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Abstract—In this paper we present work in progress on
the development of a low-cost autonomous robotic platform
that integrates multiple state-of-the-art techniques in RGB-D
perception to form a system capable of completing a real-world
task in an entirely autonomous fashion. The task we set out to
complete is determining the location of a preselected object within
the physical world. This experiment requires a robotic framework
with a number of capabilities including autonomous exploration,
dense real-time localisation and mapping, object detection, path
planning and motion control.

I. INTRODUCTION

In this paper we present on-going work to combine a
number of recent advances in RGB-D-based perception re-
search to develop an autonomous low-cost wheeled robot. The
development of the platform is based around the challenge of
autonomously locating a preselected object within the robot’s
surroundings. The underlying motivation for the work is to
investigate the challenges encountered in integrating multiple
robust RGB-D based perception techniques which we have
developed in our previous research [2, 3, 5, 8, 9], into a single
robot framework. The resulting framework includes modules
for autonomous exploration, dense real-time localisation and
mapping, object detection, path planning and motion control.
Our work is related to a number of other recent efforts that

seek to develop and exploit an object-based and/or semantic
understanding of a mobile robot’s environment. Aydemir et
al. [1] investigate techniques for active visual search for ob-
jects in a robot’s environment, exploiting spatial relationships
between objects to develop efficient search strategies. Their
paper suggests the use of “dense 3D point cloud represen-
tation[s] of scenes to guide the search”, which is something
that is enabled in our work via the Kintinuous framework for
dense RGB-D SLAM. Other related recent work includes the
work of Salas-Moreno et al. [6], which develops SLAM++
(an object-oriented approach to SLAM), and Herbst et al. [4],
which performs automatic discovery of objects via multiple

Fig. 1: Photograph of the Turtlebot 2 platform used in our
experiment. It is a 2-wheeled platform with an RGB-D sensor,
controlled by an onboard computer (a standard laptop in this
scenario).

views of a scene. Also related is a large body of recent work
by Saxena et al. [7] which develops techniques for a PR2 robot
to detect, classify and grasp objects in a variety of different
contexts.

II. SYSTEM OVERVIEW
The experimental setup includes a robotic platform, a laptop

(to interface onboard the robot) and a workstation computer.
The robot in our experiment is the Clearpath Robotics Turtle-
bot 2 platform, shown in Figure 1. The laptop onboard the
turtlebot is equipped with an Intel Core i7-3630QM CPU,



(i)

(ii)

Fig. 2: This figure shows the two main steps involved in
executing the required task. The top subfigure (i) illustrates
the first step in the process. The robot is set to explore the
environment while streaming the RGB-D data captured with
the onboard sensor back to the workstation over 802.11n
WiFi. The workstation uses this data to reconstruction a
globally consistent map of the explored environment in real-
time, signalling the robot to cease exploration when a loop
has occurred. In the second step, shown in subfigure (ii), the
workstation simplifies the dense map such that it is suitable for
real-time localisation and detects the position of the desired
object in the dense map. This information is sent to the robot
which then navigates to the detected object using onboard real-
time path planning and control against the simplified map.
Details for each of the individual components are provided in
the text.

24GB of RAM and an nVidia GeForce 675M GPU with 2GB
of memory. The workstation computer is a standard desktop
PC running Ubuntu 12.04 with an Intel Core i7-3960X CPU
at 3.30GHz, 16GB of RAM and an nVidia GeForce 680GTX
GPU with 2GB of memory. A demonstration of the operation
of the complete system can be viewed at:

https://www.youtube.com/watch?v=XqDUniEY954.
Figure 2 shows the two main steps involved in the process.

Details of each of the steps taken by each of the components
labelled alphabetically in Figure 2, are provided below, in-
cluding the specific instances in the actual experiment carried
out.
(a) Avoidance-based Exploration - A simple approach to

exploration is adopted in this experiment. Planning is
carried out onboard in real-time on the robot itself using
the immediate RGB-D data captured with the onboard
sensor. The approach attempts to maintain a constant
distance to any surfaces to the left of the robot not

Fig. 3: Dense reconstruction of the area autonomously ex-
plored by the robot.

Fig. 4: Planar simplification of the area autonomously explored
by the robot with triangulation overlaid.

lying on the ground plane. This is accomplished by
analysing a single line of the depth map at the height
of the sensor off of the ground plane. The bearing and
forward velocity of the robot is recalculated every frame
(i.e. at 30Hz) depending on the relative distance to any
surfaces detected in the depth map which the robot may
collide with. While simple in practice, this method for
exploration works well in most environments and is
suitable for use as a simple proof-of-concept example.
A more sophisticated coverage-based approach could be
adopted to improve performance in more complicated
environments.

(b) Dense SLAM - In order to reconstruct the environment
explored by the robot in real-time, the SLAM approach
outlined in [9] is employed on the workstation computer.
While the robot explores the real world, the RGB-D data
captured by the onboard sensor is streamed in real-time
over 802.11n WiFi to the workstation machine. Once a
loop closure is detected in the explored area, the robot is
signalled to stop exploring. Figure 3 shows the resulting
reconstruction of the explored area.

(c) Planar Simplification - As we discuss in Step (f), a
simplified planar map of the environment is required
for real-time localisation. For this we apply the planar
simplification technique described in [5] to the dense
reconstruction obtained from Step (b). This model is

https://www.youtube.com/watch?v=XqDUniEY954
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Fig. 5: From left to right; (i) Learned model of a trash can
from a previous scan, with triangulation shown; (ii) Detected
position of the object within the mapped environment high-
lighted in red.

quick to compute and also provides a format in which it
is trivial to perform floor plane detection and alignment
for 2D path planning (by taking the plane with the
largest area with the correct relative transformation to the
capturing sensor). Figure 4 shows the simplified planar
model computed from the dense map. This compact
scene model is transferred to the robot wirelessly for
autonomous navigation and localisation in the subsequent
steps.

(d) Object Detection - In order to query the robot to navigate
to a point of interest, we choose to learn a number of
object models as a precursor step the experiment. From
this point, provided steps (b) through (c) have succeeded,
we can query the system with a known object model. If
the system can locate the object within the dense map
provided by Step (b), a path can be planned from the
last known location of the robot through the environment
using the simplified model provided by Step (c). To learn
the segmentation parameters for different object models,
we use the approach presented by Finman et al. [3].
Figure 5 shows a sample object model learned by the
system, and the highlighted detection of the object within
the dense map provided by Step (b).

(e) Path Planning - The simplified planar model provided
by Step (c) includes detection of and alignment with the
floor plane. By projecting the remainder of the model
onto the floor plane a simple occupancy grid map of the
environment can be recovered. From here, the configu-
ration space of the robot can be computed and 2D path
planning within the occupancy grid can easily be carried
out. In our implementation we seed the path planner with
the last known location of the robot and the location of
the detected object and run the A* search algorithm to
find a path through the occupancy grid. From here we
simplify the A* path using a greedy ray-tracing method
to get a set of sparse waypoints within the environment.
Figure 6 shows the path planned through the environment
in our experiment.

(f) Onboard Localisation and Control - Given a simplified
model of the environment to localise against and a target
point to reach in the map, the robot must autonomously
navigate to each point in the planned path in a closed-loop

Fig. 6: This figure shows the path planned from the last known
location of the robot (top right) to the location of the detected
object in the environment. White space is not considered, while
grey space is unoccupied but outside of the configuration space
of the robot. The path is shown in green while the control
waypoints are shown in blue.

Fig. 7: This figure shows the KMCL system in action as the
robot navigates to a target waypoint in the environment in
real-time. Shown is the simplified planar model, as well as
a number of particle filter estimates of the robot’s current
position.

fashion. For this we use the Kinect Monte Carlo Local-
isation (KMCL) system of Fallon et al. [2]. The KMCL
system is a particle filter-based localisation system that
uses predicted RGB-D frames from within a planar model
of an environment as the basis for a likelihood function
in comparison to actual RGB-D sensor readings. Figure 7
shows a screenshot of the KMCL system in action during
our experiment. The estimated position of the robot is
updated at camera frame rate while a simple proportional
controller firstly aligns the orientation of the robot with
the location of the next waypoint, before adjusting the
forward velocity of the robot to reach the waypoint. Once
the robot has reached the position of the desired object
in the environment, motion is ceased.



III. DISCUSSION AND FUTURE WORK

The purpose of this case study was to merge a number
of recent advances in RGB-D-based perception research to
accomplish a simple real-world task using low-cost commodity
components. In this sense, the experiment was a success
demonstrating clear fitness for purpose. This experiment also
highlights the importance of each component of the system
and how each is necessary in completing the task. Namely,
real-time dense mapping is required to inform the robot that
it no longer needs to explore and can immediately access a
globally consistent model which can be used for subsequent
object detection and future motion planning. The density of
the initial map is necessary for performing the detection of
a variety of objects commonly found in real-world environ-
ments. In contrast to this, quick access to a simplified planar
representation of the environment is needed to perform real-
time onboard localisation in the mapped area for path planning
and motion control.
One observation made during the execution of this ex-

periment was both the compounding of failure rates, and
the potential for a cascading effect due to a non-terminal
error in the upstream processing resulting in a failure in
the downstream processing. As a consequence a number of
consecutive runs were required for the robot to complete the
task due to the individual rates of failure of each component of
the system compounding together. Examples of the individual
failures included frame-drops in the wireless streaming of the
raw RGB-D image sequence to the SLAM server, failure of the
planar segmentation algorithm to robustly estimate the ground
plane (e.g. due to the errors in the reconstruction process), and
failure of the object segmentation and hence recognition due to
spurious geometry introduced from noise in the reconstruction
process. Of the above, we found that the principal source of
error in the system was the unreliable nature of the wireless
streaming. This would result in dropped frames which in turn
would result in a degradation in camera tracking and 3D scene
estimation.
This is one of the key observations of the experiment which

highlights the fact that the development of techniques which
although alone are quite robust and reliable is not necessarily
enough when it comes to combining these techniques together
into a complete framework when attempting to accomplish a
larger, higher level task.
In future work, we aim to both extend the system’s robust-

ness and to quantitatively evaluate its performance and failure
modes. In terms of object detection and recognition, we seek to
increase the number of objects in the repertoire of the system,
drawing on techniques for object-oriented 3D SLAM [6]. We
will also explore the challenge of maintaining object-oriented
maps in dynamic environments, investigating techniques for
efficient “web crawling” for the physical world. Our ultimate
aim is to further develop the platform to permit robust long-
term autonomous operation over considerably larger scale en-
vironments with a much richer semantic searching capability.
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