ,
the computation type C is allowed to perform effects in the effect
signature E. Computation types (C) comprise returners ([A]),
which yields values of typeA, and function types A→ C, from an
argument of type A to a computation of type C.

An effect signature is a collection of operation signatures {opi :
Ai → Bi}i. Type environments (Γ) are standard.

The syntax of terms is as follows:

(values) V,W ::= x | () | (V1, V2) | inji V | {M}
(computations)

M,N ::= split(V, x1.x2.M) | case0(V)
| case(V, x1.M1, x2.M2) | V !
| return V | let x ←M in N
| λx .M |M V
| op V

As with types, the terms are partitioned into value terms and com-
putation terms. Value terms comprise variables (x), unit (()), pairs
((V1, V2)), injections (inji V), and thunks ({M}). Value terms are
inert, in that all computation takes place in computation terms.
Thus, all of the value constructs apart from variables are intro-
duction forms. Computation terms comprise elimination forms
for pairs (split(V, x1.x2.M)), the empty type (case0(V)), sum
types (case(V, x1.M1, x2.M2)), and thunks (V !) , introduction
(return V) and elimination (let x ←M inN) forms for returners,
introduction (λx .M) and elimination (M V) forms for functions,
and operation applications (op V).

The typing rules for Core λeff are given in Figure 2. The value
judgement Γ ` V : A asserts that value term V has type A in
type environment Γ. The computation judgement Γ `E M : C
asserts that computation term M has type C with effects E in type
environment Γ. The small-step operational semantics for Core λeff

is given in Figure 3.

Syntactic Sugar

M ;N ≡ let x ←M in N, x fresh
Bool ≡ 1 + 1
True ≡ inj1 ()
False ≡ inj2 ()

if V thenM else N ≡ case(V, x .M, y .N), x, y fresh
¬V ≡ if V then return True else return False

Examples Here are the four example abstract computations from
the introduction, written as λeff terms.

3 2014/5/16

control flow data flow memory flow

noisey

get

True

beep

()

False
()

True

()

()

False

True

True

False

()

False

flip

get

put

()

False

()

True

True

()

False

True

()

True

False

()

False

reset

get

put

()

False

True

()

True

False

()

False

reset′

get

put

()

False

True

Figure 1. Decomposing Computation Trees

Γ ` V : A

VAR
(x : A) ∈ Γ

Γ ` x : A

UNIT

Γ ` () : 1

PAIR
Γ ` V1 : A1 Γ ` V2 : A2

Γ ` (V1, V2) : A1 ×A2

INJi
Γ ` V : Ai

Γ ` inji V : A1 +A2

THUNK
Γ `E M : C

Γ ` {M} : {C}E

Γ `E M : C

SPLIT
Γ ` V : A1 ×A2

Γ, x1 : A1, x2 : A2 `E M : C

Γ `E split(V, x1.x2.M) : C

CASEZERO
Γ ` V : 0

Γ `E case0(V) : C

CASE
Γ ` V : A1 +A2

Γ, x1 : A1 `E M1 : C
Γ, x2 : A2 `E M2 : C

Γ `E case(V, x1.M1, x2.M2) : C

RETURN
Γ ` V : A

Γ `E return V : [A]

LET
Γ `E M : [A]

Γ, x : A `E N : C

Γ `E let x ←M in N : C

ABS
Γ, x : A `E M : C

Γ `E λx .M : A→ C

APP
Γ `E M : A→ C

Γ ` V : A

Γ `E M V : C

FORCE
Γ ` V : {C}E
Γ `E V ! : C

OP
(op : A→ B) ∈ E

Γ ` V : A

Γ `E op V : [B]

Figure 2. Typing Rules for Core λeff

4 2014/5/16

(β.×) split((V1, V2), x1.x2.M1) −→M [V1/x1, V2/x2]
(β.+) case(inji V , x1.M1, x2.M2) −→Mi[V/xi]
(β.{}) {M}! −→M

(β.[]) let x ← return V inM −→M [V/x]
(β.→) (λx .M) V −→M [V/x]

M −→ N

E[M] −→ E[N]

E ::= [] | E V | let x ← E in N

Figure 3. Operational Semantics for Core λeff

noisey : {[Bool]}GB
noisey = {let x ← get() in if x then return x

else beep(); return x}

flip : {[Bool]}GP
flip = {let x ← get() in let y ← ¬x in put(y); return x}

reset : {[Bool]}GP
reset = {let x ← get() in put(False); return x}

reset′ : {[Bool]}GP
reset′ = {let x ← get() in put(False); return True}

3.2 Effect Handlers
Core λeff allows us to write abstract computations over arbitrary
effect signatures. An effect handler provides an interpretation of
an abstract computation.

We extend the grammar for Core λeff as follows.
Handler types

R ::= A E⇒E′
C

Handlers

H ::= {return x 7→M} | H] {op p k 7→ N}
Handling

M ::= · · · | handleM withH

A handler type A E⇒E′
C interprets a returner computation of

type [A] with effects E as a computation of type C with effects
E′. A handler is defined by a return clause return x 7→ M and a
collection of operation clauses {opi p k 7→ Ni}i. The return clause
defines how to handle final return values. The returned value is
bound to the variable x in M . The operation clauses define how
to handle each operation. The operation parameter is bound to p,
and the continuation is bound to k in N . Providing direct access
to the whole continuation allows it to be used non-linearly, which
is important for implementing effects such as exceptions, and non-
deterministic choice, for instance.

For any handler:

H = {return x 7→M}] {opi p k 7→ Ni}i
we define the action of H on return values as follows:

H(return, V) = M [V/x]

and the action of H on operations handled by H as follows:

H(opi, V,W) = Ni[V/p,W/k]

The typing rules for handlers are given in Figure 4. The opera-
tional semantics for handlers is given in Figure 5.

Γ `E M : C

. . .

HANDLE

Γ `E M : [A] Γ ` H : A E⇒E′
C

Γ `E′ handleM withH : C

Γ ` H : A E⇒E′
C

HANDLER
E = {opi : Ai → Bi}i
H = {return x 7→M}] {opi p k 7→ Ni}i
[Γ, p : Ai, k : {Bi → C}E′ `E′ Ni : C]i

Γ, x : A `E′ M : C

Γ ` H : A E⇒E′
C

Figure 4. Typing Rules for Handlers

Example As a simple example, consider a handler for boolean
state:

HGP = return x 7→ λs.return x
get () k 7→ λs.k s s
put s k 7→ λs′.k () s

We can apply HGP to flip, for instance:

handle flip! withHGP

This yields a function of type Bool → [Bool] that flips its argu-
ment.

Remark In essence, the typeAE⇒E′
C behaves like a suspended

function of type {{[A]}E → C}E′ . Indeed we can reify a handler
H as a value as follows:

Γ ` H : A E⇒E′
C

Γ ` {λx .handle x ! withH} : {{[A]}E → C}E′

3.3 Effect Forwarding
In our prior work [7], we considered a number of practical exten-
sions and variations on handlers, including shallow handlers, pa-
rameterised handlers, open handlers, effect forwarding, and effect
polymorphism. Perhaps the most important extension is effect for-
warding in conjunction with open handlers.

The idea is that an open handler handles all of the operations
explicitly specified by its type, but it also allows other operations,
which are forwarded to be handled by an outer handler. The big
advantage of open handlers is that they compose. We might, for
instance, define an open handler for state and an open handler
for exceptions. We can then handle a computation that uses state,
exceptions, and possibly other effects as well by first handling it
with the state handler, and then handling the resulting computation
with the exception handler, or vice-versa.

It is straightforward to adapt λeff to support open handlers. The
typing rule for handlers becomes:

OPENHANDLER
E = E′ ⊕ {opi : Ai → Bi}i
H = {return x 7→M}] {opi p k 7→ Ni}i
[Γ, p : Ai, k : {Bi → C}E′ `E′ Ni : C]i

Γ, x : A `E′ M : C

Γ ` H : A E⇒E′
C

The only change to the original rule is that the input effects are now
E′ ⊕ E instead of just E, where E′ ⊕ E is the extension of E′ by
E (where any clashes are resolved in favour of E).

As far as the semantics goes, we just need to extend the action
of a handler to apply to operations without an operation clause as

5 2014/5/16

(handle.[]) handle (return V) withH −→H(return, V)
(handle.op) handleD[op V] withH −→H(op, V, {λz.handleD[return z] withH})

(delimited computation contexts) D ::= [] | D V | let x ← D in N
(evaluation contexts) E ::= [] | E V | let x ← E in N | handle E withH

Figure 5. Operational Semantics for Handlers

follows:

H(op, V,W) = let x ← op V inW ! x , op 6= opi for any i

4. Flow Effects
In this section we introduce Core λflow, a variation of Core λeff

that supports abstract idiom, arrow, and monad computations. The
grammar of types is as follows:

(values) A,B ::= 1 | A1 ×A2 | 0 | A1 +A2 | {C}E
(computations) C ::= [A] | A→ C
(effect signatures) E ::= {op : A→ B}] E | {f}] E | ∅
(flow effects) f ::= c | d
(environments) Γ ::= Γ, x : A | Γ, x? : A | ·

The differences are highlighted in grey. As well as the usual opera-
tions, effect signatures can also include flow effects c and d, which
denote dynamic control and data flow. In λflow, type environments
distinguish between active (x? : A) and inactive (x : A) variables.
Only active variables can be directly used. The flow effects allow
inactive variables to be activated appropriately in order to realise
dynamic control and data flow.

We define two meta-operations on type environments. The first,
activation (Γ?), activates all of the variables in Γ.

·? = ·
(Γ, x : A)? = Γ?, x? : A

(Γ, x? : A)? = Γ?, x? : A

The second, flushing (Γ†), removes all of the inactive variables
from Γ.

·† = ·
(Γ, x : A)† = Γ†

(Γ, x? : A)† = Γ†, x? : A

The typing rules for Core λflow are given in Figure 6. The dif-
ferences from Core λeff are again highlighted in grey. The variable
rule restricts access to active variables.

VAR?

(x? : A) ∈ Γ

Γ ` x : A

The application rule, activates all variables in the argument value.

APP?

Γ `E M : A→ C Γ? ` V : A

Γ `E M V : C

This is always sound because β-reduction will always bind the
argument value to an inactive variable. The rule for returning a
value activates all variables in the value.

RETURN?

Γ? ` V : A

Γ `E return V : [A]

Activating the type environment supports dynamic memory flow.
In order to support dynamic data flow, we add a variant of the rule

for operations that only applies if the d effect is present.

OP?

d ∈ E (op : A→ B) ∈ E
Γ? ` V : [A]

Γ `E op V : [B]

As well as the standard return V construct, we introduce a special
return M construct, which returns the value returned by the pure
returner computation M .

RETURNC?

E′ ⊆ {c, d} Γ? `E′ M : [A]

Γ `E returnM : [A]

This rule allows final return values to be computed from any vari-
ables in the type environment using an arbitrary pure computation
(E′ can only include flow effects, so it must be pure). Similarly, we
introduce a special op M construct.

OPC?

d ∈ E (op : A→ B) ∈ E
E′ ⊆ {c, d} Γ? `E′ M : [A]

Γ `E op M : [B]

The rule for this construct allows operation parameter values to
be computed from any variables in the type environment using an
arbitrary pure computation. Finally, we include a special rule for
forcing, that only applies to thunked computations with the c and d
flow effects.

FORCE?

c, d ∈ E Γ? ` V : {C}E
Γ `E V ! : C

This rule activates all of the variables in a type environment when
forcing a thunk. It provides dynamic data flow in addition to dy-
namic control flow.

If c,d ∈ E then the following derivation applies:

Γ? `E M : C

Γ? ` {M} : {C}E
Γ `E {M}! : C

FORCE?
THUNK

Hence in the presence of all flow effects we can systematically
activate all variables in the type environment and λflow degenerates
into λeff .

Remark The reason why the data flow effect appears in the
(FORCE?) rule is because it allows unrestricted flow by activat-
ing the type environment.

The operational semantics for λflow is given in Figure 7. The
only differences from Core λeff (highlighted in grey) are the addi-
tional evaluation contexts for computing inside returned values and
operation parameters, and the rules (ret .ret) and (op.ret) for con-
verting the corresponding computations into values, once they have
finished computing.

6 2014/5/16

Γ ` V : A

VAR?

(x? : A) ∈ Γ

Γ ` x : A

UNIT

Γ ` () : 1

PAIR
Γ ` V1 : A1 Γ ` V2 : A2

Γ ` (V1, V2) : A1 ×A2

INJi
Γ ` V : Ai

Γ ` inji V : A1 +A2

THUNK
Γ `E M : C

Γ ` {M} : {C}E

Γ `E M : C

SPLIT
Γ ` V : A1 ×A2

Γ, x1 : A1, x2 : A2 `E M : C

Γ `E split(V, x1.x2.M) : C

CASEZERO
Γ ` V : 0

Γ `E case0(V) : C

CASE
Γ ` V : A1 +A2

Γ, x1 : A1 `E M1 : C
Γ, x2 : A2 `E M2 : C

Γ `E case(V, x1.M1, x2.M2) : C

RETURN?

Γ? ` V : A

Γ `E return V : [A]

LET
Γ `E M : [A]

Γ, x : A `E N : C

Γ `E let x ←M in N : C

ABS
Γ, x : A `E M : C

Γ `E λx .M : A→ C

APP?

Γ `E M : A→ C
Γ? ` V : A

Γ `E M V : C

FORCE
Γ ` V : {C}E
Γ `E V ! : C

OP
(op : A→ B) ∈ E

Γ ` V : A

Γ `E op V : [B]

OP?

d ∈ E (op : A→ B) ∈ E
Γ? ` V : A

Γ `E op V : [B]

FORCE?

c,d ∈ E
Γ? ` V : {C}E
Γ `E V ! : C

RETURNC?

E′ ⊆ {c, d}
Γ? `E′ M : [A]

Γ `E returnM : [A]

OPC?

d ∈ E (op : A→ B) ∈ E E′ ⊆ {c,d}
Γ? `E′ M : [A]

Γ `E op M : [B]

Figure 6. Typing Rules for Core λflow

(β.×) split((V1, V2), x1.x2.M1) −→M [V1/x1, V2/x2]
(β.+) case(inji V , x1.M1, x2.M2) −→Mi[V/xi]
(β.{}) {M}! −→M

(β.[]) let x ← return V inM −→M [V/x]
(β.→) (λx .M) V −→M [V/x]

(ret .ret) return (return V) −→ return V
(op.ret) op (return V) −→ op V

M −→ N

E[M] −→ E[N]

E ::= [] | E V | let x ← E in N | return E | op E

Figure 7. Operational Semantics for Core λflow

Examples In λflow, our examples become:

noisey : {[Bool]}GB∪{c,d}
noisey = {let x ← get() in {if x then return x

else beep(); return x}!}

flip : {[Bool]}GP∪{d}
flip = {let x ← get() in put(¬x); return x}

reset : {[Bool]}GP
reset = {let x ← get() in put(False); return x}

reset′ : {[Bool]}GP
reset′ = {let x ← get() in put(False); return True}

The type signatures of the first two examples have been aug-
mented with flow effects. The conditional in noisey has had to be
thunked in order to bring x into scope. The negation in flip is now
directly inside the parameter to put, which is well-typed because
negation is pure. Note that the λeff version of flip does not type
check in λflow because x is not in scope in the negation.

5. Handling Flow
As there are two flow effects (c and d), there are four possible kinds
of computation we might try to handle: monads ({c, d}), arrows
({d}), idioms (∅), and something strange ({c}). As λflow does not
have adequate support for writing computations of the latter kind,
we will only consider handlers for the other three kinds.

As we have the inclusions ∅ ⊆ {d} ⊆ {c, d}, monad handlers
can handle arrow and idiom computations, and arrow handlers can
handle idiom computations. However, there exist interpretations of
arrow computations that cannot be specified using monad handlers
and interpretations of idiom computations that cannot be specified
using arrow or monad handlers.

The typing rules for monad, arrow, and idiom handlers are
given in Figure 8. The operational semantics is given in Figure 9.
We will now describe in detail the design of the different kinds
of handler. We first note that each kind of handler has the same
syntax as standard handlers. The differences are in the typing rules,
operational semantics, and the handle constructs.

5.1 Monad Handlers
We already know how to handle arbitrary monadic computations.
The typing rules are the same as for standard handlers, except the
effects of a handled computation may additionally include arbitrary
flow effects. The operational semantics is unchanged. We annotate
monad handlers and monad handler types with a T subscript.

7 2014/5/16

Γ `E M : C

. . .

MONADHANDLE

Γ `E M : [A] Γ ` H : A E⇒C
T E

′

Γ `E′ handleT M withH : C

ARROWHANDLE

Γ†,∆ `E M : [A] Γ ` H : A E⇒E′
 G

Γ `E′ handle λ∆.M withH : G∆

IDIOMHANDLE

Γ†,∆ `E M : [A] Γ ` H : A E⇒E′
I G

Γ `E′ handleI λ∆.M withH : G∆

Γ ` H : A E⇒C
T E

′

MONADHANDLER
E = {opi : Ai → Bi}i ∪ {fj}j
H = {return x 7→M}] {opi p k 7→ Ni}i

[Γ, p : Ai, k : {Bi → C}E′ `E′ Ni : C]i Γ, x : A `E′ M : C

Γ ` H : A E⇒C
T E

′

Γ ` H : A E⇒E′
 G

ARROWHANDLER

X fresh E = {opi : Ai → Bi}i ∪ {fj}j c /∈ E
H = {return x 7→M}] {opi p k 7→ Ni}i

[Γ, p : {X → [Ai]}E′ , k : {G (X ×Bi)}E′ `E′ Ni : GX]i Γ, x : {X → [A]}E′ `E′ M : GX

Γ ` H : A E⇒E′
 G

Γ ` H : A E⇒E′
I G

IDIOMHANDLER

X fresh E = {opi : Ai → Bi}i ∪ {fj}j c, d /∈ E
H = {return x 7→M}] {opi p k 7→ Ni}i

[Γ, p : Ai, k : {G (X ×Bi)}E′ `E′ Ni : GX]i Γ, x : {X → [A]}E′ `E′ M : GX

Γ ` H : A E⇒E′
I G

Figure 8. Typing Rules for λflow Handlers

(handleT.[]) handleT (return V) withH −→H(return, V)
(handleT.op) handleT D[op V] withH −→H(op, V, {λx .handleD[return x] withH})
(handle .[]) handle (λ∆.return V) withH −→H(return, {λ∆.return V })
(handle .op) handle (λ∆.D[op V]) withH −→H(op, {λ∆.return V }, {handle (λ(∆, x).D[return x]) withH})
(handleI.[]) handleI (λ∆.return V) withH −→H(return, {λ∆.return V })
(handleI.op) handleI (λ∆.D[op V]) withH −→H(op, V, {handleI (λ(∆, x).D[return x]) withH})

(delimited computation contexts) D ::= [] | D V | let x ← D in N
(evaluation contexts) E ::= [] | E V | let x ← E in N

| handleT E withH | handle (λ∆.E) withH | handleI (λ∆.E) withH

Figure 9. Operational Semantics for λflow Handlers

8 2014/5/16

5.2 Arrow Handlers
The challenge of adapting conventional effect handlers to interpret
arrow computations is that each operation clause must bind a con-
tinuation representing the rest of the computation, but in general
this continuation need not inhabit the usual function space. Indeed,
a key feature of arrows is that they abstract over computations with
input and output in such a way that the input need not be provided
up-front. For instance, a state transformer [17] of type

{Bool→ [A]}{c,d} → [{Bool→ [B]}{c,d}]
is an arrow with input type A and output type B.

Recall that an effect handler is a compositional interpreter for an
abstract computation. An arrow handler provides an interpretation
of an arrow computation with an input and an output. Arrow han-
dler syntax is exactly the same as standard handler syntax. Arrow
handler types do however differ from standard handler types.

Arrow handler types have the following shape:

R ::= A E⇒E′
 G

where Γ is a type operator. The idea is that this maps a computation
M of type [A] parameterised by a context ∆ to a computation of
type G ∆.

We overload ∆ = x1 : A1, . . . , xn : An to mean: a
type environment consisting entirely of inactive variables; the
left nested product type 1 × A1 × · · · × An; and the left-
nested tuple type ((), x1, . . . , xn). We write λ∆.M as sugar for
λz .split(z, z.xn. . . . split(z, z.x1.M)), where z is a fresh vari-
able.

The (ARROWHANDLE) rule describes how to handle an arrow
computation with an arrow handler. The type environment (Γ) is
flushed in M meaning that all dynamic input to the computation
must be packaged up in ∆. As the handled computation has an
input ∆, it is written as a lambda λ∆.M . The return type of the
conclusion is G∆.

The (ARROWHANDLER) rule follows a similar structure to the
(MONADHANDLER) rule. The key differences arise because arrow
handlers handle computations with inputs. Thus the type of x in the
return clause is a function from the input typeX toA and similarly
the type of the parameter p in an operation clause is a function from
X toAi. We letX range over type variables and use a type variable
here in order to ensure that the handler is parametric in the input
type. This is crucial, as it allows us to manually thread the context
through computations. The computation type of the continuation
k is G (X × Bi) instead of Bi → C. The idea is that G models
the type of an arrow computation: the argument to G is the input
type, and the result of applying G to a type is the output type. In
the continuation, the current input type is paired up with the return
type of the operation.

The (ARROWHANDLER) rule prevents arrow handlers from be-
ing applied to computations with dynamic control flow. This is nec-
essary in order to ensure that closed terms do not get stuck. For
instance, this constraint disallows stuck terms of the form:

handle λz .{case(z , x1.returnM1, x2.returnM2)}! withH
The operational semantics is similar to that for monadic han-

dlers. The differences are all related to explicitly threading the
context through the handler. When handling a return clause (han-
dle .[]), the value is a function of the input. When handling an
operation (handle .op), the parameter is a function of the input,
and the continuation extends the context with the return value of
the operation.

Remark Just as standard handlers can be reified as values, so
can arrow handlers. In essence, for any type A, the arrow han-
dler type B E⇒E′

 G behaves like a suspended function of type

{{A→ [B]}E → GA}E′ . Indeed, for any type A, we can reify
an arrow handler H as a value as follows:

Γ ` H : B E⇒E′
 G

Γ ` {λy .handle λx .y ! x withH} : {{A→ [B]}E → GA}E′

5.3 Idiom Handlers
The IDIOMHANDLER rule is similar to the ARROWHANDLER rule.
The difference is that the context is not threaded through parame-
ters in operation clauses — directly capturing the property that id-
iom computations do not have the data flow effect. The (handleI.[])
rule is identical to the (handle .[]) rule. The (handleI.op) rule is
similar to the (handle .op) rule. The only difference is that the
context is not threaded through operation parameters.

Remark Just as monadic and arrow handlers can be reified as
values, so can idiom handlers. For any type A, we can reify an
idiom handler H as a value as follows:

Γ ` H : B E⇒E′
I G

Γ ` {λy .handleI λx .y ! x withH} : {{A→ [B]}E → GA}E′

5.4 Example: Parser Combinators
We now illustrate λflow with a small example combining monad
handlers and idiom handlers. In order to make our example slightly
realistic, we assume λflow has been extended with pattern-matching,
polymorphic type variables X , and a polymorphic list type List X .
Let us imagine we wish to write code to parse a list of characters.
To keep things simple, we assume an effect signature for parsing
containing only two operations:

Parse = {any : 1→ Char, char : Char→ Char}

The any operation parses any character and the char operation
parses a specific character.

We also define other effect signatures for reading characters,
state, and failure:

Read = {getc : 1→ char}
State X = {get : 1→ X, put : X → 1}
Fail = {fail : ∀X.1→ X}

First let us define an idiom handler for parsing.

parse : {{X}Parse∪Fail → X}Read∪Fail∪{c,d}
parse m = {

(handleI (λ().m!)with
return x 7→ x !
any () k 7→ λz .let c← getc () in k ! (z , c)
char c k 7→ λz .let c′ ← getc () in

let b← (c = c′) in {if b then k ! (z , c)
else fail ()}!

fail p k 7→ λz .fail ()) ()
}

The handler maps the parsing operations any and char to the getc
operation. In addition, it forwards failure. Now let us define a
handler for reading characters from a list.

read : {List char→ {X}Read∪{c,d} → X}State (List char)∪Fail{c,d}
read cs m = {

handleTm!with
return x 7→ return x
getc () k 7→ let cs ← get () in

{case cs of Nil 7→ fail ()
Cons c cs 7→ put cs; return c}!

}

9 2014/5/16

This handler interprets getc in terms of state and failure. We handle
failure with a standard option type (1 +X).

option : {{X}Fail∪{c,d} → 1 +X}{c,d}
option m = {

handleTm!with
return x 7→ return (inj2 x)
fail () k 7→ return (inj1 ())

}
Finally, we implement a handler for state that throws away the final
state.

state : {{X}State S∪{c,d} → S → X}{c,d}
state m = {

handleTm!with
return x 7→ λs.return x
get () k 7→ λs.k s s
put s k 7→ λs′.k () s

}
Having defined these four handlers, the idea is that we can now

compose them together. In fact, we would need to add a little
more to our language for this to work completely smoothly. In
particular, we would need our handlers to support forwarding in
order to avoid having to write dummy forwarding clauses in the
monadic handlers, and we would also need effect polymorphism,
or effect subtyping in order to allow the effect handlers to be
used in the presence of different ambient effects. Developing a
practical language or library that supports such features, along
with a more convenient source syntax, is left as future work. (Our
Haskell library does support forwarding and effect polymorphism,
so it is straightforward to implement all of the monad handlers
and compose them using our library. Of course, it does not support
idiom handlers, though.)

5.5 Forwarding for Arrow and Idiom Handlers
As the continuation of an operation by handled by an arrow or an
idiom handler may not be in the standard function space, we cannot
use the universal definition of forwarding that works for monadic
handlers. One possibility is to add a special forwarding clause:

default p k 7→ N ′

where

H(op, V,W) = N ′[{λx .op x}/default , V/p,W/k],
op 6= opi for any i

We leave it to future work to investigate how this idea pans out in
practice.

5.6 Correctness of λflow

THEOREM 1 (Type Soundness). If E ⊆ {c, d} and `E M :
[A], then either there exists N such that M −→ N or there exists
V such that M = return V .

The proof of type soundness is pretty standard and does not deviate
significantly from that for λeff . However, there are some subtleties
arising from flow effects. The usual form of subject reduction
(preservation of typing under reduction) does not hold for λflow.
The reason is that applying the (β.{}) reduction rule sometimes
yields a term that can only be typed if some of the inactivate
variables in the type environment are activated. For instance, we
have:

x : A `c,d {return x}! : [A]

and:

{return x}! −→ return x

but the following judgement is invalid:

x : A `c,d return x : [A]

This is not a serious problem because we are primarily interested
in reduction on closed terms.

There are a number of ways of restoring subject reduction,
however. One way is to add a non-syntactic rule for activating
variables along the lines of:

c, d ∈ E
Γ? `E M : C

Γ `E M : C

which would effectively make the (Force?) rule redundant. Another
way of restoring subject reduction is to modify all of the binding
rules such that the bound variable is immediately activated in the
case that c and d are in the current effect. What we choose to do
instead is to use a weaker form of subject reduction.

LEMMA 2 (Weak Subject Reduction). If Γ `E M : C, and
M −→ N , then Γ? `E N : C.

The proof is a straightforward inductive argument using the follow-
ing lemma:

LEMMA 3. If Γ `E M : C then Γ? `E M : C.

as well as a suitable substitution lemma.
The proof of termination for λeff readily adapts to λflow.

THEOREM 4 (Termination). If Γ `E M : C, then reduction onM
terminates.

The key property is that (handle.op)-reduction is a form of struc-
tural recursion, so is guaranteed to terminate.

6. Embedding Arrow Calculus into λflow

Thusfar, we have claimed that λflow is a meta programming lan-
guage for idioms, arrows, and monads. The correspondence with
λeff is clear, but we have not yet shown that it corresponds in any
way with existing calculi for idioms and arrows. The arrow calcu-
lus [11] is a meta language for programming with arrows. In previ-
ous work [12] we used variations on the arrow calculus to elucidate
the relationship between idiom, arrow, and monad computations.
In this section we show that there is a straightforward embedding
of the arrow calculus into λflow, and furthermore this embedding
extends to cover variants of the arrow calculus that support idioms
and monads.

6.1 The Arrow Calculus
The arrow calculus is an extension of the simply-typed lambda
calculus. Following Lindley et al [11] we present it as a simply-
typed equational theory. The typing rules and equational laws are
given in Figure 10. Value terms are ranged over by L,M,N .
Computation terms are ranged over by P,Q.

There are two typing judgements. The judgement Γ ` M :
A is the standard one of the simply-typed lambda calculus. The
judgement Γ; ∆ ` P ! A is for arrow computations. The type
environment is separated into two parts: the variables in Γ are
accessible everywhere, whereas those in ∆ are restricted. Variables
in Γ correspond to active variables, and those in ∆ to inactive
variables. The term P is an arrow computation term. The type A
is the output type of the computation.

We assume a fixed signature Σ of arrow operations. An arrow
abstraction λ•x.P abstracts over an arrow computation P . The
variable x is bound in the ∆ environment. In an arrow application
L•M , only the variables of Γ are accessible toL. When returning a
value, both type environments are merged. Let bindings are bound
in the ∆ type environment.

10 2014/5/16

Typing Rules

Γ `M : A

VAR
(x : A) ∈ Γ

Γ ` x : A

UNIT

Γ ` () : 1

PAIR
Γ `M : A Γ ` N : B

Γ ` (M,N) : A×B

FST
Γ `M : A×B
Γ ` FstM : A

SND
Γ `M : A×B
Γ ` FstM : A

ABS
Γ, x : A `M : B

Γ ` λx .M : A→ B

APP
Γ `M : A→ B

Γ ` N : A

Γ `M N : B

ARROWABS
Γ; x : A ` P !B

Γ ` λ•x .P : A B

OP
op : A B ∈ Σ

Γ ` op : A B

Γ; ∆ `M !A

ARROWAPP
Γ ` L : A B
Γ,∆ `M : A

Γ; ∆ ` L •M !B

RETURN
Γ,∆ `M : A

Γ; ∆ ` returnM !A

LET
Γ; ∆ ` P !A

Γ; ∆, x : A ` Q !B

Γ; ∆ ` let x ← P in Q !B

Laws
(β×1) Fst (M,N) = M
(β×2) Snd (M,N) = N
(η×) (Fst L,Snd L) = L
(β→) (λx.N) M = N [M/x]
(η→) λx.(L x) = L
(η1) () = M
(β) (λ•x.Q) •M = Q[M/x]
(η) λ•x.(L • x) = L
(left) let x ← returnM in Q = Q[M/x]
(right) let x ← P in return x = P
(assoc) let y ← (let x ← P in Q) in R = let x ← P in (let y ← Q in R)

Figure 10. The Arrow Calculus

The equational laws are standard β and η-laws along with a
commuting conversion for computations.

6.2 The Embedding
Given Σ = {opi : Ai Bi}i, we define an embedding J−K of the
arrow calculus into λflow. The translation on types is as follows:

J1K = {[1]}{c,d}
JA×BK = {JAK× JBK}{c,d}

JA→ BK = {JAK→ [JBK]}{c,d}
JA BK = {JAK→ [JBK]}{d}∪E

where

E = {opi : JAiK→ JBiK}i
The translation on type environments is defined pointwise on the
types:

Jx1 : A1, . . . , xn : AnK = x1 : JA1K, . . . , xn : JAnK

The translation on value terms is as follows:

JxK = x
J()K = {return ()}

J(M,N)K = {return (JMK, JNK)}
JFstMK = {let z ←M ! in {split(z , x .y .return x)}!}
JSndMK = {let z ←M ! in {split(z , x .y .return y)}!}

J()K = {return ()}
Jλx .MK = {λx .return JMK}
JM NK = {JMK! JNK}

Jλ•x .P K = {λx .JP K}
JopK = {λx .op x}

The translation on computation terms is as follows:

JL •MK = JLK! JMK
JreturnMK = return JMK

Jlet x ← P in QK = let x ← JP K in JQK

THEOREM 5 (Type Soundness).

• If Γ `M : A then JΓK ` JMK : JAK.
• If Γ; ∆ ` P !A then JΓK?, J∆K `E JP K : [JAK].

We believe that the operational semantics respects equality in
the arrow calculus via the embedding, but we have not yet proved
this. It may make more sense in future to relate a reduction-oriented
variant of arrow calculus with λflow.

6.3 Higher Order Arrows
In order to support monadic computations in the arrow calculus,
one simply adds a relaxed form of arrow application in which the
argument has access to both type environments. Its typing rule is as
follows:

HARROWAPP
Γ,∆ ` L : A B Γ,∆ `M : A

Γ; ∆ ` L ?M !B

and it comes with the additional laws:
(βapp) (λ•x.Q) ? M = Q[x := M]
(ηapp) λ•x.(L ? x) = L

The translation of higher-order arrow application into λflow is
identical to the translation of standard arrow application.

JL ?MK = JLK! JMK

11 2014/5/16

When working with higher-order arrows, the translation on arrow
types is amended to add the c effect.

JA BK = {JAK→ [JBK]}{c,d}∪E

6.4 Static Arrows
In order to support idiom computations in the arrow calculus, one
adds a special run operator that coerces any value of type A B
into a computation of type A→ B. Its typing rule is as follows:

Γ ` L : A B

Γ; ∆ ` run L !A→ B

and it comes with the additional laws:
(ob1) L •M = let f ← runL in return f M
(ob2) run (λ•x .returnM) = return λx .M
(ob3) run(λ•x .let y ← p in Q) =

let y ← P in let f ← run(λ•(x, y).Q) in return λx .f (x, y)

The translation of run into λflow essentially requires us to sim-
ulate an upcast on the effects of the body of a function. We do so
using a straightforward identity handler.

Jrun LK = handleI λx .JLK! x with return y 7→ return y

When working with static arrows, the translation on arrow types is
amended to remove the d effect.

JA BK = {JAK→ [JBK]}E

7. Related Work
There has been a recent spate of work on practical languages
and libraries for effect handlers. Apart from our own libraries,
Kiselyov et al [8] have implemented a similar library for Haskell,
and Brady [3] has implemented an effect handlers library for his
dependently-typed language Idris. Two programming languages
that build in algebraic effects and handlers as primitives are Bauer
and Pretnar’s Eff [1, 2] and McBride’s Frank [13, 14]. None of
these systems support algebraic effects or handlers for idioms or
arrows.

Capriotti and Kaposi explore free idioms [4], and their Haskell
implementations. Free idioms correspond to abstract idiom compu-
tations. Yallop’s thesis [23, Chapter 2] provides an in-depth analy-
sis of idioms, arrows, and monads, expanding on the work of Lind-
ley et al [12], and characterising the normal forms for idioms and
arrows. We have implemented both free monad and free arrow con-
structions in Haskell [10] directly inspired by the normal forms of
Yallop.

Petricek and Syme [18] describe a novel use of F# computation
expression syntax to write idiom computations using let notation.
Their work is partly inspired by syntax for formlets [5], an abstrac-
tion for building web forms that is an idiom.

8. Future Work
This paper focuses on the theory of algebraic effects and handlers
for arrows and idioms. In order to evaluate the practice of algebraic
effects and handlers for arrows and idioms we would like to build
an implementation.

We believe it should be possible to implement handlers on top
of our existing free idiom and free arrow constructions in Haskell.
However, programming with free idioms and free arrows in Haskell
requires the programmer to use a different syntax. Idioms only
support a pointless syntax. Arrows support a direct-style syntax, but
it is not quite the same as the do notation used for monads. Given
that F# computation expressions are already expressive enough to
cover a range of computation types including monads and idioms,
it might be interesting to try to use computation expressions as a

basis for building a source language for λflow. It may, however, be
difficult to adequately encode an effect type system on top of F#.
Ultimately, we expect the most fruitful path may be to build a new
language, or extend a custom language like Frank or Eff.

On the theoretical side, it would be interesting to explore de-
notational semantics for λflow and to consider how the story is af-
fected by reintroducing equations to the picture. Another direction
is to explore algebraic effects and handlers for other variations on
the basic theme, such as for linear and dependent types.

References
[1] A. Bauer and M. Pretnar. Programming with algebraic effects and

handlers. CoRR, abs/1203.1539, 2012.
[2] A. Bauer and M. Pretnar. An effect system for algebraic effects and

handlers. In CALCO, volume 8089 of Lecture Notes in Computer
Science, pages 1–16. Springer, 2013.

[3] E. Brady. Programming and reasoning with algebraic effects and
dependent types. In ICFP. ACM, 2013.

[4] P. Capriotti and A. Kaposi. Free applicative functors. CoRR,
abs/1403.0749, 2014.

[5] E. Cooper, S. Lindley, P. Wadler, and J. Yallop. The essence of
form abstraction. In G. Ramalingam, editor, APLAS, volume 5356 of
Lecture Notes in Computer Science, pages 205–220. Springer, 2008.

[6] J. Hughes. Generalising monads to arrows. Sci. Comput. Program.,
37(1-3):67–111, 2000.

[7] O. Kammar, S. Lindley, and N. Oury. Handlers in action. In G. Mor-
risett and T. Uustalu, editors, ICFP, pages 145–158. ACM, 2013.

[8] O. Kiselyov, A. Sabry, and C. Swords. Extensible effects: an alterna-
tive to monad transformers. In Haskell, pages 59–70. ACM, 2013.

[9] P. B. Levy. Call-By-Push-Value: A Functional/Imperative Synthesis,
volume 2 of Semantics Structures in Computation. Springer, 2004.

[10] S. Lindley. Free idioms and free arrows in haskell, 2013.
https://github.com/slindley/dependent-haskell/tree/
master/Free.

[11] S. Lindley, P. Wadler, and J. Yallop. The arrow calculus. J. Funct.
Program., 20(1):51–69, 2010.

[12] S. Lindley, P. Wadler, and J. Yallop. Idioms are oblivious, arrows are
meticulous, monads are promiscuous. Electr. Notes Theor. Comput.
Sci., 229(5):97–117, 2011.

[13] C. McBride. How might effectful programs look? In Workshop on
Effects and Type Theory, 2007.
http://cs.ioc.ee/efftt/mcbride-slides.pdf.

[14] C. McBride. Frank (0.3), 2012.
http://hackage.haskell.org/package/Frank.

[15] C. McBride and R. Paterson. Applicative programming with effects.
J. Funct. Program., 18(1):1–13, 2008.

[16] E. Moggi. Computational lambda-calculus and monads. In LICS,
pages 14–23. IEEE Computer Society, 1989.

[17] R. Paterson. A new notation for arrows. In B. C. Pierce, editor, ICFP,
pages 229–240. ACM, 2001.

[18] T. Petricek and D. Syme. The F# computation expression zoo. In
M. Flatt and H.-F. Guo, editors, PADL, volume 8324 of Lecture Notes
in Computer Science, pages 33–48. Springer, 2014.

[19] G. D. Plotkin and J. Power. Adequacy for algebraic effects. In
F. Honsell and M. Miculan, editors, FoSSaCS, volume 2030 of Lecture
Notes in Computer Science, pages 1–24. Springer, 2001.

[20] G. D. Plotkin and J. Power. Semantics for algebraic operations. Electr.
Notes Theor. Comput. Sci., 45:332–345, 2001.

[21] G. D. Plotkin and M. Pretnar. Handling algebraic effects. Logical
Methods in Computer Science, 9(4), 2013.

[22] W. Swierstra. Data types à la carte. J. Funct. Program., 18(4):423–
436, 2008.

[23] J. Yallop. Abstraction for web programming. PhD thesis, The Univer-
sity of Edinburgh, 2010.

12 2014/5/16

https://github.com/slindley/dependent-haskell/tree/master/Free
https://github.com/slindley/dependent-haskell/tree/master/Free
http://cs.ioc.ee/efftt/mcbride-slides.pdf
http://hackage.haskell.org/package/Frank

	Introduction
	Effects as Computation Trees
	What is an Effectful Computation?
	Idioms are Oblivious, Arrows are Meticulous, Monads are Promiscuous
	Flow Effects

	An Effect Calculus
	Abstract Effects
	Effect Handlers
	Effect Forwarding

	Flow Effects
	Handling Flow
	Monad Handlers
	Arrow Handlers
	Idiom Handlers
	Example: Parser Combinators
	Forwarding for Arrow and Idiom Handlers
	Correctness of flow

	Embedding Arrow Calculus into flow
	The Arrow Calculus
	The Embedding
	Higher Order Arrows
	Static Arrows

	Related Work
	Future Work

