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Abstract
Most everyday tasks involve multiple modalities, which raises the question of how
the processing of these modalities is coordinated by the cognitive system. In this
paper, we focus on the coordination of visual attention and linguistic processing
during speaking. Previous research has shown that objects in a visual scene are fix-
ated before they are mentioned, leading us to hypothesize that the scan pattern of
a participant can be used to predict what they will say. We test this hypothesis us-
ing a data set of cued scene descriptions of photo-realistic scenes. We demonstrate
that similar scan patterns are correlated with similar sentences, within and between
visual scenes; and that this correlation holds for three phases of the language pro-
duction process (target identification, sentence planning, and speaking). We also
present a simple algorithm that uses scan patterns to accurately predict associated
sentences by utilizing similarity-based retrieval.

Keywords: Scan patterns; eye-movements; language production; scene understand-
ing; cross-model processing; similarity measures

Introduction

Most everyday tasks humans perform involve multiple modalities. In order to successfully
complete such tasks, information processing in all relevant modalities needs to be coordinated by
the cognitive system. For example, the actions involved in making tea (finding the kettle, transport-
ing it to the sink, locating and turning on the tap, etc.) involve a close interplay of visual attention
and motor control, and eye-tracking studies indicate that fixations on task-relevant objects are co-
ordinated with the appropriate motor actions, and typically precede them by around 600 ms (Land,
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Mennie, & Rusted, 1999). Furthermore, successful task completion requires that motor actions oc-
cur in a certain order, hence scan patterns (i.e., the temporal sequences of fixations across spatial
locations) show a high degree of consistency across participants during everyday tasks such as walk-
ing, driving, playing ball games, or preparing food (see Land, 2006, for a review).

Language production is also an everyday task, and one that often happens in a visual context
(giving directions on a map, explaining the function of a device, describing a picture). Cross-modal
coordination is required in order to successfully construct linguistic descriptions in a visual con-
text: objects need to be located in the scene, their visual features extracted, and relevant context
information retrieved (e.g., for disambiguation: the book on the floor vs. the book on the desk).

Studies on situated language production show that visual objects tend to be fixated around
900 ms before their linguistic mention (Griffin & Bock, 2000), and that the production process (e.g.,
the selection of referents and the associated syntactic environment) is guided by visual information
processing: a brief flash on a target location, prior to scene onset, favors its linguistic encoding
(Gleitman, David January, Rebecca Nappa, & Trueswell, 2007).

Results such as these indicate that cross-modal coordination in language production occurs
based on shared referential information. Visual referents, such as objects (Griffin & Bock, 2000) or
locations (Gleitman et al., 2007), trigger the production of the corresponding linguistic referents.
Furthermore, we can hypothesize that the ordering of referents is exploited for cross-model coordi-
nation: both the visual processing stream (scan patterns performed on a scene) and the linguistic one
(sentences uttered) are sequentially ordered. The order of referents is in fact a crucial determinant
of the meaning of an utterance (dog bites man vs. man bites dog).

If referents, and the order they occur in, are at the heart of the coordination between visual
processing and language production, then it should be possible to exploit this relationship directly.
In particular, it should be possible to retrieve a sentence a participant will say based on the associated
scan pattern information.

The aim of the present paper is to test this hypothesis. More specifically, we will first show
that scan pattern similarity and sentence similarity are correlated in a sentence production task, and
subsequently demonstrate that it is possible to utilize cross-modal similarity to predict the sentence
a participant produced based on the associated scan pattern. In the context of this paper, prediction
is operationalized as a retrieval. Thus, by “prediction” we mean that the correct sentences is selected
from a pool of available utterances based on the associated scan pattern. Our sentence production
task requires participants to generate a verbal description of a photo-realistic scene, after being
prompted with a cue word that refers to one of the objects in the scene. This task has similarities
with visual search, a well-studied task in the visual cognition literature. We can assume that the
cue for the scene description triggers a search for the corresponding object in the scene. Once the
target has been found, further search processes are initiated to identify other objects that need to
be mentioned to produce a well-formed sentence. These search processes are driven by contextual
expectations arising from the sentence the participant is planning to utter, and from the properties
of the objects he or she has already identified.

Such context effects are well-established in visual search experiments. When participants
inspect naturalistic scenes in order to locate an object, their attention is guided by expectations about
likely target positions (Findlay & Gilchrist, 2001; Neider & Zelinsky, 2006; Henderson, 2007). In
indoor scenes, for example, mugs are likely to be located on desks or worktops, while paintings
are likely to be found on walls. Such contextual expectations are computed at the first fixation on
a scene (Potter, 1976; Vo & Henderson, 2010) and constrain subsequent fixations to regions that
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are contextually relevant (Torralba, Oliva, Castelhano, & Henderson, 2006). We expect context to
play a similar role in a cross-modal task such as scene description, in particular as there is evidence
that visual search can avail itself of linguistically specified context information. For example, a
verbal description of the search target conveys an advantage over a pictorial specification (Yang &
Zelinsky, 2009), with more detailed descriptions conveying a larger advantage (Schmidt & Zelinsky,
2009). Furthermore, Griffin and Bock’s ((2000)) study finds that eye-movements during verbal event
description and (non-verbal) event comprehension are similar, but differ from those during free
viewing. These results confirm the role of contextual and task factors in visual processing, and
indicate that these factors are also an important determinant of eye-movements during linguistic
processing.

Contextual factors affect not only the location and duration of fixations, but also their se-
quence (the scan pattern). In a scene memorization experiment, Foulsham and Underwood (2008)
exposed participants to the same scene twice (once for encoding and once for recognition) and
found that the resulting scan patterns were more similar than if participants were exposed to two
different scenes. Scan pattern similarity is increased further if participants are engaged in the same
task (encoding/recognition vs. imagery), as Humphrey and Underwood (2008) demonstrated. These
results for single-modality processing are confirmed by studies using cross-modal tasks, such as
making tea (Land et al., 1999) or preparing a sandwich (Hayhoe, 2000). In these tasks, scan patterns
are observed to be highly similar across participants, presumably because eye-movements have to
be coordinated with sequences of motor actions, which are largely predetermined by the nature of
the task. We expect this finding to carry over to the cross-modal task under investigation in the
present paper, scene description, which typically requires a close coordination of eye-movements
and linguistic processing.

Previous research investigating this coordination has mostly employed the Visual World
Paradigm (Tanenhaus, Spivey-Knowlton, Eberhard, & Sedivy, 1995), in which participants listen
to a speech stimulus while viewing a visual context (typically an array of objects). Research using
this paradigm has demonstrated a clear link between the processing of certain linguistic construc-
tions and attention to contextually relevant visual information (e.g., Knoeferle & Crocker, 2006).
However, most visual world studies have focused on specific psycholinguistic phenomena (e.g., at-
tachment ambiguity) rather than on general mechanisms underlying the coordination between scene
understanding and sentence processing.

The aim of the present paper is to unify previous evidence about the interaction of visual and
linguistic processing under the theoretical framework of cross-modal coordination. We demonstrate
the validity of this framework by testing the hypothesis that scan pattern information is predictive
of sentence production. In particular, we assume cross-modal coordination of visual and linguistic
processing to be primarily based on referential overlap, i.e., the objects looked at are associated with
the words mentioned. Moreover, we expect cross-modal coordination to unfold sequentially across
the two streams, i.e., objects are looked at before being mentioned.

Note that the existing visual world literature does not provide direct evidence to this hy-
pothesis, as the cross-modal similarity of visual and linguistic information has not being quantified
before. Moreover, in contrast with previous research, we are able to apply the theoretical principle
of cross-modal coordination and implement a retrieval algorithm that is able to correctly identify a
sentence on the basis of the associated scan pattern information, among all other possible sentences.

Beside advancing the understanding of situated language production theoretically, our results
introduce a novel and more integrated methodological approach to the analysis of visual and linguis-
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tic information. In fact, most of the published visual world experiments use objects arrays (usually,
3-5 objects) or simple scenes (line drawings or clip art). Even if scenes are used, these tend to be
highly artificial and their referential information is often contextually unrelated (e.g., scenes involv-
ing a WIZARD and a BALLERINA in Knoeferle & Crocker, 2006). Instead, we use photo-realistic
scenes and fully explore their complexity by studying scan patterns rather than looks to specific re-
gions of interest. We are aware of one other recent study (Andersson, Ferreira, & Henderson, 2011)
using photo-realistic scenes, but this work does not go beyond the analysis of specific target re-
gions, therefore merely confirms the results of existing studies with image arrays containing a large
number of objects.

Also the range of linguistic structures investigated in VWP literature is comparatively small
(e.g., Griffin & Bock, 2000, only looked at actives and passives), while our aim is to investigate a
varied range of productions. Similarly to the scan pattern information, we will explore the sentence
information as a whole, rather than focusing on specific target words.

In a nutshell, in order to obtain a maximally general test of the hypothesis that scan patterns
predict sentence productions based on the principle of cross-modal coordination, this paper employs
data from a cued sentence production experiment with a diverse set of photo-realistic scenes con-
taining a large number of objects, where participants were free to produce any scene description
they liked.

Method

The aim of this experiment was to test the claim that scan patterns on visual scenes are
predictive of sentence productions. More specifically, we investigated whether there is an associ-
ation between scan pattern similarity and sentence similarity, using both correlation analysis and
mixed effects modeling.1 Moreover, in order to strengthen the theoretical validity of our results and
demonstrate a concrete application of our work, we develop an algorithm able to accurately retrieve
a sentence based on the associated scan pattern.

Data Collection and Pre-processing

The data used in this study was that of Coco and Keller’s ((2010)) language production ex-
periment. In this experiment, 24 participants were eye-tracked while describing photo-realistic in-
door and outdoor scenes. The experimental materials consisted of 24 different scenes, all of which
depicted indoor environments, drawn from six different scenarios (e.g., bedroom, entrance). The
experiment also included 48 fillers.

For each scene, participants were prompted with a cue word which referred to a visual object
in the scene, and were told to use the cue word in their description. The cue was presented in written
form at the beginning of the trial for 750 ms before the onset of the scene. The cue words were
either animate or inanimate (e.g., man or suitcase) and were ambiguous with respect to the scene,
i.e., they could refer to more than one depicted object (see Fig. 1 for an example trial).

Participants’ eye-movements were recorded using an SR Research Eyelink II eye-tracker
with sampling rate of 500 Hz on a 21” screen (1024× 768 pixel resolution), while the speech of the
participants was recorded with a lapel microphone.

1We only report the results for one similarity measure here; corroborating results involving a larger range of similarity
measures are presented in Appendix A.
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Figure 1. Example of scene and cue words used as stimuli for the description task. Each scene
was manually segmented into polygons, drawn around objects using the LabelMe toolbox (Russell,
Torralba, Murphy, & Freeman, 2008). Each polygon was annotated with the corresponding linguistic
label.

The resulting data set contains 576 sentences produced for the 24 scenes. The sentences were
manually transcribed and paired with the scan patterns that participants followed while generating
them. Two pairs were discarded because the sentences were missing. Each scene was fully annotated
using the LabelMe toolbox (Russell et al., 2008) by drawing bounding polygons around the objects
in the scene and labeling them with words (see Fig. 1). These polygons were used to map the fixation
coordinates onto the corresponding labels. Objects can be embedded into other objects (e.g., the
head is part of the body); in this case, the smallest object that contained the fixation was used. The
mean number of objects per image was 28.65 (SD = 11.30).

A scan pattern is represented as a sequence of object labels encoding the objects that were
looked at in the temporal order of fixation. There is substantial variation in the data set both in terms
of the complexity of the sentences that were produced (e.g., one man waits for another man to fill
out the registration form for a hotel vs. the man is checking in for Fig. 1) and in terms of the length
of the scan patterns observed prior to production (min = 800 ms; max = 10205 ms) and during
production (min = 2052 ms; max = 18361 ms). To account for this variability, we use a measure of
sentence and scan pattern similarity that is insensitive to length.
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Figure 2. Longest Common Subsequence is a measure of similarity based on ordered subsequences.
For two sequences, it explores all common subsequences and returns the longest one. Here, SP1
and SP2 share several common subsequences of length 2 (e.g., man–man). The longest common
subsequence is man–statue–man, i.e., of length 3.

Similarity Measure

Before we can quantify the association between scan patterns and sentence productions, we
need to define a similarity measure. We use Longest Common Subsequence (LCS, Gusfield, 1997),
which can be used to quantify similarity both for scan patterns and word sequences. (Please refer to
Appendix A for additional analyses using other measures.)

Both scan patterns (sequences of fixated objects) and sentences (sequences of words) are
sequential data. Finding similarity between sequences is a well-known problem in bioinformatics
(Durbin, Eddy, Krogh, & Mitchison, 2003), where genetic codes have to be compared to unravel
underlying similarities. A guiding principle used to capture these similarities is alignment. The more
elements can be aligned across the two sequences, the more similar they are. Two key issues have
to be overcome in order to compute alignment: sequences differ in length, and the elements in the
sequences, even if identical, can be positioned differently. LCS addresses these issues.2

LCS finds the longest subsequence of two sequences. The LCS algorithm searches the space
of all combinations of ordered subsequences, looking for the alignment which maximizes the num-
ber of common elements. The algorithm follows a dynamic programming approach, where the final
solution (the longest alignment) is iteratively built based on solutions for subproblems (alignments
of shorter subsequences). Once the longest subsequence is found, the similarity score is calculated
as the ratio between the length of longest common subsequence and the geometric mean of the
lengths of the two sequences. The resulting values range from 1 for most similar to 0 for least sim-

2It has recently been proposed to apply a standard bioinformatics algorithm (the Needleman-Wunsch algorithm) to
eye-movements data (ScanMatch, Cristino, Mathot, Theeuwes, & Gilchrist, 2010). For our data, LCS and ScanMatch are
highly correlated (ρ = 0.98; p < 0.001), so we only report the results obtained using the simpler LCS method.
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ilar. Fig. 2 gives an example: SP1 and SP2 share several common subsequences, e.g., man–man
and man–statue, with a length of 2. The algorithm explores all possible combinations and finds
the longest common subsequence, in this case man–statue–man. Often, LCS finds more than one
solution, i.e., there are several common subsequences of maximal length; this has no effect on the
similarity score.

Data Analysis

LCS sequence analysis can be applied on both scan pattern and sentence data. We applied
LCS on sentences (LCS.L) with low frequency words removed, and on scan patterns without time
information (LCS.V). (Results for a similarity measure that includes time information are presented
in Appendix A.)

To analyze the correspondence between sentences and scan patterns, we divide the data into
three regions: Planning, Encoding, and Production. The Planning region starts with the onset of the
image and lasts until the cued object is fixated. This phase essentially captures the visual search
taking place to find the cue. The Encoding region starts with the first fixation on the cued object
and runs until speech onset; this phase captures the information retrieval behavior that happens in
support of sentence encoding. Finally, the Production region runs from the beginning to the end of
the speech. In this region, linguistic and visual information processing happen concurrently.

For each region of analysis, LCS is computed pairwise, i.e., every trial (sentence and scan
pattern) is paired with every other trial. As an example, if participant 1 generates the sentence the
man is reading a newspaper, we calculated the similarity of this sentence with any other sentence
in the dataset (e.g., the man is washing an apple from participant 2). The similarity score was
calculated in the same way for the associated scan patterns. This resulted in a total of 382,973 pairs
over the three different regions of analysis (Planning = 123,256, Encoding = 95,266, and Production
= 164,451). The difference in sample size for the regions is due to temporal overlap. For instance,
some participants start speaking before having fixated at the target object (i.e., no Encoding), or
fixate the target at the onset of scene (i.e., no Planning). For Production we have the highest number
of pairs, as there is no overlap with other regions, by definition. Note that sentence similarity for the
sentence is constant across the three regions of analysis; only the scan pattern information changes.
This means that the same LCS.L similarity scores are paired with three different, region specific,
LCS.V scores.

We first explore the pattern of correlations across regions. We then provide a more detailed
analysis of these correlations by using linear mixed effect modeling (LME, Baayen, Davidson, &
Bates, 2008), an approach which allows us to take random factors (such as between-participant and
between-trial variation) into account.

We investigate the data at two levels: (1) globally, i.e., by performing comparisons between
all pairs of trials in the full data set, and (2) locally, i.e., by comparing only the trials that pertain
to the same scene (24 in total). These two levels of analysis make it possible to test whether the
coordination between sentences and scan patterns is scene specific. We also report a baseline cor-
relation (Foulsham & Underwood, 2008) that is obtained by pairing sentences and scan patterns
randomly (rather than pairing the scan patterns with the sentences they belong to). We quantify
the strength of the correspondence between similarity measures by computing Spearman’s ρ for all
pairs of measures.

The distinction between global and local similarity has implications for the nature of cross-
modal coordination. A correlation found globally (across all scenes) would imply that scan patterns
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are partially independent of the precise spatial configuration of the scene (the position of the objects,
etc.), as this varies across scenes. The correlation would instead be driven by the referential structure
that is shared across scenes, i.e., by the identity of the objects and the order in which they are men-
tioned or fixated. A correlation at the local level would be consistent with well-known scene-based
effects, both bottom-up and top-down, which guide visual attention (Itti & Koch, 2000; Foulsham
& Underwood, 2008).

An important aspect of cross-modal coordination is the role of ordering. We want to test the
hypothesis that cross-modal coordination emerges as the product of referential overlap and sequen-
tial ordering. In order to test whether both of these components play a role in cross-modal coordi-
nation, we compare LCS, which is a measure sensitive to ordering, with a Bag of Words (BoW)
similarity measure, both for sentences and scan patterns. The BoW measure counts the number of
common elements (objects or words) in two sequences, over the total number of elements. This
means BoW gives us a measure of referential overlap, without taking ordering into account. We as-
sess the significance of difference in correlation coefficients between LCS and BoW after applying
a Fisher z-transformation of the coefficients. (A more detailed analysis of this comparison, focusing
on the role of sample size, can be found in Appendix A.)

In the linear mixed effects analysis, we used scan pattern similarity as the dependent variable
and sentence similarity as the predictor. Region of analysis (Planning, Encoding, and Production)
and Cue (Animate, Inanimate, Mixed) were included as other factors. Regions of analysis is contrast
coded, with Encoding as the reference level, while the reference level for Cue is Inanimate. Note,
Cue has three levels because of pairwise comparison, i.e., we compare also Animate with Inanimate
cases (Mixed).

The random factors were participants and trials, random slopes under sentence similarity and
region were also included. A forward selection procedure was used to obtain the minimal model
based on these random and fixed factors (see Appendix B for details on model selection).

Results and Discussion

Fig. 3 plots the linguistic similarity measure LCS.L against the scan pattern similarity mea-
sure LCS.V, computed globally, i.e., across all scenes. We observe a clear association between sen-
tence and scan pattern similarity: when LCS.L values increase, LCS.V values also increase. This ef-
fect is consistent and statistically significant across all three regions of analysis (Planning: ρ = 0.48;
Encoding: ρ = 0.47, Production: ρ = 0.38; p < 0.001 in all cases), but does not occur in the random
baselines (ρ≈ 0.002; p > 0.1 in all cases).

For BoW similarity, we also find a clear association between sentence and scan pattern sim-
ilarity across all three regions of analysis (Planning: ρ = 0.30; Encoding: ρ = 0.43, Production:
ρ = 0.34; p < 0.001 in all cases). However, the correlation coefficients for BoW are smaller than
ones obtained for LCS across all three phases; the difference is particularly large for Planning
(z =−52.99; p < 0.001), but also significant for Encoding (z =−8.25; p < 0.001 ) and Production
(z =−9.92; p < 0.001); refer to the Appendix A for a more detailed full analysis. We report LME
analysis using LCS only, as it seems to better capture the cross-modal coordination, compared to
BoW.

Fig. 4 plots local similarity values, i.e., LCS.V and LCS.L values computed separately for
each scene. The trend observed at the global level is confirmed across all regions, though there is
substantial variation in the degree of association between scan pattern and linguistic similarity from
scene to scene. Tab 1 gives the minimum and maximum values of the correlation coefficients within
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Figure 3. Scan pattern similarity (LCS.V) as a function of linguistic similarity (LCS.L) across all
24 scenes. The data has been binned on the x-axis; the whiskers represent 95% confidence intervals.
The baselines were obtained by randomly pairing a sentence and a scan pattern from the respective
phase.

scenes. As expected from Fig. 4, correlation coefficients vary across scenes for all pairs of measures,
which indicates that scene context modulates the coordination between scan patterns and linguistic
productions.

Turning now to the linear mixed effects analysis, Fig. 5 shows a plot of LME predicted
values calculated globally (for the LME coefficients refer to Tab 2, see also the discussion below).
The model closely follows the empirical patterns in Fig. 3 with the scatter indicating a positive
association: scan pattern similarity increases with linguistic similarity. Note that the majority of data
has a low overall similarity (many observations lie between 0 and 0.4). However, there is another
cloud of data points, similarly distributed, with higher LCS.V values overall. On closer inspection, it
becomes clear that data points with higher similarity are based on within-scene comparisons, while
those with lower similarity are based on between-scene comparisons.

To investigate this observation further, Fig. 6 plots the density of cross-modal similarity ag-
gregated separately within scenes, i.e., only for trials from the same scene, and between scenes,
i.e., only for trials from different scenes. Fig. 6 shows that the resulting similarity scores are nor-
mally distributed and higher within scenes than between scenes (where the distribution is also more
skewed).

Tab 2 lists the coefficients of the mixed effects models; these are consistent with the descrip-
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Figure 4. Scan pattern similarity (LCS.V) as a function of linguistic similarity (LCS.L), separately
for each of the 24 scenes. Line color and the point type represent the different regions of analysis:
Planning (orange, circle), Encoding (green, triangle), Production (red, square)

Table 1
Minimum and maximum correlations (Spearman ρ) between scan pattern similarity (LCS.V) and
linguistic similarity (LCS.L), across regions of analysis (Planing, Encoding, Production); correla-
tions were computed for each scene separately. All correlations are significant at p < 0.05.

Planning Encoding Production

Min 0.25 0.14 0.04
Max 0.63 0.77 0.51
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Figure 5. Hexagonal plot of predicted values of the linear mixed effects model: linguistic similarity
predicted by scan pattern similarity. The plot shows the observed data binned into hexagons. The
color of the hexagon reflects the frequency of the observations within it (darker for more observa-
tions). The solid lines represent the grand mean intercept and slope: Planning (orange), Encoding
(green), Production (red).
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Figure 6. Density plot for cross-modal similarity. Cross-modal similarity is computed by summing
the similarity scores obtained separately for the linguistic and scan pattern measure and normalizing
them to a range between 0 and 1. Trials with a cross-modal similarity of 0 were removed. Red line:
cross-modal similarity within the same scene, blue line: between different scenes.

tive results. We find a significant main effect of sentence similarity (LCS.L).3 The coefficient is
positive, which confirms our basic finding, i.e., that more similar sentence production lead to more
similar scan patterns. There are also significant main effects of Regions: RegionPlanVsEnc has a posi-
tive coefficient, which means that overall similarity is higher in the Planning region compared to the
Encoding region, while RegionProdVsEnc has a negative coefficient: the similarity is lower in Produc-
tion compared to Encoding. We also find significant main effects of Cue, with CueAniVsIna having
a negative coefficient, which means that Animate targets triggers lower similarity than Inanimate
one, which shows higher similarity even compared to the mixed case (CueMixVsIna has a positive
coefficient).

Turning on the interactions, we find significant interactions of LCS.L with both Cue and
Region. In particular, LCS.L positively interacts with Cue (coefficient LCS.L:CueAniVsIna), indicat-

3In correlation analysis the direction of causality cannot be inferred. When we re-do the analysis with scan pattern
similarity as a predictor and sentence similarity and the dependent variable, we obtain the same result: sentence similarity
increases when scan pattern similarity also increases.
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ing that most similar sentences tend to be associated with Animate targets. Regarding Regions, it
emerges that sentence similarity increases more sharply with the scan pattern similarity in the Plan-
ning region than in the Encoding region, while the opposite is found for Production (coefficient
LCS.L:RegionProdVsEnc). A significant interaction is found also for the factors Cue and Region, and
the results are in line with the interactions observed with LCS.L. In particular, sentences associated
with Animate targets are less similar in Production (CueAnivsVsIna:RegionProdVsEnc), with Inanimate
again more similar compared to the mixed case (CueMixvsVsIna:RegionProdVsEnc). Animate targets
instead lead to higher similarity in Planning compared to Encoding.

The LME analysis therefore confirms the trend visible in Fig. 3, and corroborates the more
basic correlation analysis presented earlier. Beside providing evidence for our main hypothesis that
scan patterns predict sentence production, our results shed light on how cross-modal similarity in-
teracts with the different phases of the task, and with the animacy of the cue word.

In particular, the change of similarity observed across the different phases can be explained
if we consider that scan pattern similarity is a function of the amount of visual processing involved.
At the beginning of a trial, a search for the cued target object is launched, and the visual sys-
tem allocates attention solely based on scene information, leading to high scan pattern similarity
(Henderson, 2007; Malcolm & Henderson, 2010). During Encoding and Production, however, scan
patterns are increasingly determined by linguistic processing, as the objects that are to be mentioned
in the sentence are selected and sequenced. This means that general scene information becomes less
relevant, reducing the overall amount of scan pattern similarity. Moreover, these patterns vary con-
tingently with the type of associated sentence. Sentences containing an Animate referent have to
be truly similar in order to be associated with similar scan patterns: an animate referent is usually
situated within the broader contextual information (e.g., the man is signing in) while an inanimate
referent has to be spatially located in relation to another ground object (e.g., the suitcase is on the
floor). This means that small changes between two animate sentences (e.g., the man is standing in
the reception of a hotel) can entail a large set of different visual referents in the associated scan
patterns. In contrast, small changes between two inanimate sentences (e.g., the suitcase is next to
the man, have a smaller effect on scan pattern similarity, as the set of objects spatially related to
inanimate visual referents is relatively constrained.

Application to Sentence Prediction

So far, we have demonstrated that the similarity of scan patterns is correlated with the simi-
larity of the associated sentences, and we have established to what extent cross-modal similarity is
mediated by the region of analysis and the animacy of the cue. In the following, we illustrate how
the correlation between scan pattern similarity and sentence similarity can be used to predict which
sentence a participant uttered based on which scan pattern they followed. Our aim is to provide a
proof of concept, so we implement a simple algorithm that uses scan pattern information to retrieve
sentences from a pool of candidates. In other words, we define prediction as sentence retrieval,
rather than generating sentences from scratch based on scan pattern information.

The algorithm exploits the fact that similar scan patterns (e.g., as quantified by LCS.V) are as-
sociated with similar sentences (e.g., as measured by LCS.L). The algorithm is illustrated schemat-
ically in Fig. 7. We start by picking a scan pattern VS at random from the pool of all available scan
patterns. The sentence associated with it is denoted by LS. Then, based on the pairwise visual sim-
ilarity scores, we extract the scan pattern VT that is most similar to VS from the pool (if several
scan patterns share the maximal similarity score, we pick one at random). The sentence associated
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Table 2
Coefficients for the mixed effects model analysis. The dependent measure is scan pattern similarity
(LCS.V); predictors are sentence similarity (LCS.L), Region (contrast coded with Embedding as the
reference level) and Cue (contrast coded with Inanimate as the reference level). Note that Cue has
three levels because of pairwise comparison, i.e., we compare also Animate with Inanimate (level
Mixed). The abbreviations are: Plan: Planning; Enc: Encoding; Prod: Production; Ani: Animate;
Ina: Inanimate; Mix: Mixed.

Predictor Coefficient

(Intercept) 0.188∗∗∗

LCS.L 0.514∗∗∗

RegionPlanVsEnc 0.038∗∗∗

RegionProdVsEnc −0.018∗∗∗

CueAniVsIna 0.038∗∗∗

CueMixVsIna 0.005∗∗∗

LCS.L:RegionPlanVsEnc 0.326∗∗∗

LCS.L:RegionProdVsEnc −0.352∗∗∗

LCS.L:CueAniVsIna 0.093∗∗∗

CueAniVsIna:RegionPlanVsEnc 0.008∗∗∗

CueAniVsIna:RegionProdVsEnc −0.019∗∗∗

CueMixVsIna:RegionProdVsEnc 0.014∗∗∗

∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001

Figure 7. Schematic illustration of the sentence retrieval algorithm.
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with VT is LT . In light of the results of our correlation analyses, we expect the linguistic similarity
between LS and LT to be high. Our goal is to retrieve LT from the pool of all available sentences.
To measure how successful this is, we consider sets of sentence candidates LC of increasing size,
where the target LT is always included in the set.

For each set size (N = 2, . . . ,572), we compute the pairwise linguistic similarity scores be-
tween LS and LC, and extract the best candidate sentence L∗C, i.e., the one that maximizes this sim-
ilarity. The underlying assumption is that if LC and LS are similar, by the transitive property of
similarity, LC and LT must also be similar. We repeat this procedure for 50 iterations (this is neces-
sary because of the random sampling involved), count how many times we have retrieved the correct
sentence (L∗C = LT ), and divide this number by the total number of iterations. This measure gives us
the retrieval accuracy, which we compare against chance, i.e., the probability of finding the target
at random in a set of size N. We apply the algorithm to the Planning, Encoding, and Production
regions separately.

In Fig. 8(a), we plot the accuracy of our algorithm as a function of set size, for the three
regions of analysis. The result shows that our algorithm performs significantly better than chance
across all set sizes in retrieving the target sentence associated with scan pattern of interest. This
is consistent across all regions of analysis, with Planning having the best accuracy, followed by
Production and Encoding. This result is compatible with our previous correlation analysis, which
showed a similar trend (see Fig. 3). As expected, the performance of the algorithm degrades with
increasing set size, as the chance for encountering a sentence similar to the target increases.

Another aspect of the performance of the algorithm is the similarity between a predicted
non-target sentence and the correct target sentence. This measures the performance in cases where
the algorithm does not find the target. Again, sentence similarity varies with set size, see Fig. 8(b)
(which excludes cases where the algorithm finds the target). We observe that mean linguistic simi-
larity approaches a constant, which is higher for Encoding than for Planning and Production. This
illustrates that the performance of the algorithm in retrieving similar sentences to the target does not
deteriorate with set size, and the decreasing trend of Fig. 8(a) can be entirely attributed to increasing
difficulty of identification the exact target sentences (rather than a similar one).

As mentioned in the beginning, this study is mainly meant as proof of concept. The perfor-
mance of our algorithm could be optimized to achieve a higher accuracy, for example by using a
combination of similarity measures as opposed to a single one.

General Discussion

Cross-modal coordination is a key feature of the cognitive system, enabling it to successfully
perform tasks that draw on information from multiple modalities. Previous research has shown, for
instance, that efficient motor planning relies on the coordination between visual attention and ac-
tion (Land et al., 1999; Hayhoe, 2000; Land, 2006). In this paper, we investigated the coordination
between visual attention and linguistic processing during the description of naturalistic scenes, and
found that scan pattern similarity is correlated with sentence similarity. This result was obtained
both in a simple correlation analysis and in a mixed model which takes between-participant and
between-trial variation into account. We divided the scene description task into three phases (Plan-
ning, Encoding, Production), and found that the association between scan patterns and sentences
was consistent across these phases. Furthermore, the association is stable across a range of similar-
ity measures (see Appendix A).
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(a) Proportion of correctly retrieved sentences as a function of set size.

(b) Mean linguistic similarity between the target-sentence and the predicted sentences, as a function of set size.

Figure 8. Evaluation of retrieval algorithm in terms of accuracy and similarity.
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On a theoretical level, our findings suggest that cross-modal coordination is primarily a refer-
ential phenomenon, i.e., that it is driven by the sequence of objects fixated in a scan pattern, and by
the sequence of objects mentioned in the speech, respectively. This is corroborated by the fact that
we found cross-modal coordination both within and between scenes; different scenes differ in visual
features such as layout, object position, or size, but the referents (i.e., the identity of the objects) can
overlap between scenes. Cross-modal coordination therefore goes beyond the coordination based on
low-level visual features within a scene reported in previous work (Foulsham & Underwood, 2008).

Ordering is another important feature of cross-modal coordination, as the processing of ob-
jects (scan patterns) and words (sentence) unfolds sequentially. In fact, we found that similarity
measures based only on referential overlap (BoW) are significantly less correlated than measures
which are also partially sensitive to order (LCS). However, more research is needed to improve
the way we measure cross-modal coordination. The LCS measures we used, are still too simple to
accurately capture ordering effects, especially when sentence processing is in action (i.e., encoding
and production): as only one subsequence, out of many possible subsequences, is retained, and the
temporal dimension (e.g., fixation duration or word length) over which such alignments take place
is not yet fully accounted.

We also observed that the correlation between scan patterns and sentences varies between
task phases: our mixed effects model showed a significant main effect of Region, as well as an in-
teraction between Region and sentence similarity. This can be explained by the fact that the role of
cross-modal coordination varies between the three task phases. During Planning, the visual system
performs a search for the cued target object and is strongly guided by both target properties and
referential scene information (Malcolm & Henderson, 2010; Castelhano & Heaven, 2010). During
Encoding, once the target object has been identified, linguistic processing draws upon visual pro-
cessing in order to retrieve material to be used in production: information about the identity, loca-
tions, and properties of objects. Finally, during Production, the objects in the scene are re-inspected
by the visual system; crucially, this happens in the order in which they are mentioned, as fixations
on objects are known to precede mentions by a fixed interval (Griffin & Bock, 2000).

The fact that we consistently find cross-modal coordination across different phases suggests
that the coordination of visual and linguistic processing is not limited to the process of overt lan-
guage production per se. Our data shows that scan patterns in Planning and Encoding are already
predictive of the sentence that the participant will produce, before they start speaking. Visual atten-
tion can therefore be thought of as constructing the referential link between sampled visual infor-
mation and the linearization of words in a description. This happens in preparation for speaking,
and therefore the coordination of scan patterns and sentences precedes the onset of speech.

Our results also show that the selection of referents is modulated by both visual and linguistic
mechanisms. As originally observed by Gleitman et al. (2007), we confirm that orienting visual
attention towards a particular visual referent has an influence on the sentences that are generated.
Moreover, we demonstrate that the semantic properties of the cued referent, e.g., animacy, influence
the degree of cross-modal coordination observed, and interact with the effect of the phase of the
task. Nevertheless, the range of factors and mechanisms modulating the dynamics of cross-modal
coordination have yet to be fully explored.

The fact that similar scan patterns are associated with similar sentences during language
production means that we can predict what participants say based on where they look. More specif-
ically, we can predict which objects participants will mention, and in which order. Not only the
objects themselves, also the relationships between objects can be deduced from scan patterns. For
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example the fixation sequence man-L, arm-L, paper could be indicative of the utterance the man
writes on the paper in Fig. 1. Even though the verb write does not correspond directly to a depicted
object, its mention can be predicted if sequences similar to man-L, arm-L, paper tend to co-occur
with the word write.

To illustrate the predictive property of scan patterns, we developed an algorithm which uses
scan pattern similarity to retrieve the sentence associated with a given scan pattern from a pre-
existing pool of sentences. Our algorithm predicts the correct sentence better than chance, and re-
turns a sentence that is similar to the target if it fails to retrieve the exact target sentence. This result
confirms the theoretical validity of our cross-modal coordination hypothesis and shows how it can
be applied for sentence prediction.

Predicting what people will say based on their scan patterns has practical applications. For
example Qu and Chai (2007) use gaze information to improve speech recognition; their approach
works because of the effect demonstrated in this paper: recognizing a word is easier if we know
which object is fixated when the word is spoken. In related work, Prasov and Chai (2010) show
that co-reference resolution can also benefit from the availability of gaze information: resolving a
pronoun such as it is facilitated if the system knows which objects are fixated concurrently. Fur-
thermore, a number of studies have demonstrated that gaze information is useful for vocabulary
acquisition, both by humans and by computers (Frank, Goodman, & Tenenbaum, 2009; Yu & Bal-
lard, 2007); also this finding is a consequence of the fact that similar scan patterns occur with similar
sentence productions.
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Appendix A
Validation against Additional Similarity Measures

In this supplementary material, we confirm the validity of our cross-modal coordination hypothesis
by demonstrating that our main result (scan pattern similarity increases with increasing linguis-
tic similarity) holds when alternative similarity measures are employed. First, we discuss in detail
how the LCS measures, which are partially sensitive to order, compare with Bag Of Words (BoW)
measures, which do not take order into account. Then, we show that cross-modal coordination is
obtained even when time information is included in the scan pattern representation, and also when
lexical semantics based on vector composition is used to measure the similarity of sentences.

Furthermore, we provide a more detailed explanation of the procedure adopted to select the
linear mixed effect models.

BoW Vs LCS.
The LCS is a measure of similarity based on common sub-sequences. A sub-sequence re-

tains the ordering of common elements that two sequences share. Thus, in order to distinguish the
role played by ordering from that of common elements when computing similarities of sentences
and scan patterns, we compare LCS with a measure purely based on common elements (i.e., ir-
respective of the order in which they occur). We use BoW, which counts the number of common
elements between two sequences relative to their total number of elements. We calculate BoW on
both scan patterns and sentences. Then, we test the difference of strength on the correlation coef-
ficients between LCS measures (LCS.L, LCS.V) and BoW measures. Using the Fisher ρ− to− z
transformation, we calculated the value of z to assess the significance of the difference between the
two correlation coefficients ρLCS and ρBoW. After performing a two-tailed test at α = 0.05 on z, we
analyze the p− value (refer to Howell, 2002, pp. 277-278).

The difference between the correlation coefficients depends on the sample size. For this rea-
son, we perform the significance test across samples of increasing size. This gives us a detailed
comparison between BoW and LCS. Our aim is to show that already small sample sizes yield a
significant difference between BoW and LCS.

Fig. A1 plots p-value as a function of sample size for the three regions of analysis. We find
that already at a sample of size of 6000, the difference in the coefficients is significant for all the three
regions. When looking at the individual regions, we observe that for Planning significance is reached
for sample size as small as 250. Encoding and especially Production need larger sample sizes to
stabilize. This analysis confirms that ordering is important to capture cross-modal coordination.
However, the difference in effect size (correlation coefficients) is small; as discussed in the main
paper, we believe that LCS is sub-optimal in capturing the pattern of similarity. The main drawback
is that LCS returns only one among all possible ordered sub-sequences, de facto discarding the
information of all other sub-sequences. Also, LCS does not capture efficiently temporal information,
which is crucial when visual and linguistic processing have to be synchronize, i.e., during encoding
and production. In the next paragraph, we show that including temporal information on the scan
pattern could help improving the correlation during these phases.

Alternative Measures.
As alternative measure for similarity between sequences of categorical data, we adopt Or-

dered Sequence Similarity (OSS, Gomez & Valls, 2009), which can be used to quantify similarity
both for scan patterns and word sequences and has been shown to be more effective than simpler
measures such as edit distance. In addition, we employ a similarity measure based on Latent Se-
mantic Analysis (LSA, Landauer, Foltz, & Laham, 1998) to compare word sequences only.
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Figure A1. Test of significance for difference between correlation coefficients BoW and LCS, for
random samples of increasing size (from 10 to whole dataset in steps of 250), across the three
regions of analysis (Planning, Encoding and Production).
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OSS is a measure based on two aspects of sequential data: the elements a sequence is com-
posed of and their positions. When comparing two sequences, OSS divides the elements in common
(shared) and uncommon (unique) ones; on the shared elements, it takes into account their relative
position. For example in Fig. 2 in the main article, four objects are shared by the two scan patterns
(man-L, plant, statue, suitcase) and two objects (telephone, man-R) are unique to SP1 and SP2, re-
spectively. For each common element, the distance between the two sequences is calculated, e.g.,
statue in SP1 is one unit away from statue in SP2. Distances between common elements and the
number of uncommon elements are combined into a single score and normalized based on sequence
length (for details refer to Gomez & Valls, 2009). Despite its name, OSS is a dissimilarity measure,
with values ranging from 0 for most similar to 1 for least similar. To facilitate comparison with the
other measures, we convert OSS values to similarity values by subtracting them from 1.

We also experimented with OSS computed over scan patterns that include time information
(OSS-Time): for this measure, we relabeled the objects by including an index indicating temporal
progression into the label. This index was obtained by dividing the fixation duration on a given
object into 50 ms intervals. For example, if the object man was fixated for 150 ms, then we divided
the fixation on this object in three slots of 50 ms each and assigned the labels man-1, man-2, and
man-3.

Latent Semantic Analysis (LSA, Landauer et al., 1998) is a widely used computational model
of word meaning. LSA measures the similarity between words based on the co-occurrence of context
words within the same document. Intuitively, two words are semantically similar if they occur in
similar contexts. LSA represents words as vectors of co-occurrence counts, and semantic similarity
is quantified as vector distance. For this study, we used a version of LSA that goes beyond word-
level representations by computing LSA vectors for sentences (Mitchell & Lapata, 2009). In this
approach, the meaning of a sentence is represented as the composition of the vectors of the words
in the sentence. We built our LSA model using the British National Corpus, which contains 100
million word of text and speech (Burnard, 1995). For each sentence in our data set, we computed
an LSA vector for each content word in the sentence (context window of size five; low frequency
words were removed). We then combined these vectors using addition to obtain sentence vectors
(an alternative discussed by Mitchell & Lapata, 2009, would be vector multiplication). Similarity
between sentence vectors was measured using cosine distance. As LSA is a linguistic measure, it
can be computed only on sentences.

Results.
Fig. A2 plots linguistic similarity (LCS.L and LSA) as a function of scan pattern similarity

incorporating time information (OSS-Time). The figure shows that scan pattern similarity increases
with increasing sentence similarity. This confirms the results in the main text, where we found the
same pattern with only LCS (LCS.L increases as a function of LCS.V). We can therefore conclude
that this result generalizes to other similarity measures (OSS and LSA) and is valid also when we
include temporal information (fixation duration) in scan pattern similarity (as in OSS-Time).4

Tab A1 presents the results of correlations analyses involving all pairs of similarity mea-
sures. When time is included in the scan pattern similarity measure (OSS-Time) and paired with
the sequential linguistic similarity measure (LCS.L), we find a significant positive correlation with
a similar coefficient across all three regions of analysis. This replicates the results for the pairing of
LCS.V and LCS.L in the main article.

4OSS without time (not reported here) shows the same trend.
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Table A1
Correlations (Spearman ρ) between the different similarity measures across regions of analysis:
Planning, Encoding, and Production. All correlations are significant at p < 0.05, with the exception
of the correlation of OSS-Time and LSA in the Planning region.

Measures LCS.V OSS-Time LSA
Plan Enc Prod Plan Enc Prod Plan Enc Prod

OSS-Time 0.82 0.80 0.77
LSA 0.10 0.11 0.13 0 0.11 0.22
LCS.L 0.48 0.47 0.38 0.34 0.39 0.35 0.36 0.35 0.38

When pairing LCS.V and OSS-Time with LSA, our alternative measure of sentence similar-
ity, we obtained a significant correlation in all but one case (OSS-Time and LSA during Planning);
see Fig. A3 for a scatter plot and LME estimates. However, the correlation coefficients obtained are
lower (with ρ ranging from 0.10 to 0.22) than if we compare LCS.V and OSS-Time with LCS.L
(with ρ ranging form 0.34 to 0.48). LSA is based on word co-occurrences; it represents the lexical
meaning of a sentence, rather than its word order (it is a non-sequential measure). LCS.V focuses
on the similarity of word sequences, disregarding any semantic relationships between words, and
is therefore expected to be more highly associated with sequential scan pattern measures, which
measure the similarity between sequences of fixated objects.

Note the correlation between the two linguistic similarity measures LCS.L and LSA is rel-
atively weak (with ρ ranging from 0.35 to 0.38). This also confirms that these measures to some
extent measure different things. As expected, the correlation between the two sequential measures
LCS.V and OSS-Time is high (with ρ ranging from 0.77 to 0.82). The results of the correlation
analysis are confirmed in the mixed effect analysis, see Tab A2 for full list of coefficients.

In line with the results observed at the global level, the sequential similarity measures
(LCS.L/OSS-Time) achieve a higher correlation coefficients than the other measures also on the
local level; see Tab A3.

An important point emerging from this analysis regards the role of temporal information with
respect to the phases of the task. We find that when temporal information is included in the scan
patterns, both Encoding and Production have a significantly higher similarity than Planning (main
effects). Moreover, when OSS-Time is paired with LSA, we find a positive interaction of LSA with
the Production region. This positive interaction is not found with any other combination of measures.
This might suggest that temporal information is implicitly accounted for by statistical properties of
LSA, and when paired with a visual measure that explicitly includes temporal information (OSS-
Time), we could better capture changes in cross-modal coordination during Production.

The measures presented in this paper, however, are limited in dealing with time; thus in future
work, we are planning to develop measures of similarity which integrate and evaluate the effect of
time in both sentence and scan pattern, thus making possible to capture more closely the dynamics
of coordination allowing visual and linguistic processing to be synchronized.

In summary, our supplementary analyses broadly confirm the results presented in the main
text: scan pattern similarity increases with increasing linguistic similarity. The result holds across a
range of different similarity measures, and even when fixation duration is considered. The effects is
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Table A2
Coefficients for the mixed effects model analysis. The dependent measure is scan pattern similar-
ity (LCS.V or OSS-Time); predictors are sentence similarity (LCS.L or LSA) and Region (contrast
coded with Embedding as the reference level) and Cue (contrast coded with Inanimate as the refer-
ence level. Note that the minimal models are shown; a factor marked “n.i.” has not been included
during model selection.
Predictor LCS.L/LCS.V LCS.L/OSS-Time LSA/LCS.V LSA/OSS-Time

(Intercept) 0.188∗∗∗ 0.428∗∗∗ 0.193∗∗∗ 0.430∗∗∗

Sentence 0.514∗∗∗ 0.251∗∗∗ 0.206∗∗∗ 0.105∗∗∗

RegionPlanVsEnc 0.038∗∗∗ −0.067∗∗∗ 0.035∗∗∗ −0.068∗∗∗

RegionProdVsEnc −0.018∗∗∗ 0.063∗∗∗ −0.016∗∗∗ 0.063∗∗∗

CueAniVsIna 0.038∗∗∗ −0.004∗∗∗ 0.008∗∗∗ n.i.
CueMixVsIna 0.005∗∗∗ 0.002∗∗∗ n.i. n.i.
Sentence:RegionProdVsEnc −0.352∗∗∗ −0.140∗∗∗ −0.100∗∗∗ 0.051∗∗∗

Sentence:RegionPlanVsEnc 0.326∗∗∗ 0.069∗∗∗ 0.091∗∗∗ −0.056∗∗∗

Sentence:CueAniVsIna 0.093∗∗∗ 0.044∗∗∗ −0.029∗∗∗ n.i.
CueAniVsIna:RegionProdVsEnc −0.019∗∗∗ n.i. 0.013∗∗∗ n.i.
CueAniVsIna:RegionPlanVsEnc 0.008∗∗∗ 0.007∗∗∗ n.i. n.i.
CueMixVsIna:RegionProdVsEnc 0.014∗∗∗ 0.006∗∗∗ n.i. n.i.
CueMixVsIna:RegionPlanVsEnc n.i. −0.002∗ n.i. n.i.

∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001

found in within and the between scene analysis, and across the different phases of the task.

Appendix B
Model Selection Procedure

The mixed effects were fitted using maximum likelihood estimation. All fixed factors were centered
to reduce collinearity; four random factors were considered: participant 1, participant 2, trial 1, and
trial 2; note that the data comes in pairs, which is why two random variables for each of participant
and trial are necessary.

The minimal model was selected by following a forward step-wise procedure which compares
nested models based on log-likelihood model fit. We start with an empty model, to which we first add
the random factors. Once all random factors have been evaluated as intercepts, we proceed by adding
the fixed factors. For every fixed factor, we calculate whether the fit of the model improves when
random slopes for that factor are included. By including random slopes, we take into account the
variability of each fixed effect (e.g., scan pattern similarity) for the different grouping levels of the
random effects, e.g., participants. To ensure computational tractability, we consider random slopes
only on the main effects, i.e., not for interactions. Factors are added one at time, and ordered by the
amount of improvement in model fit they achieve. Only factors (fixed or random) that significantly
improve model fit are added.

We test for a significant improvement in model fit using a χ2 test that compares the log-
likelihood of the model before and after adding the new factor. Overall, this procedure returns a
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Table A3
Minimum and maximum correlations (Spearman ρ) between the different similarity measures across
regions of analysis (Planning, Encoding, Production); correlations were computed for each scene
separately. All correlations are significant at p < 0.05.

Measures LCS.V OSS-Time LSA
Plan Enc Prod Plan Enc Prod Plan Enc Prod

OSS-Time
Min 0.73 0.57 0.39
Max 0.88 0.89 0.91

LSA
Min −0.06−0.12 −0.08 −0.36 −0.28 −0.1
Max 0.29 0.35 0.26 0.15 0.35 0.36

LCS.L
Min 0.25 0.14 0.04 −0.16 0.06 −0.1 0.19 0.14 0.18
Max 0.63 0.77 0.51 0.52 0.65 0.51 0.57 0.65 0.52

model that maximizes fit with the minimal number of predictors.
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(a)

(b)

Figure A2. Scan pattern similarity (OSS-Time) as a function of linguistic similarity (LCS.L and
LSA) across all 24 scenes. The data has been binned on the x-axis; the whiskers represent 95%
confidence intervals. The baselines were obtained by randomly pairing a sentence and a scan pattern
from the respective phase.
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Figure A3. Hexagonal plot of predicted values of the linear mixed effects model: linguistic similar-
ity predicted by scan pattern similarity. The plot shows the observed data binned into hexagons. The
color of the hexagon reflects the frequency of the observations within it (darker for more observa-
tions). The solid lines represent the grand mean intercept and slope: Planning (orange), Encoding
(green), Production (red).


