-

View metadata, citation and similar papers at core.ac.uk brought to you byfz CORE

provided by Edinburgh Research Explorer

Edinburgh Research Explorer

Natural Language for Hardware Verification: Semantic
Interpretation and Model Checking

Citation for published version:
Holt, A, Holt, E, Klein, E & Grover, C 1999, Natural Language for Hardware Verification: Semantic
Interpretation and Model Checking. in ILLC, University of Amsterdam. pp. 133-137. DOI: 10.1.1.42.1802

Digital Object Identifier (DOI):
10.1.1.42.1802

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
ILLC, University of Amsterdam

General rights

Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy

The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

OPEN ACCESS

Download date: 05. Apr. 2019

https://core.ac.uk/display/43712072?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1.1.42.1802
https://www.research.ed.ac.uk/portal/en/publications/natural-language-for-hardware-verification-semantic-interpretation-and-model-checking(39f7dfb1-ce11-477e-97e1-c004aeb69553).html

Natural language for hardware verification:
semantic interpretation and model checking

Alexander Holt, Ewan Klein and Claire Grover
{alexander.holt,ewan.klein, claire.grover}@ed.ac.uk

HCRC Language Technology Group
Division of Informatics, University of Edinburgh
http://www.ltg.ed.ac.uk/

1 Overview

Our system allows the formal verification of digital circuits using specifica-
tions expressed in English. Verification is carried out by the SMV model
checker program [McM92]. SMV requires specifications to be written in
the temporal logic CTL (computation tree logic). SMV’s model checking
algorithm carries out inference over CTL formulas, with respect to a formal
representation of a circuit.

The system can turn English sentences into CTL formulas, allowing
natural language specifications to be used. A parser for English, returning
general-purpose semantic representations, is allied with a convertor from
these representations to CTL. The convertor is integrated with the SMV
model checker, so that inferential information may be used during semantic
interpretation.

The result exemplifies an interesting class of natural language under-
standing systems where the target is a specialised reasoning engine (as
opposed, say, to a database). The semantic interpretation process exploits
this engine, and the application as a whole delivers increased access to a
significant industrial technique.

A web interface is available at http://www.1ltg.ed.ac.uk/prosper/.

2 Background

2.1 Model checking for hardware verification

Mechanised formal specification and verification tools can significantly aid
system design in both software and hardware. One established approach to
verification is temporal model checking, which allows the designer to check
that certain desired properties hold of the system. However, the normal

’ /N
Aoy [
9 /N

O;

S1 52 S0

Figure 1: A CTL structure and corresponding computation tree

requirement that specifications be expressed in temporal logic has proved
an obstacle to its adoption by circuit designers—hence the motivation for a
natural language interface.

2.2 Computation Tree Logic

The SMV program implements a model checking algorithm where circuit
properties are expressed in the temporal logic CTL [CES86]. In models of
CTL, the temporal order < defines a tree which branches towards the future.

CTL formulas that start with A express necessity. AG f is true at a time
t just in case f is true along all paths that branch forward from the tree at
t (true globally). AF f holds when, on all paths, f is true at some time in
the future. AX f is true at ¢ when f is true at the next time point, along all
paths. Finally, A[f U g] holds if, for each path, g is true at some time, and
from now until that point f is true.

Figure 1, from [CES86], illustrates a CTL model structure, with the
relation < represented by arrows between circles (states), and atomic propo-
sitions being the letters contained in a circle. A CTL structure gives rise
to an infinite computation tree, and the figure shows the initial part of
such a tree when sq is the initial state. States correspond to points of time
in the course of a computation, and branches represent non-determinism.
Formulas of CTL are either true or false with respect to any given model;
see Table 1 for three examples interpreted at sg.

3 Example

Sentence (1), taken from our corpus of specification discourses, is ambiguous.
The two CTL readings which our system assigns are shown in (2) and (2).!

In fact for this example the system currently chooses a ‘weak’ reading of until,
expressible in terms of—but not equivalent to—CTL’s ‘strong’ until (A[f U g]). The

formula sense at s
AXc for all paths, at the next state c is true true
AGbH for all paths, globally b is true false

for all paths, eventually there is a state from

AF(AX(a AD)) | which, for all paths, at the following state @ and | true

b are true

Table 1: Interpretation of CTL formulas

(1) After sigl becomes active sig2 should not become active until sig3
becomes active.

(2) Al(sigl — AX(—sig2)) U sig3]
(2" AG(sigl — AXA[-sig2 U sig3])

We can use SMV to test the truth of these readings for the circuit being
specified, and rank false readings according to the length of the computation
tree that SMV requires in order to generate a counter-example.

4 Architecture

4.1 System structure

The system consists of four components: (i) a parser, (ii) a convertor from
semantic representations to CTL, (iii) the SMV model checker, and (iv) a
module that mediates interaction between SMV and the semantic convertor.
These are connected using Python (http://www.python.org/), and com-
ponents (ii) and (iv) are also written in Python. The system currently
runs under Solaris and Linux, and has a web interface, accessible from
http://www.ltg.ed.ac.uk/prosper/.

4.2 Parser

We used the Alvey Natural Language Tools Grammar [GCB93]| to implement
a parser for a restricted subset of English. The Alvey parser is written in
Common Lisp. The original broad-coverage grammar was modified by omit-
ting large chunks of the lexicon and making numerous changes to specific
grammar rules. The definition of an appropriate subset of English for this
task raised interesting issues of its own, discussed in [HK99].

CTL translations given here use strong until instead to improve readability; this choice is
independent of the ambiguity in question.

4.3 Conversion to CTL

This component converts the semantic representations produced by the
Alvey system into CTL formulas. This process has some interesting se-
mantic aspects. For example, temporal information must be converted from
relations over Davidsonian event variables to modal operators. It is also
necessary to deal with the unscoped nature of the Alvey semantics. This
part of the system was initially written in Prolog, based on work by Danny
Tidhar [Tid98].

In (3), (4) and (5) we show respectively a short sentence from our corpus,
its Alvey semantics, and the CTL formula to which we convert it:

(3) After sigl is active, sig2 is active for three cycles.

(4) (DECL
(AFTER (uge (some (el) el))
(BE (uge (some (e2) (PRES e2)))
(ACTIVE (name (the (x1) (and (sg x1) (named x1 sigl))))
(degree unknown)))
(and
(BE #1=(uqe (some (e3) (PRES e3)))
(ACTIVE (name (the (x2) (and (sg x2) (named x2 sig2))))
(degree unknown)))
(FOR #1# (ug ((NN \3) (x3) (and (pl x3) (CYCLE x3))))))
(timespan unknown)))

(5) AG(sigl — AX(sig2 A AXsig2 A AXAXsig2))

4.4 SMV

The SMV model checker is a self-contained C program. As well as reading an
input file and accepting command line arguments, it has a line-oriented in-
teractive mode, allowing each SMV invocation to check an arbitrary number
of CTL formulas against a given circuit description.

4.5 SMYV /convertor interaction

This component uses UNIX pipes to communicate with SMV, exploiting its
per-circuit interactive mode. Some work is necessary to interpret the output
of SMV in the case of a model checking failure, when a counter-example of
arbitrary length is returned in a plain text format.

5 Prospects

We are considering the adoption of a higher-order logic formalism for our
semantic representations. This would permit new kinds of inference prior to

model checking, and would also allow a more natural conversion from the
output of the parser.

The SMV program can only provide our semantic interpretation process
with limited information about the success or failure of a model checking at-
tempt. It would be interesting to experiment with model checkers that make
a richer perspective available—game theoretic approaches, for example.

Acknowledgements

This work has been carried out within PROSPER (Proof and Specification
Assisted Design Environments), ESPRIT Framework IV LTR 26241, http:
//www.dcs.gla.ac.uk/prosper/.

References

[CES86] Edmund M. Clarke, E. Allen Emerson, and A. Prasad Sistla.
Automatic verification of finite-state concurrent systems using
temporal logic specifications. ACM Transactions on Programming
Languages and Systems, 8(2):244-263, 1986.

[GCBY3| Claire Grover, John Carroll, and Ted Briscoe. The Alvey Natural
Language Tools Grammar (4th release). Technical Report 284,
Computer Laboratory, University of Cambridge, 1993. ftp://
ftp.cl.cam.ac.uk/nltools/reports/grammar.ps.

[HK99] Alexander Holt and Ewan Klein. A semantically-derived subset
of English for hardware verification. In 37th Annual Meeting
of the Association for Computational Linguistics: Proceedings
of the Conference: 20-26 June 1999, University of Maryland,
College Park, Maryland, USA, pages 451-456. Association for
Computational Linguistics, 1999. http://www.ltg.ed.ac.uk/
prosper/papers/holt-1999-sds/.

[McM92] K. L. McMillan. The SMV system. Carnegie-Mellon University,
Pittsburgh, PA, 2 February 1992. http://www.cs.cmu.edu/
“modelcheck/smv/smvmanual.r2.2.ps.

[Tid98] Dan Tidhar. ALVEY to CTL translation — A preparatory
study for finite-state verification natural language interface.
MSc dissertation, Department of Linguistics, University of
Edinburgh, 1998. http://www.ltg.ed.ac.uk/prosper/papers/
tidhar-1998-act/.

