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ABSTRACT

Particle Filter-based Acoustic Source Tracking algorithms
track (online and in real-time) the position of a sound source
- a person speaking in a room - based on the current data from
a distributed microphone array as well as all previous data
up to that point. This paper develops a previously introduced
multi-target (MTT) methodology to allow for an unknown
and time-varying number of speakers. Finally examples show
typical tracking performance in a number of different scenar-
ios with simultaneously active speech sources.

Index Terms— Monte Carlo methods, Microphones,
Acoustic tracking, Filtering, Speech processing

1. INTRODUCTION

The application of particle filtering to speech source locali-
sation and tracking (AST) is an increasingly active area of
research. A seemingly simple problem at the outset, AST is
complicated by the existence of noise sources, reverberation,
other speech sources and - possibly most challenging of all -
the non-stationarity of speech.

The field has developed very recently from tracking
single-source recordings in synthetic environments [1], to
tracking in real and challenging environments [2], and re-
cently to tracking multi-source recordings [3]. However these
algorithms typically assume that the source(s) are active from
the start of the algorithm and run to its end without any major
silent pauses - which is obviously an over-idealisation.

Previously we introduced a methodology for multi-target
tracking of acoustic sources. The method avoided data as-
sociation by use of the track-before-detect paradigm, [4],
and tracked multiple sources simultaneously. Again this
technique assumed knowledge of the number of sources in
the surveillance region as well as their initial positions.In
the following an entirely probabilistic strategy is proposed
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which identifies newly active sources, keeps track of them
and removes them when they become inactive.

Note that the Steered Beamformer Function (SBF) is used
to isolate localisation information from each frame of micro-
phone array audio, as previously used in [2, 3].

2. EXISTENCE GRID

An important part of our particle filtering algorithm is an
effective proposal mechanism for initiating new targets and
deleting existing ones. An approach which does not include
such a carefully designed data-dependent proposal mecha-
nism is likely to suffer from poor exploration of the variable
dimension target space. To achieve this goal we adopt an
existence grid approach, based quite closely upon [5], but
with likelihood functions carefully designed for our acoustic
localisation framework. This existence grid is a low resolu-
tion grid overlayed on the surveillance region and updated at
each iteration to reflect our belief in the existence of target(s)
in each of the cells of the grid.

Evaluating the SBF function using a low band of frequen-
cies, in this caseΩ ∈ [100, 400]Hz, reduces the peaked nature
of the underlying surface, as discussed in [6]. As a result a low
resolution grid, withJ cells with cell dimensions in the order
of 60-120cm across, can provide a coarse estimate of regional
activity for the current frame of audio. Using the Bayesian
update framework discussed by in [5], this estimate can be
combined with previous data to give a posterior estimate of
activity in each cell. It is important to note that because of
these two design choices the computational draw of this mod-
ule is very small, especially when compared with the ensuing
particle filter.

While details of the updating procedure can be found in
[5], it is necessary to design likelihood functions for eachex-
istence cell, given it contains at least one target,p(zj |oj = 1),
or no targets,p(zj|oj = 0).

Having first used a normal CDF to map the SBF values
onto the range[0, 1] (similar to that used in [3]), the likelihood



functions for cellj will then be as follows:

p(zj |o
k
j = 1) = c1(N (zj ; 1, σ1) + q1), 0 < zj < 1

p(zj |o
k
j = 0) = c0(N (zj ; 0, σ0) + q0), 0 < zj < 1(1)

whereq1 andq0 allow some heavy-tailed behaviour in both
active and inactive cases.c0 andc1 are the normalising con-
stants necessary to normalise the pdfs in the interval[0, 1].
zj is the (CDF-transformed) low frequency steered response
power evaluated at the centre of cellj. Variance and noise
floor constants used herein are as follows, based on careful
tuning to real datasets: Active Source:σ1 = 0.02 andq1 = 7;
Inactive Source:σ0 = 0.4 andq0 = 40. Note the large dif-
ference between the variances used - which illustrates thatan
active source measurement is deemed to be much more infor-
mative than aninactive source measurement.

The whole procedure produces, at each time framek and
for each cellj, a probabilitygj for activity of targets. These
values, in association with the configuration of active targets
within particles at the previous time frame, are used to pro-
pose target initiations and deletions within the particle filter,
which is now described.

3. TRACKING FRAMEWORK

The tracking system will utilise a variable-dimension parti-
cle filter to keep track of the time-varying number of sources
present in the room. The strategy is similar to the framework
of [7], combined with an activity grid-based target proposal
method similar to [5]. The number of targets,Tk, within each
individual particle may vary in the range{0, . . . , Tmax}, rep-
resenting the number of speakers deemed to be active at any
given timek. Tmax is the maximum number of simultaneously
active speakers and is chosen to be 3 in our experiments. An
individual particle state-space, containingTk targets at time
k, is defined as follows

Ak = (α1
k, . . . , αTk

k , Tk) (2)

with an associated particle weightingwk. Each target,αt
k,

will contain position and velocity components in theX and
Y-dimensions,αt

k = (xt
k, yt

k, ẋt
k, ẏt

k). The aim of particle
filtering is to update the posterior probability density forthe
entire vector given in (2) using information drawn from the
current measurement set,Zk.

3.1. Data Model

Each active target within the state-space system will be mod-
elled to evolve according to a nonlinear state transition equa-
tion based on the Langevin dynamical model which has been
used previously in this field, see [1, 2, 3]. This will allow us
to form the dynamic model in for a targetαt

k which has been
active in framesk− 1 andk. In terms of probability densities

we have then thatp(αt
k|α

t
k−1) = N (αt

k; f(αt
k−1), σ

2
e
) where

the formulation is as in Eq. (8) of [6].
Within our framework we propose also to model the

random appearance (‘birth’) and disappearance (‘death’) of
speakers. For simplicity we will assume at most one target
may appear or disappear at each time step:

Tk = Tk−1 + ǫk (3)

and will do so with a prior probability distribution

p(Tk|Tk−1) =







Pr(ǫk = −1) = hd

Pr(ǫk = 0) = 1 − hb − hd

Pr(ǫk = 1) = hb

(4)

wherehb andhd are probabilities of incrementing and decre-
menting the number of targets, respectively. In generalhb and
hd will be set equal, except whenTk−1 is equal to 0 orTmax.

The prior state distribution of new target births,p0(α
t
k),

may be chosen to reflect areas of the room in which new
speakers are more likely to appear - such as near the door-
ways of a room. To maintain the generality of our approach
no such information will be used at this stage and the prior
distribution of the location parameters will be set to be uni-
form across the cell,p0(x

t
k, yt

k) = US(xt
k, yt

k), whereS will
be the volume of the entire surveillance region. Secondly, the
prior distribution of the velocity componentsp0(ẋ

t
k, ẏt

k) will
be initiated normally around zero velocity to give

p0(α
t
k) = p0(x

t
k, yt

k) × p0(ẋ
t
k, ẏt

k) (5)

Thus the overall prior distribution of the full state vector,Ak,
can be stated as follows

p(Ak|Ak−1) = pα(α1:T
k |α1:T

k−1, Tk, Tk−1)pT (Tk|Tk−1) (6)

where the portion of the prior related to the target positions
can be broken down as

pα(α1:Tk

k |α1:Tk

k−1 , Tk, Tk−1) =










∏Tk−1

t=1,t6=t′ p(αt
k|α

t
k−1) if Tk = Tk−1 − 1

∏Tk−1

t=1 p(αt
k|α

t
k−1) if Tk = Tk−1

p0(α
Tk

k ) ×
∏Tk−1

t=1 p(αt
k|α

t
k−1) if Tk = Tk−1 + 1

(7)

andt′ is the target removed at timek.

3.2. Sequential Monte Carlo Methods

As mentioned above our goal is to estimate the joint posterior
distribution of the target states recursively, and we adoptthe
standard two step Bayesian update rule. However for many
models of interest the evaluation of the integral and update
steps is intractable. As a result Sequential Monte Carlo meth-
ods have been proposed to approximate the recursion for such
complex measurement or dynamical models. The basic idea
is that a complex probability distribution can be represented



as a set of weighted Monte Carlo importance samples, see [8]
for a recent survey.

The problem at hand has many state variables and more-
over has a time-varying number of speakers encoded into it.
Hence, instead of sampling from the dynamical model alone,
as would be done in the standard bootstrap versions of parti-
cle filtering, we will instead sample theith particle for the new
state vector from an appropriately selected proposal function

A
(i)
k ∼ q(Ak|A

(i)
k−1,Z1:k) (8)

∼ qα(α
(:)
k |α

(:)(i)
k−1 , T

(i)
k , T

(i)
k−1,Zi:k)qT (Tk|T

(i)
k−1,Zi:k)

whereqα(·) andqT (·) are importance sampling functions for
the position/velocity and target number states respectively,
and an appropriate correction is then made for the bias in-
troduced in the importance weighting step (see again [8] for
details).

According to (8), we first propose the new target num-
ber in time-framek by first removing unsupported targets and
then adding targets to newly active regions of the existence
grid as follows.

1. Removal of targets:Using the existence cell probabil-
ities evaluated in Section 2,g1:J , a set of relative probabilities
for the removal of a target are evaluated, using Eq. (52) of
[5], ν1, . . . , νTk−1

. The sum of these terms, representing the
overall probability of any one of the targets being removed,is
Vk. This, along with a constant probability for the removal of
no target, are used to draw a decision of whether a target is
removed or not

q(Tk|k−1|T
(i)
k−1) =

{

Pr(ǫk|k−1 = −1) = V̄k

Pr(ǫk|k−1 = 0) = 1 − V̄k

Should the removal of a target be decided upon, a random
draw from the set of target removal probabilities is made,
the associated target is removed and the intermediatory tar-
get number is decremented as followsT

(i)
k|k−1 = T

(i)
k−1 − 1.

Otherwise no action is made.
2. Initiation of new targets: In a similar manner to the

above a set of relative probabilities for the addition of a new
target are evaluated,κ1, . . . , κJ and the sum of the these prob-
abilities isKk. A decision is then made

q(T
(i)
k |T

(i)
k|k−1) =

{

Pr(ǫk = 0) = K̄k

Pr(ǫk = 1) = 1 − K̄k

where(1 − K̄k) is the (normalised) probability of adding no
new targets. Should a new target addition be decided upon,
a random draw is made to chose a cell in which it should be
initiated.

Having selected the cell, the target position is initialised
using a weighted combination of a uniform distribution within
the physical region of cell,Sj , and a normal distribution cen-
tred on the weighted mean of any particle states currently ex-
isting in that cell, the idea being that some particles may have

detected the correct object position in an earlier time frame,

α
t(i)
k ∼ q0(α

t
k|Z1:t)

∼ βN (αt
k; ᾱ

(j)
k , σ̄

2(j)
k ) + (1 − β)USj

(αt
k) (9)

3. Updating of persistent target positions: Finally
the states of targets persisting from time-stepk − 1 are
propagated using the Langevin dynamical model,α

t(i)
k ∼

q(αt
k|α

t(i)
k−1,Zk).

In this way four distinct events can occur: one target may
be birthed to a particle, one may be removed from a parti-
cle, a target by be birthed and another removed and finally no
change in the target set may occur from the previous time-
step.

3.3. Importance Weights

Having determined the particle set for current iteration, the
importance weights will be updated using

w
(i)
k ∝ w

(i)
k−1

l(Zk|A
(i)
k )p(A

(i)
k |A

(i)
k−1)

q(A
(i)
k |A

(i)
k−1,Z1:k)

. (10)

where the likelihood term is determined up to a constant of
proportionality by using a likelihood ratio calculation, as in
[4, 3]. The SBF grid with a 10cm density integrated over the
frequency range of 200-6000Hz. The formulation as a likeli-
hood ratio implies that we only need evaluate this function at
the grid cells that contain targets, and the computation needs
only be made once and stored for each grid cell, and not for
each particle containing a target within that cell. This SBF
surface is computed separately from the low resolution SBF
required for the activity grid detector in Section 2 and the
likelihood ratio is calculated as

l(Zk|A
(i)
k ) =

t=Tk
∏

t=1

exp(
2zt − 1

2σ2
N

) (11)

where the target is located in cellt andzt is derived from the
steered response power of the SBF steered to the centre of that
cell in the same way as (1). This likelihood ratio is the same
as was used in [3]. Note that this ratio is a special case of the
likelihoods of the form found in 1 withσ0 = σ1 = σN and
q1 = q0 = 0.

Finally it should be noted that because of the temporal
discontinuity of speech, for multiple acoustic source track-
ing it is necessary to trade off the better tracking accuracy
of a dominant source against improved tracking stability of
weaker, less active sources. This trade-off involves careful
choice of the likelihood parameters and judicious use of re-
sampling strategy parameters.

4. EXPERIMENTS

To test the algorithm, a set of recordings were made in a typ-
ical office room with twelve microphones spaced around a



roughly 5m x 5m space and illustrated in 2. The setup and
other details were identical to that used in [3]. 500 particles
were used in iterations which allowed for in realtime opera-
tion in MATLAB on a typical PC.

Figure 1 depicts tracking performance in theX andY-
dimensions for two alternating speakers taking part in a con-
versation. The duration of the sample is 20 seconds. The
location of each source duringactive speech is indicated by
a solid line. Overlayed is the results of a typical run of the
algorithm. Every twentieth estimate of the estimated active
source location is given while the variance of the estimatesis
indicated by error bars. The algorithm can be seen to correctly
identify and track the active source and to quickly switch be-
tween the two speakers.
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Fig. 1. Example of tracking two sources in conversation. Note
that at 10 seconds the error bars indicate high uncertainty in
the silent gap between the speakers.

Figure 2 illustrates the tracking of two sources alternat-
ing between activity and inactivity which includes segments
in which both sources are simultaneously speaking. The up-
per plot illustrates tracking performance in both X and Y di-
mensions with source position estimates indicated by crosses.
The lower plot illustrates the number of sources estimated to
be active (again indicated by crosses) compared to the num-
ber that actually were. The algorithm is seen to preform both
of the tasks successfully.

5. CONCLUSION

A probabilistic algorithm for the detection and tracking of
an unknown and time varying number of speaker has been
proposed and demonstrated. While there exists considerable
scope for further optimisation of the algorithm, the results il-
lustrate an ability to track more than one source simultane-
ously and in real-time. The main limitation of the algorithm
is a maximum number of simultaneous active sources, could
perhaps be improved by notch filtering of dominant speakers.
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Fig. 2. Tracking two simultaneously active sources.
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