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Mapping the MIT Stata Center:
Large-scale Integrated Visual and RGB-D SLAM

Maurice F. Fallon, Hordur Johannsson, Michael Kaess, David M. Rosen, Elias Muggler and John J. Leonard

Abstract—This paper describes progress towards creating an
integrated large-scale visual and RGB-D mapping and localiza-
tion system to operate in the MIT Stata Center. The output of
a real-time, temporally scalable 6-DOF visual SLAM system is
used to generate low fidelity maps that are used by the Kinect
Monte Carlo Localization (KMCL) algorithm. This localization
algorithm can track the camera pose during aggressive motion
and can aid in recovery from visual odometry failures. The
localization algorithm uses dense depth information to track its
location in the map, which is less sensitive to large viewpoint
changes than feature-based approaches, e.g. traversing in oppo-
site direction up and down a hallway. The low fidelity map also
makes the system more resilient to clutter and small changes in
the environment. The integration of the localization algorithm
with the mapping algorithm enables the system to operate in
novel environments and allows for robust navigation through the
mapped area—even under aggressive motion. A major part of
this project has been the collection of a large dataset of the
ten-floor MIT Stata Center with a PR2 robot, which currently
consists of approximately 40 kilometers of distance traveled. This
paper describes ongoing efforts to obtain centimeter-level ground-
truth for the robot motion, using prior building models.

I. INTRODUCTION

There are many challenges in building autonomous, large-
scale visual mapping systems that can operate over extended
periods of time. In this paper we report on our progress
towards developing such a system. We have collected an
extensive vision dataset using the PR2 with the purpose of
mapping the Stata Center (Fig. 1). Many areas have been
visited repeatedly to capture the longer term temporal shape
of the building. We are working towards recovering ground
truth for this entire dataset by automated alignment to floor
plans.

II. VISION SLAM

We have developed a vision based mapping system that
can construct large scale maps using an RGB-D camera [1]
fusing data collected over many months. The mapping system
integrates motion estimates from multiple sources, including
an IMU and wheel odometry in addition to visual odometry
(VO). An example of a map produced by the system is shown
in Fig. 2.

The system consists of several modules: (i) visual odometry,
(ii) appearance based loop proposals, (iii) view registration
and (iv) map estimation. The visual odometry is implemented
using the Fast Odometry from VISion (FOVIS) library [2].
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N00014-11-1-0688, and N00014-12-10020. The authors are with the Com-
puter Science and Artificial Intelligence Laboratory, Massachusetts Institute
of Technology, Cambridge, MA, USA mfallon,hordurj,kaess,
dmrosen,muggler,jleonard@mit.edu

Fig. 1. Ray and Maria Stata Center designed by Frank O. Gehry and
completed in 2004. The 10 floor, 67,000 m2 building is the home to the
Computer Science and Artificial Intelligence Laboratory.

The map is represented as a pose graph, where the nodes
are camera poses and the edges are constraints between the
poses. A configuration of the poses that best satisfies all
the constraints is computed using incremental smoothing and
mapping (iSAM) [3]. These constraints can come from the
visual odometry module and other sensors that are on the
robot, e.g. an IMU gives absolute constraints on roll and pitch
and relative constraints on heading.

An appearance based index is used to recognize when a
place is revisited [4]. It generates proposals which are verified
by computing the rigid body transformation between two
camera frames. This is done by minimizing the reprojection
error of the corresponding features. This transformation can
then be used to add additional constraints into the graph and
improve the overall accuracy of the map.

To avoid continuous growth of the graph, new poses are
only added when the camera senses parts of the environment
that are not sensed by other poses. This limits the number
of nodes in the graph—yet information acquired when going
from one place to another is still used to continually improve
the map.

III. CREATING A 3-D BUILDING MODEL

Using the poses estimates from the vision SLAM system,
evaluating a 3D model of the environment represented by point
clouds is a trivial matter of reprojection. An example of such
a model is as illustrated in Figure 2 (top). This representation
provides a visually appealing reconstruction of the building
and could be further processed to form a volumetric mesh
reconstruction. Additionally a voxel–based occupancy tree
could be used to aid path planning.

For the purposes of robust localization, we can also generate
a simplified model of large planar structure which is (1) un-
likely to change (2) anchored on the pose graph and (3) of very
small size (<10MB for the entire building). This approach



Fig. 2. Output of the Vision SLAM system: A dense 3-D point cloud of the
2nd floor of the Stata Center (top). Input to the KMCL Localization system:
A simplified model made up of only large planar objects (bottom).

extracts large planes from a single point cloud using RANSAC
and then progressively grows the planes using nearby scans.
The resultant plane–based model is also presented in Figure 2
(bottom).

IV. RGB-D MONTE CARLO LOCALIZATION

In our previous publication we presented Kinect Monte
Carlo Localization (KMCL, [5]) which localized using as input
a prior map produced in this manner. A particle filter algo-
rithm propagated an estimate of the robot’s pose using visual
odometry and as many as 1000 particles. Using an optimized
GPU rendering algorithm simulated depth images could be
efficiently generated and compared to the measured data to
evaluate the relative likelihood of each particle. Because the
algorithm could support such a large number of particles,
robust localization in motions as fast as 5 m/s were possible
while only using the RGB-D data as input.

V. KMCL AND VISION SLAM INTEGRATION

The two systems described above, KMCL and vision
SLAM, have their strengths and weakness. The localization
works well for tracking during aggressive motion, recovery
from visual odometry failures, and tracking multiple hypoth-
esis. Its main limitation is that it requires a prior map – thus
limiting its use in new environments.

While the mapping system is not as robust as the localiza-
tion system, it can construct a map of an unknown environ-
ment. These limitations of the two system are orthogonal to
each other. So by integrating these two system it is possible
construct a new system that improves over using the systems
individually. We are not the first to separate the tracking and
mapping, that was used with a monocular camera by Parallel
Tracking and Mapping (PTAM, [6]) with good results.

Our approach is to integrate the two systems in the following
way. Both the systems receive their input from the visual

odometry. The mapping system starts constructing a map as
before. As the map is built, planes are extracted and attached
to poses in the map. This allows for easy readjustment of the
map when loop-closure corrections occur. The plane map is
then forwarded to the KMCL tracker.

When the KMCL tracker starts receiving the map it can
track the robot position in parallel to the mapping process. Two
things that change in this scenario: (i) each particle tracks the
location relative to a nearby pose, thus if the map is corrected
the particles will move with that correction; (ii) the robot might
be exploring (in that case the map will not be available and the
tracker will be made aware of that situation). It is important to
note that the tracker is always tracking position relative to the
map, it does not care about the global accuracy of the map.

In addition to providing the map to the tracker, the mapper
can also propose feature-based relocalization using the bad
of words. This allows the tracker to introduce particles in
the proposed place and track that hypothesis to see if it
receives enough support. The mapper can use this information
to validate potential loop closures.

The tracker sends tracking information to the mapper and
can use this information to search for new loop closures
that can be used to refine the map. It can also be used to
recover from motion failures, and because the tracker uses
depth information it can better track when moving in the
opposite direction to that originally explored, e.g. up and down
a hallway—which is a challenge for feature based methods.

In this way these two algorithms complement each other
and by combining them into an integrated system, better
performance in both the mapping and localization processes
can be achieved.

VI. GROUNDTRUTH DATASET

As mentioned above during this project we set the lofty goal
of mapping the entire MIT Stata Center—not simply a single
time but continuously over an extended period of time. This
has resulted in an interesting and realistic 10 floor dataset. It is
particularly relevant given recent interest in long term SLAM
and autonomy as evidenced by a series of workshops including
the 2011 RSS SLAM Evaluation Workshop.

Some figures of merit regarding the dataset are as follows:
1) Period covered: January 2011 to May 2012.
2) Total distance: 40km over 10 floors.
3) Total filesize: about 2 Terabytes.
4) Total time: about 26 hours, 68 sessions
5) Sensors collected: Standard PR2 sensors plus a head–

mounted Microsoft Kinect. Various configurations.
To the best of our knowledge this dataset is the largest

dataset of continuous operation in a single location. We hope
that it will provide the basis for future research tackling
the scaling limitations of SLAM as well as more generally
contributing to long-term understanding and autonomy for
robotic systems.

Recently we having been working towards determining
ground-truthing for the data logs and making the dataset
available to the research community. The first part of the
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Fig. 3. Floorplan of the 3rd floor of the Stata Center, with units in meters.

dataset is now available from this location:
http://projects.csail.mit.edu/stata/

A. Requirements of a Ground Truthed Dataset

The progress of visual mapping, SLAM and 3D reconstruc-
tion have been motivated by and benchmarked using datasets
such as the Middlebury Evaluation System [7] which can be
used to make a clear comparison between different algorithms
and implementations.

Additionally, simulated and real-world datasets such as
the Victoria Park, Manhattan and Intel datasets have been
widely used to compare the graphical SLAM backend, for
example [3]. This dataset is intended to extend this approach
to Visual SLAM by the provision of an extensive, rich multi-
sensor dataset. Previously Sturm et al. [8] have developed an
automated system for the comparison of 3D RGB-D SLAM
systems using a motion capture system to provide ground
truth—the Freiburg dataset.

However, due to the constraints of the motion capture
system the Freiburg dataset is limited 36 minutes and 400
meters across 16 experiments. Our dataset is intended to be
symbiotic with the Freiburg dataset but at a much larger scale.

B. Extraction of Ground Truth

We recognize that the utility of any mapping database is
vastly increased by access to ground-truth robot and sensor
pose measurements. Thankfully our building is relatively new
and our institute’s services department maintains accurate and
reliable 2D building plans of each floor of the building as
illustrated in Figure 3.

The ground truthing process involves a combination of (1)
incremental alignment of scans from the PR2’s Hokuyo URG-
04LX-UG01 base laser, (2) global alignment of scans with
the model where clearly correct alignment can be observed
and (3) smoothing of these 2–3 second subproblems. The

Fig. 4. Example of a portion of the ground truthed PR2 trajectory (green)
and the alignment of a single scan to the floor plan. Note that door recesses
and clutter cannot be matched to the model.

scan-matching algorithm is that presented in [9]. An example
alignment is illustrated in Figure 4. We have taken particular
care that the poses estimated are in no way correlated across
the map—providing instantaneous measurements of error for
each pose to an accuracy of 2–3 cm.

The PR2’s ROS coordinate frame manager, tf, maintains the
internal relative calibration of each sensor. This allows us to
provide pose estimates of its tilting Hokuyo, Microsoft Kinect
and stereo camera.
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