
 

 

 
 

 

Edinburgh Research Explorer 
 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Large and Diverse Language Models for Statistical Machine
Translation

Citation for published version:
Schwenk, H & Koehn, P 2008, Large and Diverse Language Models for Statistical Machine Translation. in
Third International Joint Conference on Natural Language Processing, IJCNLP 2008, Hyderabad, India,
January 7-12, 2008. pp. 661-666.

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
Third International Joint Conference on Natural Language Processing, IJCNLP 2008, Hyderabad, India, January
7-12, 2008

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 05. Apr. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/43712241?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://www.research.ed.ac.uk/portal/en/publications/large-and-diverse-language-models-for-statistical-machine-translation(a48f6f55-eab5-4008-acb0-1de3da3c4d24).html


Large and Diverse Language Models for Statistical Machine Translation

Holger Schwenk∗

LIMSI - CNRS
France

schwenk@limsi.fr

Philipp Koehn
School of Informatics

University of Edinburgh
Scotland

pkoehn@inf.ed.ac.uk

Abstract

This paper presents methods to combine
large language models trained from diverse
text sources and applies them to a state-of-
art French–English and Arabic–English ma-
chine translation system. We show gains of
over 2 BLEU points over a strong baseline
by using continuous space language models
in re-ranking.

1 Introduction

Often more data is better data, and so it should come
as no surprise that recently statistical machine trans-
lation (SMT) systems have been improved by the
use of large language models (LM). However, train-
ing data for LMs often comes from diverse sources,
some of them are quite different from the target do-
main of the MT application. Hence, we need to
weight and combine these corpora appropriately. In
addition, the vast amount of training data available
for LM purposes and the desire to use high-order
n-grams quickly exceeds the conventional comput-
ing resources that are typically available. If we are
not able to accommodate large LMs integrated into
the decoder, using them in re-ranking is an option.

In this paper, we present and compare methods to
build LMs from diverse training corpora. We also
show that complex LMs can be used in re-ranking
to improve performance given a strong baseline. In
particular, we use high-ordern-grams continuous
space LMs to obtain MT of the well-known NIST
2006 test set that compares very favorably with the
results reported in the official evaluation.

∗new address: LIUM, University du Maine, France,
Holger.Schwenk@lium.univ-lemans.fr

2 Related Work

The utility of ever increasingly large LMs for MT
has been recognized in recent years. The effect
of doubling LM size has been powerfully demon-
strated by Google’s submissions to the NIST eval-
uation campaigns. The use of billions of words of
LM training data has become standard in large-scale
SMT systems, and even trillion word LMs have been
demonstrated. Since lookup of LM scores is one of
the fundamental functions in SMT decoding, effi-
cient storage and access of the model becomes in-
creasingly difficult.

A recent trend is to store the LM in a distributed
cluster of machines, which are queried via network
requests (Brants et al., 2007; Emami et al., 2007).
It is easier, however, to use such large LMs in re-
ranking (Zhang et al., 2006). Since the use of clus-
ters of machines is not always practical (or afford-
able) for SMT applications, an alternative strategy
is to find more efficient ways to store the LM in the
working memory of a single machine, for instance
by using efficient prefix trees and fewer bits to store
the LM probability (Federico and Bertoldi, 2006).
Also the use of lossy data structures based on Bloom
filters has been demonstrated to be effective for LMs
(Talbot and Osborne, 2007a; Talbot and Osborne,
2007b). This allows the use of much larger LMs,
but increases the risk of errors.

3 Combination of Language Models

LM training data may be any text in the output
language. Typically, however, we are interested in
building a MT system for a particular domain. If text
resources come from a diversity of domains, some
may be more suitable than others. A common strat-

661



projection
layer hidden

layer

output
layerinput

projections
shared

LM probabilities
for all words

probability estimation

Neural Network

discrete
representation:

indices in wordlist

continuous
representation:

P dimensional vectors

N

wj−1 P

H

N

P (wj =1|hj)

wj−n+1

wj−n+2

P (wj =i|hj)

P (wj =N|hj)

cl

oiM

Vdj

p1 =

pN =

pi =

Figure 1: Architecture of the continuous space LM.

egy is to divide up the LM training texts into smaller
parts, train a LM for each of them and combine these
in the SMT system. Two strategies may be em-
ployed to combine LMs: One is the use of interpola-
tion. LMs are combined into one by weighting each
based on their relevance to the focus domain. The
weighting is carried out by optimizing perplexity of
a representative tuning set that is taken from the do-
main. Standard LM toolkits like SRILM (Stolcke,
2002) provide tools to estimate optimal weights us-
ing the EM algorithm.

The second strategy exploits the log-linear model
that is the basis of modern SMT systems. In this
framework, a linear combination of feature func-
tions is used, which include the log of the LM prob-
ability. It is straight-forward to use multiple LMs in
this framework and treat each as a feature function
in the log-linear model. Combining several LMs in
the log domain corresponds to multiplying the cor-
responding probabilities. Strictly speaking, this sup-
poses an independence assumption that is rarely sat-
isfied in practice. The combination coefficients are
optimized on a criterion directly related to the trans-
lation performance, for instance the BLEU score.

In summary, these strategies differ in two points:
linear versus log-linear combination, and optimizing
perplexity versus optimizing BLEU scores.

4 Continuous Space Language Models

This LM approach is based acontinuous represen-
tation of the words (Bengio et al., 2003). The ba-

sic idea is to convert the word indices to a continu-
ous representation and to use a probability estima-
tor operating in this space. Since the resulting dis-
tributions are smooth functions of the word repre-
sentation, better generalization to unknownn-grams
can be expected. This approach was successfully ap-
plied to language modeling in small (Schwenk et al.,
2006) an medium-sized phrase-based SMT systems
(Déchelotte et al., 2007).

The architecture of the continuous space language
model (CSLM) is shown in Figure 1. A standard
fully-connected multi-layer perceptron is used. The
inputs to the neural network are the indices of the
n−1 previous words in the vocabularyhj=wj−n+1,

. . . , wj−2, wj−1 and the outputs are the posterior
probabilities ofall words of the vocabulary:

P (wj = i|hj) ∀i ∈ [1,N ] (1)

whereN is the size of the vocabulary. The input
uses the so-called 1-of-n coding, i.e., theith word of
the vocabulary is coded by setting theith element of
the vector to 1 and all the other elements to 0. The
ith line of theN ×P dimensional projection matrix
corresponds to the continuous representation of the
ith word.1 Let us denotecl these projections,dj the
hidden layer activities,oi the outputs,pi their soft-
max normalization, andmjl, bj, vij andki the hid-
den and output layer weights and the corresponding
biases. Using these notations, the neural network
performs the following operations:

dj = tanh

(
∑

l

mjl cl + bj

)
(2)

oi =
∑

j

vij dj + ki (3)

pi = eoi /

N∑

r=1

eor (4)

The value of the output neuronpi corresponds di-
rectly to the probabilityP (wj = i|hj).

Training is performed with the standard back-
propagation algorithm minimizing the following er-
ror function:

E =
N∑

i=1

ti log pi + β




∑

jl

m2
jl +

∑

ij

v2
ij



 (5)

1Typical values areP = 200 . . . 300

662



whereti denotes the desired output. The parame-
ter β has to be determined experimentally. Train-
ing is done using a resampling algorithm (Schwenk,
2007). It can be shown that the outputs of a neural
network trained in this manner converge to the pos-
terior probabilities. Therefore, the neural network
directly minimizes the perplexity on the training
data. Note also that the gradient is back-propagated
through the projection-layer, which means that the
neural network learns the projection of the words
that is best for the probability estimation task.

In general, the complexity to calculate one prob-
ability is dominated by the output layer dimension
since the size of the vocabulary (hereN=273k) is
usually much larger than the dimension of the hid-
den layer (hereH=500). Therefore, the CSLM is
only used when the to be predicted word falls into
the 8k most frequent ones. While this substantially
decreases the dimension of the output layer, it still
covers more than 90% of the LM requests. The
other requests are obtained from a standard back-off
LM. Note that the full vocabulary is still used for the
words in the context (input of the neural network).

The incorporation of the CSLM into the SMT
system is done by usingn-best lists. In all our
experiments, the LM probabilities provided by the
CSLM are added as an additional feature function.
It is also possible to use only one feature function
for the modeling of the target language (interpola-
tion between the back-off and the CSLM), but this
would need more memory since the huge back-off
LM must be loaded duringn-best list rescoring.

We did not try to use the CSLM directly during
decoding since this would result in increased decod-
ing times. Calculating a LM probability with a back-
off model corresponds basically to a table look-up,
while a forward pass through the neural network is
necessary for the CSLM. Very efficient optimiza-
tions are possible, in particular whenn-grams with
the same context can be grouped together, but a re-
organization of the decoder may be necessary.

5 Language Models in Decoding and
Re-Ranking

LM lookups are one of the most time-consuming
steps in the decoding process, which makes time-
efficient implementations essential. Consequently,

the LMs have to be held in the working memory of
the machine, since disk lookups are simply too slow.
Filtering LMs to then-grams which are needed for
the decoding a particular sentence may be an option,
but is useful only to a degree. Since the order of out-
put words is unknown before decoding, alln-grams
that contain any of output words that may be gener-
ated during decoding need to be preserved.
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Figure 2: Ratio of 5-grams required to translate one
sentence. The graph plots the ratio against sentence
length. For a 40-word sentence, typically 5% of
the LM is needed (numbers from German–English
model trained on Europarl).

See Figure 2 for an illustration that highlights
what ratio of the LM is needed to translate a sin-
gle sentence. The ratio increases roughly linear
with sentence length. For a typical 30-word sen-
tence, about 4% of the LM 5-grams may be po-
tentially generated during decoding. For large 100-
word sentences, the ratio is about 15%.2 These num-
bers suggest that we may be able to use 5–10 times
larger LMs, if we filter the LM prior to the decod-
ing of each sentence. SMT decoders such as Moses
(Koehn et al., 2007) may store the translation model
in an efficient on-disk data structure (Zens and Ney,
2007), leaving almost the entire working memory
for LM storage. However, this means for 32-bit ma-
chines a limit of 3 GB for the LM.

On the other hand, we can limit the use of very
large LMs to a re-ranking stage. In two-pass de-

2The numbers were obtained using a 5-gram LM trained
on the English side of the Europarl corpus (Koehn, 2005), a
German–English translation model trained on Europarl, and the
WMT 2006 test set (Koehn and Monz, 2006).
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French English
News Commentary 1.2M 1.0M
Europarl 37.5M 33.8M

Table 1: Combination of a small in-domain (News
Commentary) and large out-of-domain (Europarl)
training corpus (number of words).

coding, the initial decoder produces ann-best list
of translation candidates (say,n=1000), and a sec-
ond pass exploits additional features, for instance
very large LMs. Since the order of English words
is fixed, the number of differentn-grams that need
to be looked up is dramatically reduced. However,
since then-best list is only the tip of the iceberg
of possible translations, we may miss the translation
that we would have found with a LM integrated into
the decoding process.

6 Experiments

In our experiments we are looking for answers to the
open questions on the use of LMs for SMT: Do per-
plexity and BLEU score performance correlate when
interpolating LMs? Should LMs be combined by in-
terpolation or be used as separate feature functions
in the log-linear machine translation model? Is the
use of LMs in re-ranking sufficient to increase ma-
chine translation performance?

6.1 Interpolation

In the WMT 2007 shared task evaluation campaign
(Callison-Burch et al., 2007) domain adaptation was
a special challenge. Two training corpora were pro-
vided: a small in-domain corpus (News Commen-
tary) and the about 30 times bigger out-of-domain
Europarl corpus (see Table 1). One method for do-
main adaptation is to bias the LM towards the in-
domain data. We train two LMs and interpolate them
to optimize performance on in-domain data. In our
experiments, the translation model is first trained on
the combined corpus without weighting. We use the
Moses decoder (Koehn et al., 2007) with default set-
tings. The 5-gram LM was trained using the SRILM
toolkit. We only run minimum error rate training
once, using the in-domain LM. Using different LMs
for tuning may change our findings reported here.

When interpolating the LMs, different weights
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ment set (nc-dev2007) and on the BLEU score of the
test set (nc-devtest2007).

TM LM BLEU (test)
combined 2 features 27.30
combined interpolated 0.42 27.23
2 features 2 features 27.64
2 features interpolated 0.42 27.63

Table 2: Combination of the translation models
(TM) by simple concatenation of the training data
vs. use of two feature functions, and combination
of the LM (LM) by interpolation or the use of two
feature functions.

may be given to the out-of-domain versus the in-
domain LM. One way to tune the weight is to opti-
mize perplexity on a development set (nc-dev2007).
We examine values between 0 and 1, the EM proce-
dure gives the lowest perplexity of 193.9 at a value
of 0.42. Does this setting correspond with good
BLEU scores on the development and test set (nc-
devtest2007) ? See Figure 3 for a comparison. The
BLEU score on the development data is 28.55 when
the interpolation coefficient is used that was ob-
tained by optimizing the perplexity. A slightly better
value of 28.78 good be obtained when using an in-
terpolation coefficient of 0.15. The test data seems
to be closer to the out-of-domain Europarl corpus
since the best BLEU scores would be obtained for
smaller values of the interpolation coefficient.

The second question we raised was: Is interpola-
tion of LMs preferable to the use of multiple LMs
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as separate feature functions. See Table 2 for num-
bers in the same experimental setting for two dif-
ferent comparisons. First, we compare the perfor-
mance of the interpolated LM with the use of two
feature functions. The resulting BLEU scores are
very similar (27.23 vs. 27.30). In a second experi-
ment, we build two translation models, one for each
corpus, and use separate feature functions for them.
This gives a slightly better performance, but again it
gives almost identical results for the use of interpo-
lated LMs vs. two LMs as separate feature functions
(27.63 vs. 27.64).

These experiments suggest that interpolated LMs
give similar performance to the use of multiple LMs.
In terms of memory efficiency, this is good news,
since an interpolated LM uses less memory.

6.2 Re-Ranking

Let us now turn our attention to the use of very large
LMs in decoding and re-ranking. The largest freely
available training sets for MT are the corpora pro-
vided by the LDC for the NIST and GALE evalu-
ation campaigns for Arabic–English and Chinese–
English. In this paper, we concentrate on the first
language pair. Our starting point is a system us-
ing Moses trained on a training corpus of about 200
million words that was made available through the
GALE program. Training such a large system pushes
the limits of the freely available standard tools.

For instance, GIZA++, the standard tool for word
alignment keeps a word translation table in memory.
The only way to get it to process the 200 million
word parallel corpus is to stem all words to their first
five letters (hence reducing vocabulary size). Still,
GIZA++ training takes more than a week of com-
pute time on our 3 GHz machines. Training uses
default settings of Moses. Tuning is carried out us-
ing the 2004 NIST evaluation set. The resulting sys-
tem is competitive with the state of the art. The best

Corpus Words
Parallel training data (train) 216M
AFP part of Gigaword (afp) 390M
Xinhua part of Gigaword (xin) 228M
Full Gigaword (giga) 2,894M

Table 3: Size of the training corpora for LMs in
number of words (including punctuation)

Px Bleu score
Decode LM eval04 eval04 eval06
3-gram train+xin+afp 86.9 50.57 43.69
3-gram train+giga 85.9 50.53 43.99
4-gram train+xin+afp 74.9 50.99 43.90

Reranking with continuous space LM:
5-gram train+xin+afp 62.5 52.88 46.02
6-gram train+xin+afp 60.9 53.25 45.96
7-gram train+xin+afp 60.5 52.95 45.96

Table 4: Improving MT performance with larger
LMs trained on more training data and using higher
order ofn-grams (Px denotes perplexity).

performance we obtained is a BLEU score of 46.02
(case insensitive) on the most recent eval06 test set.
This compares favorably to the best score of 42.81
(case sensitive), obtained in 2006 by Google. Case-
sensitive scoring would drop our score by about 2-3
BLEU points.

To assess the utility of re-ranking with large LMs,
we carried out a number of experiments, summa-
rized in Table 4. We used the English side of the par-
allel training corpus and the Gigaword corpus dis-
tributed by the LDC for language modeling. See
Table 3 for the size of these corpora. While this
puts us into the moderate billion word range of large
LMs, it nevertheless stresses our resources to the
limit. The largest LMs that we are able to support
within 3 GB of memory are a 3-gram model trained
on all the data, or a 4-gram model trained only on
train+afp+xin. On disk, these models take up 1.7 GB
compressed (gzip) in the standard ARPA format. All
these LMs are interpolated by optimizing perplexity
on the tuning set (eval04).

The baseline result is a BLEU score of 43.69 us-
ing a 3-gram trained on train+afp+xin. This can be
slightly improved by using either a 3-gram trained
on all data (BLEU score of 43.99) or by using a
4-gram trained on train+afp+xin (BLEU score of
43.90). We were not able to use a 4-gram trained on
all data during the search. Such a model would take
more than 6GB on disk. An option would be to train
the model on all the data and to prune or quantize
it in order to fit in the available memory. This may
give better results than limiting the training data.

Next, we examine if we can get significantly bet-
ter performance using different LMs in re-ranking.
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To this end, we train continuous space 5-gram to 7-
gram LMs and re-rank a 1000-best list (without du-
plicate translations) provided by the decoder using
the 4-gram LM. The CSLM was trained on the same
data as the back-off LMs. It yields an improvement
in perplexity of about 17% relative.

With various higher ordern-grams models, we
obtain significant gains, up to just over 46 BLEU

on the 2006 NIST evaluation set. A gain of over
2 BLEU points underscores the potential for re-
ranking with large LM, even when the baseline LM
was already trained on a large corpus. Note also the
good generalization behavior of this approach : the
gain obtained on the test data matches or exceeds in
most cases the improvements obtained on the devel-
opment data. The CSLM is also very memory ef-
ficient since it uses a distributed representation that
does not increase with the size of training material
used. Overall, about 1GB of main memory is used.

7 Discussion

In this paper we examined a number of issues re-
garding the role of LMs in large-scale SMT sys-
tems. We compared methods to combine training
data from diverse corpora and showed that interpo-
lation of LMs by optimizing perplexity yields simi-
lar results to combining them as feature functions in
the log-linear model.

We applied for the first time continuous space
LMs to the large-scale Arabic–English NIST eval-
uation task. We obtained large improvements (over
2 BLEU points) over a strong baseline, thus validat-
ing both continuous space LMs and re-ranking as a
method to exploit large LMs.
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