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Abstract

We have developed a new boundary condition for finite volume simulations of
oscillating bubbles. Our method uses an approximation to the motion outside
the domain, based on the solution at the domain boundary. We then use this
approximation to apply boundary conditions by defining incoming character-
istic waves at the domain boundary. Our boundary condition is applicable in
regions where the motion is close to spherically symmetric. We have tested
our method on a range of one- and two-dimensional test cases. Results show
good agreement with previous studies. The method allows simulations of
oscillating bubbles for long run times (5×105 time steps with a CFL number
of 0.8) on highly truncated domains, in which the boundary condition may
be applied within 0.1% of the maximum bubble radius. Conservation errors
due to the boundary conditions are found to be of the order of 0.1% after
105 time steps. The method significantly reduces the computational cost of
fixed grid finite volume simulations of oscillating bubbles. Two-dimensional
results demonstrate that highly asymmetric bubble features, such as surface
instabilities and the formation of jets, may be captured on a small domain
using this boundary condition.
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1. Introduction

Many problems in fluid dynamics are posed in unbounded domains. Vari-
ous methods are employed to enable these problems to be solved numerically,
a common one of which is to restrict the computation to a finite region and
impose artificial boundary conditions on the truncated domain. The aim of
the artificial boundary conditions is to mimic the unbounded domain and
prevent spurious reflections from the domain boundary. Artificial boundary
conditions of this type are often referred to as ‘non-reflecting’ and ‘absorbing’.
Inaccurate absorbing boundary conditions can lead to spurious disturbances
at the domain boundaries, which propagate back through the domain, con-
taminating results.

There has been much work on non-reflecting boundary conditions. Re-
views have been provided by Givoli [1], Hagstrom [2] and Tsynkov [3]. Many
methods have been derived for wave propagation problems, such as the per-
fectly matched layer method [4, 5] which are only strictly applicable to linear
hyperbolic systems. However similar methods for the Euler equations have
been developed [6]. A good review of work on artificial boundary conditions
for compressible flow is given by Colonius [7].

Hedstrom [8] decomposed the Euler equations into characterstic wave
equations and presented a non-reflecting boundary condition using these
equations. Thompson [9] developed a useful formalism for applying char-
acteristic boundary conditions, and described a method of applying non-
reflecting characteristic boundary conditions [10]. The characteristic bound-
ary condition formalism of [9] is widely used.

The behaviour of oscillating air bubbles in water is of interest in a va-
riety of fields, including cavitation, underwater explosions, and shock wave
lithotripsy. In 1917, Rayleigh [11] developed an equation of motion for a
spherical cavity in an infinite incompressible fluid. The analysis in [11] forms
the basis for much work on oscillating bubbles. Lamb [12] derived an exact
wave equation for the motion of a spherical cavity in a compressible fluid,
and obtained an analytical solution for the special case of the ratio of spe-
cific heats, γ, being equal to 4/3. In general there is no analytical solution to
this equation. Extensions to [11] accounting for the compressibility of water
were developed by several authors [13, 14]. Gilmore [15] developed the work
of [11, 12, 13] to obtain an algorithm to calculate the propagating wavefield
outside the bubble. This scheme requires further approximations, and is less
accurate than the equations of motion on which it is based. Although on a
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much smaller scale, cavitation bubbles are a physically similar phenomenon,
and similar approximations have been developed to describe cavitation bub-
bles [16, 17], leading to the widely used Rayleigh-Plesset equation. Further
analysis of this form of approximation was carried out in [18, 19].

Marine seismic exploration can be thought of as a powerful form of echo
sounding, capable of penetrating the sea floor, to enable a three-dimensional
image of the sub-sea to be created. It is a process used in the petroleum
industry in the search for geological features which have the potential to
contain trapped hydrocarbons. Initially dynamite was used as the source
in marine seismic exploration. However environmental concerns led to the
development of alternative sources. Currently, seismic air guns are the most
commonly used source. In use they are towed behind a ship, usually between
5 and 20 metres beneath the sea surface, and when ‘fired’ release a quantity
of air at high pressure (136 atm), that forms a bubble which oscillates, pro-
ducing a wavefield which propagates through the sea and into the subsurface.
A seismic air gun is analagous to a weak underwater explosion.

Air gun bubbles were first modelled in 1970 by Ziolkowski [20], using a
simplified two-equation ordinary differential equation model of a seismic air
gun based on the work of [15]. This method is still the basis of the modelling
currently used by industry. The non-linear acoustic approximation (NLAA)
was developed by Ziolkowski [21] as an improvement to [20], and is equivalent
to the approximations of [13, 14]. The NLAA approximates the wavefield
produced by an oscillating bubble - subject to certain assumptions - and
allows the calculation of pressure and velocity at any point provided the
pressure and velocity are known at a single location. Boundary integral
methods which allowed the simulation of non-spherical bubbles have been
developed for cavitation modelling [22, 23, 24]. Cox et al. [25] provide a good
review of air gun modelling, and apply earlier boundary integral methods to
seismic air guns.

The first finite volume simulations of underwater explosions appear in [26],
although a lack of adequate boundary conditions mean that only very early
stages of the explosion were calculated. A review of early work on underwa-
ter explosions is provided in [27]. The one-dimensional spherically symmetric
underwater explosion has since become a commonly used test case (although
no analytical solution exists) for multimedium Euler solvers, and has been
simulated using a variety of numerical schemes [28, 29, 30, 31, 32, 33]. In a
typical underwater explosion problem the outgoing pressure wavefield propa-
gates to approximately 100 times the maximum bubble radius during a single
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bubble oscillation. Previous simulations have relied either on the use of a very
large domain (for example [33]) which is computationally expensive, or on
arbitrary Lagrangian-Eulerian methods [29, 30, 31] in which the problem is
solved on a mesh which expands to contain the outgoing wavefield.

Our solution is to take the non-linear acoustic approximation and use it
to develop artificial boundary conditions for a finite volume simulation of an
oscillating bubble on a truncated domain. We base our approximation on
the conditions at the domain boundary. This approximation is then used
to describe any incoming characteristic waves. These characteristic waves
are then applied through the characteristic boundary condition formalism of
[9]. This method allows finite volume simulations of oscillating bubbles to
be carried out for long run times on comparatively small domains, reducing
computational costs. We present our theory in two dimensions, and provide
one- and two-dimensional results, although the theory could be applied to
three-dimensional simulations.

The layout of the paper is as follows. In Section 2 we show the derivation
of the NLAA. In Section 3 we present a brief summary of the characteristic
boundary condition formalism and use the NLAA to derive artificial bound-
ary conditions. In Section 4 we describe the numerical scheme in which we
implement our boundary conditions. In Section 5 we present the results of
some one-dimensional test cases using our new method, and discuss the per-
formance of the method. In Section 6 we present results from two-dimensional
simulations. Section 7 is a summary of conclusions.

2. The non-linear acoustic approximation

Ziolkowski [21] developed the non-linear acoustic approximation for the
motion of a spherical bubble in water for use in modelling seismic air guns.
The approximation is based on the assumption that the acoustic wavefield
produced by the bubble is dominated by wavelengths many times the bub-
ble diameter, which allows the bubble to be considered a monopole source.
The velocity is described by a velocity potential which is assumed to obey
the linear acoustic wave equation, leading to an analytical solution for the
velocity potential. This solution is then passed back into the Euler equa-
tions to obtain solutions for the pressure and velocity. The following is the
derivation from [21]. We include this derivation as we will refer to several of
the equations frequently in the following sections of this paper, and wish to
avoid cumbersome citations to facilitate flow of exposition.
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Starting from Lamb [12], the bubble is assumed to be spherical, and all
motion is in the radial direction and subject to spherical symmetry. The
local specific enthalpy in the water, h, is defined as

h =

p∫
p∞

dp

ρ
=

ρ∫
ρ∞

c2
dρ

ρ
, (1)

where p is the pressure, ρ is the density, and c is the speed of sound, defined

by c2 = dp
dρ

∣∣∣
isentropic

. p∞ and ρ∞ are the pressure and density in the undis-

turbed water. For the pressure fluctuations considered, it is acceptable to
assume that ρ = ρ∞ and h = (p− p∞) /ρ∞. The speed of sound in the water
is assumed to be constant. It should be noted that this combination of as-
sumptions - incompressible flow and finite speed of sound - is a contradictory
set of assumptions, but acceptable because of the low Mach number flows
involved. Viscosity is neglected [20]. The flow is assumed to be irrotational
and the velocity u = uer obeys a velocity potential such that u = −∇ϕ.
Hence u = −∂ϕ

∂r
. The equation of motion is written

Du

Dt
+∇h = 0, (2)

where D(·)
Dt

is the material derivative, defined by D(·)
Dt

= ∂(·)
∂t

+ u∇ (·). Equa-
tion 2 is integrated to give

h =
∂ϕ

∂t
− u2

2
. (3)

An equation for the conservation of mass is written

1

ρ

Dρ

Dt
−∇2ϕ = 0. (4)

Equations 1 and 4 are combined to obtain

Dh

Dt
=

c2

ρ

Dρ

Dt
= c2∇2ϕ. (5)

With the imposition of spherical symmetry, from equations 3 and 5 the exact
wave equation, first derived in [12], is obtained

∂2ϕ

∂r2

(
1− u2

c2

)
+

2

r

∂ϕ

∂r

(
1 +

r

c2
∂2ϕ

∂t∂r

)
− 1

c2
∂2ϕ

∂t2
= 0. (6)
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Equation 6 has no known analytical solution. If the advective terms - u∂(·)
∂r

-
in equations 2, 4 and 5 are neglected the linear acoustic wave equation in ϕ
is obtained

∂2ϕ

∂r2
+

2

r

∂ϕ

∂r
− 1

c2
∂2ϕ

∂t2
= 0. (7)

Lamb [12] estimated that for flows with Mach number less than approxi-
mately 0.1, the errors caused by this approximation would be less than 1%.
The wavelengths of the pressure field produced by the bubble are large com-
pared with the bubble radius, hence the bubble can be considered a point
source. There are no other sources. Under these conditions, equation 7 has
the well known solution

ϕ (r, t) =
1

r
f
(
t− r

c

)
. (8)

Differentiation of equation 8 yields

u (r, t) = −∂ϕ

∂r
=

1

r2
f +

1

rc
f ′ (9)

where the argument of f , (t− r/c), has been dropped for ease of writing,
and a prime denotes differentiation with respect to the argument. Further
differentiation gives

∂u

∂r
= −∂2ϕ

∂r2
=

−2

r3
f − 2

r2c
f ′ − 1

rc2
f ′′ (10)

and
∂u

∂t
= − ∂2ϕ

∂r∂t
=

1

r2
f ′ +

1

rc
f ′′. (11)

These results are passed into equations 2 and 4 giving

1

r2
f ′ +

1

rc
f ′′ +

1

ρ

∂p

∂r
+ u

(
−2

r3
f − 2

r2c
f ′ − 1

rc2
f ′′
)

= 0. (12)

Equations 3, 8, 9 and 11 are used to provide expressions for f , f ′ and f ′′

f = r2
(
u− h

c
− u2

2c

)
, (13)

f ′ = r
∂ϕ

∂t
= r

(
h+

u2

2

)
, (14)
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f ′′ = rc
∂u

∂t
− ch− cu2

2
. (15)

Ziolkowski [21] argues that the quantity r (h+ u2/2) propagates outwards at
speed c with uniform amplitude, and determines a Lagrangian form of this
result, obtaining

RR̈

(
1− 2Ṙ

c

)
+

3Ṙ2

2

(
1− 4Ṙ

3c

)
= H +

RḢ

c

(
1− Ṙ

c

)
, (16)

where R is the bubble radius, H the enthalpy of the water at the bubble wall,
c the speed of sound of water. A dot represents differentiation with respect
to time. This result is solved numerically along with an equation such as
PR3n = constant, where n is a constant and 1 ≤ n ≤ 1.4 [20], to simulate
the evolution of the bubble through time. P and R are also used with the
above results to calculate an approximation of the pressure and velocity at
any point in the water.

3. Definition of boundary conditions using the non-linear acoustic
approximation

3.1. Characteristic boundary condition formalism

Consider a finite spherical domain Ω, of radius RD, bounded by Γ. Ω is
centred on the origin of a polar coordinate system, subject to polar axisym-
metry, in which r is the radial distance and θ the polar angle. Thompson [9]
presents a formalism for the treatment of boundary conditions in finite differ-
ence simulations for hyperbolic systems of conservation laws. This method
decomposes of the system of equations into a set of uncoupled wave equa-
tions for non-linear characteristics. This set of equations is then solved on
domain boundaries, with any incoming characteristic waves being specified
according to the boundary condition desired. Starting from the Euler equa-
tions for primitive variables density ρ, pressure p, radial velocity u and polar
velocity v, in polar coordinates, the uncoupled wave equations for non-linear
characteristics on Γ may be written as

∂ρ

∂t
+

1

c2

{
L2 +

1

2
[L4 + L1]

}
+

2ρu

r
+

v

r

∂ρ

∂θ
+

ρ

r

∂v

∂θ
+

ρv

r tan θ
= 0, (17)

∂p

∂t
+

1

2
{L4 + L1}+

2ρc2u

r
+

v

r

∂p

∂θ
+

ρc2

r

∂v

∂θ
+

ρvc2

r tan θ
= 0, (18)
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∂u

∂t
+

1

2ρc
{L4 − L1}+

v

r

∂u

∂θ
+

v2

r
+ g cos θ = 0, (19)

∂v

∂t
+ L3 +

v

r

∂v

∂θ
+

1

rρ

∂p

∂θ
+

uv

r
− g sin θ = 0, (20)

where each of the four Li describes a characteristic wave mode, each with
propagation speed λi. The terms proportional to 2u/r and 1/r tan θ are
source terms due to the polar coordinates. c is the local speed of sound. The
λi are defined by

λ1 = u− c, λ2 = λ3 = u, λ4 = u+ c. (21)

The Li are defined as

L1 = λ1

{
∂p

∂r
− ρc

∂u

∂r

}
, (22)

L2 = λ2

{
c2
∂ρ

∂r
− ∂p

∂r

}
, (23)

L3 = λ3

{
∂v

∂r

}
, (24)

L4 = λ4

{
∂p

∂r
+ ρc

∂u

∂r

}
, (25)

Finite difference simulations of the Euler equations involve the following
scheme: (1) calculation of spatial derivatives based on the solution at the
current time step; (2) using these spatial derivatives in some form of the
Euler equations to determine time derivatives; then (3) integrating the time
derivatives to obtain the solution at the next time step. On boundary nodes
equations 17 to 20 are solved. At any point in space, each characteristic
wave mode Li is described entirely by information downstream of that point
determined by the corresponding characteristic wave speed λi.

If the characteristic wave Li is propagating into Ω on Γ (λi < 0 at r =
RD), the information describing that wave mode is contained entirely outside
the domain, and hence Li must be specified by some artificial boundary
condition (for example, Li = 0). If the characteristic wave is propagating
out of the domain then it is entirely defined by information contained within
the domain, in which case equations 22, 23, 24 or 25 may be used to define
Li, based upon the solution within the domain. For example, a zero-velocity
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boundary condition (a reflective boundary) on Γ is applied by computing L4

from its definition in equation 25, prescribing L1 = L4 and L2 = L3 = 0,
and then solving equations 17 to 20 at that point.

Thompson [9] describes a ‘non-reflecting’ boundary condition as one in
which all characteristic waves incoming to the domain are suppressed. To
apply this boundary condition on Γ with subsonic flow, we compute L4

from its definition in equation 25 and prescribe L1 = 0. L2 = L3 = 0 if
u (b, t) ≥ 0, otherwise L2 and L3 are defined from equations 23 and 24. We
then solve equations 17 to 20 at that point. Thompson [10] admits that there
are many situations in which the correct solution does contain both outgoing
and incoming characteristic waves, and demonstrates some of the limitations
of this boundary condition.

3.2. Boundary conditions using the non-linear acoustic approximation

The NLAA yields a good approximation to the motion of an air gun
bubble or underwater explosion provided it is not used in such close proximity
to the bubble that the assumptions on which is founded are invalid. If an
oscillating bubble is simulated on a finite domain of sufficient radius, then the
approximate motion of the water outside the domain may be calculated using
the NLAA based on the solution on the domain boundary. Furthermore, this
approximate solution may then be used to provide boundary conditions for
the finite volume simulation of the bubble.

The NLAA is only valid for problems with spherical symmetry, in re-
gions where the density variation is small, and velocities are small compared
with sound speeds. Consider again the domain Ω, defined by 0 ≤ r ≤ RD,
bounded by Γ. Within Ω there may be an air gun bubble, an underwater
explosion, or some other source, but RD is large enough that on Γ the NLAA
is valid. Within Ω there is no limit to flow speeds or directions. On RD,
λ1 < 0 and λ4 > 0. As such, L1 must be specified on the boundary from
information based on the approximation to the exterior flow. The velocities
in the water will sometimes be directed inwards and sometimes outwards. If
u (RD, t) > 0 then L2 and L3 can be calculated from equations 23 and 24.
If u (RD, t) < 0 then L2 and L3 must be specified from information based
on the external flow. L4 will always be set by equation 25.
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3.2.1. Prescription of L1

The results of equations 10 and 12 are passed back into the definition of
L1 to obtain

L1 =
ρ (u− c)

r

{
−1

r
f ′ − 1

c
f ′′ + (u+ c)

(
2

r2
f +

2

rc
f ′ +

1

c2
f ′′
)}

. (26)

Using the results of equations 13, 14 and 15 equation 26 becomes

L1 =
ρ (u− c)

r

{
u2

2

(
3− u

c

)
+ 2uc− p− p∞

ρ∞

(
1 +

u

c

)
+

u

c
r
∂u

∂t

}
. (27)

We write

L1 =
ρ (u− c)u

c

∂u

∂t
+ αL1 , (28)

where

αL1 =
ρ (u− c)

r

{
u2

2

(
3− u

c

)
+ 2uc− p− p∞

ρ∞

(
1 +

u

c

)}
. (29)

Equation 19 may now be expressed as

∂u

∂t
+

1

2ρc

{
L4 − αL1 −

ρ (u− c)u

c

∂u

∂t

}
+

v

r

∂v

∂θ
+

v2

r
+ g cos θ = 0. (30)

Equation 30 can be re-arranged to form

∂u

∂t
+

1
2ρc

{L4 − αL1}+ v
r
∂v
∂θ

+ v2

r
+ g cos θ

1− (u−c)u
2c2

= 0 (31)

Equation 31 is solved to find ∂u
∂t
. Equation 28 is then used to calculate L1,

which is passed to equations 17 and 18, and used to calculate ∂ρ
∂t

and ∂p
∂t
.

3.2.2. Prescription of L2

When u > 0 on Γ, L2 may be determined from the definition in equa-
tion 23. When u < 0 on Γ, L2 must be determined based on the solution
of the NLAA. The NLAA is based on the contradictory combination of as-
sumptions of constant finite sound speed in an incompressible fluid. With
the assumption of constant uniform density, equations 12 and 23 are used to
obtain

L2 = −ρu

(
2u

r3
f +

(
2u

c
− 1

)
1

r2
f ′ +

(u
c
− 1
)
f ′′
)
. (32)
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Equations 13, 14 and 15 are substitued into equation 32 which becomes

L2 =
ρu2

r

[
p− p∞
cρ∞

− 2u+
u2

2c

]
+ ρu

(
1− u

c

) ∂u

∂t
. (33)

Once equation 31 has been solved, L2 is determined from equation 33, which
is used in equation 17 to obtain ∂ρ

∂t
.

L2 describes the entropy at the boundary. An alternative approach is to
state that the entropy is constant in the radial direction by setting L2 = 0.
We find that the maximum relative error caused by this second approach is
of the order of 10−3%.

3.2.3. Prescription of L3

The NLAA is based on the polar and azimuthal components of velocity
being zero on Γ. In a two-dimensional scheme, this may not be the case.
However, as the NLAA makes no provision for determining the variation of
polar velocities with radius, we make the most basic approximation possible,
and state that the variation of polar velocity with radius is zero. Hence, if
u > 0 on Γ, then L3 is determined from equation 22, otherwise L3 = 0. This
assumption is equivalent to stating that there is no advection of transverse
velocities through Γ.

3.2.4. Prescription of L4

Since the motion on Γ is always subsonic, L4 is defined by equation 25.

4. Computational Implementation

Numerical results are obtained by solving the Euler equations on a fixed
domain, Ω, as in Section 3. The coordinate system is aligned with the polar
axis pointing vertically upwards. In two dimensions with symmetry about
the polar axis, the Euler equations may be written as

∂U

∂t
+

∂F (U)

∂r
+

∂G (U)

∂θ
+ Sr (U) + Sθ (U) = D (U) , (34)

where
U =

[
ρ, ρu, ρv, E

]T
, (35)

F =
[
ρu, ρu2 + p, ρuv, u (E + p)

]T
(36)
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and
G =

[
ρv, ρuv, ρv2 + p, v (E + p)

]T
, (37)

in which ρ, u, v, E and p are the density, radial velocity, polar velocity, total
energy and pressure respectively. The source terms Sr and Sθ are due to the
polar coordinate system, and are given by

Sr =
2

r

[
ρu, ρu2, ρuv, u (E + p)

]T
(38)

and

Sθ =
1

r tan θ

[
ρv, ρuv, ρv2, v (E + p)

]T
. (39)

The effects of gravity are accounted for by D, defined by

D =
[
0, −ρg cos θ, ρg sin θ, −ρg (u cos θ − v sin θ)

]T
, (40)

where g is gravity, and g = 9.81ms−1. The equations are closed with a
stiffened gas equation of state given by

p = (γ − 1) ρe− γpc, (41)

where E = ρe+ 1
2
ρu2. For air we have γ = 1.4 and pc = 0, which is equivalent

to the ideal gas equation of state. For water we use, typically, γ = 7.0 and
pc = 3× 108 Pa.

Two-phase flow simulations are achieved using a single phase finite volume
Euler solver in combination with a ghost fluid method (GFM) to account for
the interface.

4.1. Single phase Euler solver

The single-phase Euler solver is a dimensionally-split first order Godunov-
type scheme (see, for example, [34, 35]). Spatial reconstruction is piecewise
constant in each cell based on cell centre valuesUn

i,j, where i and j denote the
spatial indices of the cell in the radial and polar directions respectively, and n
denotes the time index. Riemann problems at the cell faces are then defined
by Ri+ 1

2
,j = R

(
Un

i,j,U
n
i+1,j

)
, and Ri,j+ 1

2
= R

(
Un

i,j,U
n
i,j+1

)
, and are solved

using a Roe-average Riemann solver (due to [36]) to obtain HLLC fluxes
F̂i+ 1

2
,j and F̂i,j+ 1

2
(see [37]). Source terms due to the spherical coordinate

system and gravity are accounted for using a first-order operator splitting
procedure [26].
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4.2. Ghost fluid method

Ghost fluid methods are a family of front-tracking methods for the sim-
ulation of multimedium flows with sharp interfaces, first developed by Fed-
kiw [38]. Ghost fluid methods provide a relatively simple way to model
multifluid flows with sharp interfaces. We use a variation of the ‘real GFM’
of [39]. We omit the isobaric fix of [39], and modify only the ghost cells.

The air-water interface is tracked using a level set, ϕ, which is initialised
as a signed distance function of the interface and updated according to the
advection equation ϕt + uLSϕr = 0. Spatial derivatives of the level set are
obtained with a weighted essentially non-oscillatory (WENO) spatial recon-
struction scheme due to [40]. For one-dimensional simulations, the level set
velocity, uLS, is taken to be equal to the velocity of the interface, and hence
no re-initialisation procedure is required. For two-dimensional simulations
the level set velocity is set as the local fluid velocity, and the level set reini-
tialisation equation, ϕt = sgn (ϕ0) (1− |∇ϕ|), where ϕ0 is the solution to the
level set equation before reinitialisation, is solved to retain the signed dis-
tance function. We use a scheme due to [41], which is first-order accurate
over the whole domain, and second-order accurate in the vicinity of the in-
terface. By construction the interface cannot lie outside the domain. For
both level set equations we use a first order scheme for time integration.

4.2.1. Ghost fluid method in one dimension

In one dimension the ghost fluid method is applied as follows. At each
time step the location of the interface is determined by finding the zero
level set. The index of the cell with cell centre immediately to the left of
the interface is denoted q. A two-fluid Riemann problem is constructed,
defined by R

(
Un

q ,U
n
q+1

)
. The Riemann problem is solved using the two-

fluid approximate Riemann solver of [36], to provide the left and right star
states, denoted U⋆

L and U⋆
R. The two-fluid domain, Ω is duplicated to create

two one-fluid domains, Ω1 and Ω2. Ω1 contains real cells where ϕ ≤ 0 i ≤ q,
and a band of ghost cells where ϕ > 0 (i ≥ q+1). Ω2 is populated by real cells
where ϕ > 0 and a band of ghost cells where ϕ ≤ 0. The band of ghost cells
is required to be a minimum thickness of 2 cells for first-order methods, with
higher-order methods requiring more ghost cells. Properties in the one-fluid
domains are denoted Un

i,Ω1
and Un

i,Ω2
. The cells in the one-fluid domains are
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populated according to

Un
i,Ω1

=

{
Un

i if i ≤ q

U⋆
L if i ≥ q + 1

(42)

Un
i,Ω2

=

{
U⋆

R if i ≤ q

Un
i if i ≥ q + 1

(43)

The single-phase Euler solver is now used to update each of the domains
separately, yielding Un+1

i,Ω1
and Un+1

i,Ω2
. The level set is updated, then the two

one-fluid domains are recombined to the two-fluid domain according to

Un+1
i =

{
Un+1

i,Ω1
if ϕn+1

i ≤ 0

Un+1
i,Ω2

if ϕn+1
i > 0

(44)

4.2.2. Ghost fluid method in two dimensions

We find that the version of the real GFM used in the one-dimensional
simulations does not provide adequate stability as the interface becomes sig-
nificantly warped in two-dimensional simulations. In two dimensions we use
a variation, which is the same as for the one dimensional case, except that
whilst densities and velocities are defined by the solution to a Riemann prob-
lem, pressures are extrapolated from the region containing air. This mod-
ification is based on the modified GFM of [42], and the argument that the
motion is predominantly constrained by air pressures and water velocities.
A comparison of both versions of ghost fluid method on one-dimensional
problems provided similar results. To apply this version of the GFM in two
dimensions, we perform the following steps.

1. Determine whether each cell is beside the interface, and if so label it
an ‘interface cell’. A cell, A, with indices iA, jA, is an interface cell if
there is a cell, B, such that

iA − 1 ≤ iB ≤ iA + 1, (45)

jA − 1 ≤ jB ≤ jA + 1, (46)

and
ϕAϕB ≤ 0. (47)

2. For every interface cell, A
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(a) find the partner cell, B, which satisfies equations 45, 46 and 47,
and minimises the angle between the level set normals of the two
cells, by finding B which minimises (1−∇ϕA · ∇ϕB);

(b) determine the components of the velocity in directions normal
and tangent to the interface, un and ut, where the normal to the
interface is positive in the direction from fluid 1 to fluid 2 for cells
A and B;

(c) solve a Riemann problem defined by R
(
Ũn

A, Ũ
n
B

)
, where Ũ =

(ρ, un, ut, p)
T , obtaining star states U⋆

L and U⋆
R. Find the com-

ponents of the star state velocities in the radial and polar direc-
tions;

(d) use the star states of the Riemann problem to define the densities
and velocities in the ghost cell, B, beside the interface. Copy the
air pressures from the interface cell in the air region.

3. Extrapolate the primitive properties away from the interface in the
ghost regions by advecting with the level set normal:

∂ξ

∂τ
+ sgn (ϕ)∇ϕ · ∇ξ = 0, (48)

for ξ = ρ, u, v, p. Equation 48 is solved with first order upwind discreti-
sation of spatial derivatives and a first order Euler method for time
integration.

4. Update the properties in each domain separately using the single-phase
Euler solver, to obtain Un+1

Ω1
and Un+1

Ω2
.

5. Update the level set one time step, obtaining ϕn+1.

6. Reconstruct the properties in the two-fluid domain according to the
sign of the level set:

Un+1
i,j =

{
Un+1

Ω1,i,j
if ϕn+1

i,j ≤ 0

Un+1
Ω2,i,j

if ϕn+1
i,j > 0.

(49)

This completes the time-step.

4.3. Boundary conditions

The NLAA boundary condition is applied by updating a band of ghost
cells on Γ using the characteristic boundary condition formalism as described
in Section 3 and a first order method for time integration. A reflecting
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boundary condition is applied at the origin. For the two-dimensional cases a
reflecting boundary condition is also applied on the boundaries where θ = 0
and θ = π.

4.4. Limitations of the numerical scheme

Our investigations are carried out using a scheme which is first order
in time and space. Higher-order schemes including a second-order MUSCL
scheme [43] and a 5th-order WENO scheme [40] with third-order time in-
tegration [44] were investigated. We have found that a first-order scheme
provides best results. We compare our results for a one-dimensional under-
water explosion problem with results of other authors [33, 45]. We find that
our results using a first order scheme closely match those in [33, 45], whilst
higher-order methods lead to severely damped bubble oscillations. We be-
lieve this is due to the different momentum and energy fluxes through the
interface when the GFM is used in conjunction with a numerical scheme
based on a wide stencil.

A flaw in the current scheme is that the Euler equations in polar coordi-
nates are not in conservative form, due to the geometric source terms. When
the motion of the interface is in the radial direction the regions either side of
the interface are subject to erroneously high or low energies, and the Rankine-
Hugoniot conditions are not met at the interface. The obvious symptom of
these errors is a pressure discontinuity at the interface (visible in Figure 3)
which is proportional in magnitude to the radial interface speed and the grid
size. This error is reduced by refining the computational mesh. This is an
open problem, and one which the authors are currently investigating.

5. Numerical results in one dimension

We test our method on single-phase and two-phase test problems in one
dimension. In all cases, the computational domain is defined by 0 ≤ r ≤
RD, and is made up of uniform cells of width δr, and subject to spherical
symmetry. Test problems are run with a range of values for RD and δr. All
cases are run with a CFL number of 0.8.

For all one-dimensional test problems gravity is neglected and the largest
value of RD is chosen such that there is insufficient time during the simulation
for errors caused by the boundary condition to propagate back into the region
of interest. This provides us with what is effectively an ‘ideal’ boundary
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condition, against which to test the NLAA boundary condition. We refer to
these cases as ‘large domain’ or ‘ideal’ boundary condition cases.

5.1. Problem I - Travelling pulse in water
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Figure 1: Problem I - Spatial pressure disturbance and velocity profiles for the outgoing
pulse at time t = 0.005. Note that the velocity profile has been made non-dimensional
with the local speed of sound and magnified by a factor of 104.

We first consider a single phase problem. The problem consists of a
domain containing water initially at rest, with uniform density. The pressure
of a sphere of water near the origin is increased relative to the surrounding
water. These initial conditions produce a pulse which propagates outwards
at the local speed of sound. Behind the outgoing pulse the velocity is zero
and the pressure is uniform. The initial conditions are

(ρ, u, p, γ, pc) =

{
(1, 0, 10, 7, 3000) if 0 < r < 0.1,

(1, 0, 1, 7, 3000) if 0.1 < r < RD.
(50)

The simulation is run on a grid with δr = 0.005 for 400 time steps. We run
the simulation on a domain with size RD = 1 for our new artificial bound-
ary condition (NLAA) and also for Thompson’s [9] non-reflecting boundary
condition (NR). We run the simulation on a domain with RD = 2 to pro-
vide an ideal boundary condition. We calculate the pressure disturbance as
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Figure 2: Problem I - The remaining pressure disturbances after the main pulse has left
the domain due to different boundary conditions, at time t = 0.011. Solid line: large
domain ‘ideal’ boundary condition. Dashed line: our non-linear acoustic approximation
boundary condition. Dot-dashed: Thompson’s [9] non-reflecting boundary condition.

the relative deviation of the absolute pressure from the initial pressure at
the domain boundary (ie. (p (r, t)− p∞) /p∞ = p (r, t) − 1). We make the
velocity non-dimensional by multiplying by 104/c, where c is the local speed
of sound. Figure 1 shows the velocity and pressure disturbances due to the
outgoing pulse. Figure 2 shows pressure disturbances, caused by the artifi-
cial boundary condition, propagating back towards the origin. It is apparent
from Figure 2 that in this case the NLAA boundary condition outperforms
the NR boundary condition: the disturbance which propagates inwards is of
much smaller magnitude than that produced by Thompson’s [9] boundary
condition. The final pressure reached after a long time has elapsed is cor-
rect when using the NLAA boundary condition, but not when using the NR
boundary condition. In this case the Mach number of the pulse as it impacts
on the domain boundary is very low, at 1.5×10−5. The strength of the pulse
leaving the domain is very weak, and this case satisfies the assumptions on
which the non-linear acoustic approximation is based. The amplitude of the
spurious pulse caused by the boundary condition is approximately 350 times
smaller than the amplitude of the pulse which propagates outwards.
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5.2. Problem II-A.1 - Air gun bubble problem - early stages

We consider the problem of the bubble produced by a seismic air gun.
This problem consists of an initially stationary bubble of air at high pressure
in water. The initial conditions are:

(ρ, u, p, γ, pc) =

{
(102, 0, 8.85× 106, 1.4, 0) if 0 < r < 0.1,

(1000, 0, 1.77× 105, 7.0, 3× 108) if 0.1 < r < RD,

(51)
where all quantities are given in S.I. units. This problem is comparable with
an air gun with a volume of 250 cubic inches, charged to a pressure of 2000
pounds per square inch at a depth of 7.7 metres. Air guns of this size and
pressure are commonly used in industry. Note that the discrepancy in initial
pressures - 8.85×106Pa ≈ 1300psi - is intentional, and is designed to account
for the process by which air is released from the gun. We run the simulation
for domain sizes, RD, of 1 and 5 metres. In both simulations, a grid cell size
of δr = 2× 10−4metres is used. The results with RD = 5 are taken to be the
ideal boundary condition case.
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Figure 3: Problem II-A.1: Spatial pressure profiles at different times for domain sizes
of RD = 1 (NLAA BC) and RD = 5 (‘ideal’ BC). (a) t = 0.22ms; (b) t = 0.29ms; (c)
t = 0.43ms; (d) t = 0.59ms; (e) t = 0.75ms; (f) t = 1.10ms. The dotted line shows the
location of the interface between air and water.
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Figure 3 shows the pressure profiles at different times for the two domain
sizes. Note the small discontinuity in pressure at the interface due to the
ghost fluid method as discussed in Section 4.4. For both domain sizes, the
pressure profiles match very closely and cannot be distinguished in Figure 3.
As the outgoing pressure wave passes the domain boundary a disturbance
due to the artificial boundary condition forms and propagates back into the
domain. This disturbance causes density, velocity and pressure errors of
−3 × 10−5%, 0.007% and −0.04% respectively. That the error in pressure
is negative and the error in velocity is positive implies that the artificial
boundary condition is applying too weak a resistance at the boundary and
is causing higher fluxes at the boundary than in the ideal case.

5.3. Problem II-A.2 - Air gun bubble - long run

We now consider the same problem as in the previous case but on longer
time scales. We run the simulation for domain sizes, RD, of 1, 2, 4, 8, 16
and 125 metres, with a cell size of δr = 5 × 10−3 metres. The simulation is
run for 5×104 time steps, which corresponds to approximately 0.14 seconds,
during which time the bubble undergoes two full oscillations. During the
simulation, the maximum outgoing pressure wave impacts on the boundary
in the RD = 125 case; there is insufficient time for any disturbances to
propagate back towards the origin as far as r = 16. We take the case of
RD = 125 as the case with ideal boundary condition with which to compare
results obtained on smaller domains.

Figure 4 shows the time evolution of the interface position, Rint, and
pressure, Pint, for RD = 1. Figure 5 shows the magnitude in the relative error
of the maximum interface interface position as RD is varied. The results
show third-order convergence of Rint with increasing RD. Pint also shows
third-order convergence. This convergence fails for RD = 16 and 32, as the
variation in density on RD in these cases is of the same order of magnitude
as machine precision.

For each value of RD, the fluxes of the conservative properties are calcu-
lated at the domain boundary. The fluxes are also calculated at the same
position for the case of RD = 125. These fluxes are then integrated with
respect to time to determine the total quantity of each conserved property
which has left the domain. We then determine the relative errors in these
cumulative fluxes, taking the case of RD = 125 as a reference. Figure 6 shows
the relative errors in the conservation properties of the boundary for differing
domain sizes. Boundary conservation errors in energy match those in mass
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Figure 4: Problem II-A.2: Interface position and interface pressure variation as a function
of time for RD = 1.

to within 0.1% in all cases. Figure 6 shows a maximum error in boundary
conservation after two full bubble oscillations (5× 104 time steps) of approx-
imately 10%. Figure 6 also shows a third-order convergence in boundary
conservation errors as RD is increased. When RD = 16, variation in density
at the domain boundary is of the same order of magnitude as machine preci-
sion errors, and hence the convergence characteristics of the smaller domains
in Figure 6 appear not to hold.

This convergence rate is independent of mesh size, although errors due to
the boundary conditions are reduced with finer mesh. We run the simulation
for two domain sizes, RD = 1 and RD = 2 for a range of grid sizes, δr =
5 × 10−3, 2 × 10−3, 1 × 10−3 and 3.33 × 10−3 metres, corresponding to 200,
500, 1000 and 3000 cells per metre respectively. With 3000 cells per metre,
the simulation was run for 5× 105 time steps. The relative error in interface
position, ERint

, and the relative error in interface pressure EPint
between the

two domain sizes is calculated for each grid size. Table 1 shows the L1 norm
and the convergence rates for these errors. We find approximately first-order
convergence of these errors with grid size.

5.4. Problem II-B.1 - Gaseous explosion in water - early stages

We consider an underwater explosion problem first studied by Flores and
Holt [26]. Other authors have investigated this problem, using both Eule-
rian [28, 32, 33] and arbitrary Lagrangian-Eulerian [29, 30, 31] methods. This
problem is similar to the problem of modelling a seismic air gun, but with a
much greater initial pressure. The strength of the propagating shock in this
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Figure 6: Problem II-A.2: Relative mass and momentum boundary conservation errors as
functions of time for different values of RD: RD = 1 - solid line with points; RD = 2 -
dash-dot line; RD = 4 - dotted line; RD = 8 - dashed line; RD = 16 - solid line.
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δr (metres) ERint
Rc EPint

Rc

5× 10−3 7.05× 10−3 0.112
2× 10−3 3.08× 10−3 0.916 0.047 0.958
1× 10−3 1.57× 10−3 0.981 0.024 0.991
3.33× 10−4 5.53× 10−4 0.946 8.3× 10−3 0.947

Table 1: Problem II-A.2: Relative errors due to boundary conditions and convergence rate
with mesh refinement.

problem is greater than the non-linear acoustic approximation was designed
for. As this problem is beyond the remit of the NLAA, it is a good test for
the robustness of our method. The initial conditions are

(ρ, u, p, γ, pc) =

{
(1.63, 0, 83810, 1.4, 0) if 0 < r < 0.16,

(1.025, 0, 10, 5.5, 4921.15) if 0.16 < r < RD.
(52)

The simulation is run for domain sizes of RD = 1 and RD = 5, with
δr = 3.33×10−4 metres in both cases. The case of RD = 5 provides the ideal
boundary conditions. The maximum Mach numbers occur at the interface,
and are 0.55 in the bubble and 0.37 in the water. The maximum Mach
number at r = 1 is 0.11.

Figure 7 shows the pressure profile at different times for both RD = 1 and
RD = 5. Initially a shock wave propagations are from the interface into the
water, and a rarefaction wave propagates into the bubble towards the origin.
The shock wave is visible at about r = 0.7 in curve (a). As the rarefaction
wave impacts on the origin it is reflected as a rarefaction wave, the pressure
near the origin drops below the pressure in the rest of the bubble, and an
inward propagating shock forms. This shock reflects of the origin and propa-
gates outwards (it is visible at about r = 0.1 in curve (a)). Curve (b) shows
this shock just prior to impacting on the interface. When it impacts on the
interface, it is partially reflected back towards the origin, and partially trans-
mitted out into the water (curve (c)). As the outgoing pressure wave impacts
on the boundary a small disturbance forms and propagates back towards the
origin (curves (c), (d) and (e)). The disturbance causes maximum errors of
−15%, 1.5% and −0.1% in the pressure, velocity and density, respectively,
at the boundary. The disturbance propagates in to the air-water interface,
at which point it is partially reflected outwards, and partially transmitted
into the bubble, where it grows in strength as it converges on the origin
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Figure 7: Problem II-B.1: Spatial pressure profiles at different times for domain sizes
of RD = 1 (NLAA BC) and RD = 5 (‘ideal’ BC). (a) t = 0.21ms; (b) t = 0.31ms; (c)
t = 0.41ms; (d) t = 0.5ms; (e) t = 0.6ms; (f) t = 0.73ms; (g) t = 0.91ms; (h) t = 1.13ms.

(curves (f), (g) and (h)).

5.5. Problem II-B.2 - Gaseous explosion in water - long run

We now test our method on the underwater explosion problem over a
much greater run time, for one full bubble oscillation period. The initial
conditions are the same as for the previous case. We now use a coarser
grid, with δr = 4 × 10−3 metres. The simulation is run for domain sizes of
RD = 3.5, RD = 4, RD = 6, RD = 8 and RD = 250, for 1.25×105 time-steps.
During the simulation the outgoing pressure wave reaches the boundary in
all cases. When RD = 250 spurious reflections from the boundary do not
have time to propagate further inwards than r = 100. Hence the case of
RD = 250 is taken to be the ideal boundary condition with which to compare
the performance of the boundary conditions on the smaller domains.

Figure 8 shows the time-evolution of the bubble radius and the interface
pressure. These results are in good agreement with previous authors [29,
33]. The secondary oscillations (‘internal bubble oscillations’) present in the
interface pressure in Figure 8 are due to pressure waves propagating across
the bubble and interacting with the air-water interface, as described in the
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Figure 8: Problem II-B.2: Interface position and interface pressure variation as a function
of time for RD = 4.
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Figure 9: Problem II-B.2: Variation of the magnitude of the relative er-
ror in maximum interface position for different domain sizes. ∆Rint,max =
|max (Rint,RD

)−max (Rint,RD=125)| /max (Rint,RD=250).
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Figure 10: Problem II-B.2: Variation of air mass as a function of time for different values
of RD. Dashed line - RD = 4; dash-dot line - RD = 6; dotted line - RD = 8; solid line -
RD = 250.
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Figure 11: Problem II-B.2: Relative mass and momentum boundary conservation errors
as a function of time for different values of RD.
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previous section. The maximum radius of the bubble during the simulation
is 3.2 metres. The maximum Mach number at the domain boundary when
RD = 4 is 0.02, and initial shock which impacts on the boundary has a
pressure ratio of 50. Figure 9 shows the magnitude of the relative error in
maximum interface position for different values of RD. The results show
third-order convergence.

Figure 10 shows the time evolution of the error in the total mass of air
in the bubble. The variation in Figure 10 of order 1% is due to the non-
conservative properties of the ghost fluid method about the interface, and is
unavoidable given the current numerical scheme, although it can be reduced
with mesh refinement. The differences in mass conservation for different sized
domains show no improved performance with larger domains. The variation
between the traces in Figure 10 is due to the sensitivity of the conservation
properties of the scheme to the time at which any disturbances from the
domain boundary impact on the material interface. It must be noted that
the interaction between the disturbance due to the boundary conditions and
the wave inside the bubble has the ability to change the phase of the internal
bubble oscillations significantly as the bubble collapses. As with previous
test problems, we observe third-order convergence of interface position and
pressure as RD is increased.

Figure 11 shows the conservation errors in mass and momentum flowing
out of the domain at RD relative to the RD = 250 case for each value of
RD = 4, 6 and 8. As in the previous cases, boundary conservation errors in
energy matched those in mass to within 0.1%. These results show a third-
order convergence for boundary conservation properties with increasing RD.
For the case of RD = 8, the maximum errors in boundary conservation are
of the order of 0.1%. This is a very good conservation property, given that
the simulation has been run for such a large number of time steps.

We also run the simulation with RD = 3.21, in which case RD is 0.1%
greater than the maximum bubble radius. In this case the results obtained
match those expected from the convergence properties observed above. Re-
call that the simulation will break down if the interface moves outside the
domain. We note that for the underwater explosion problem the minimum
acceptable domain size is determined not by the performance of the bound-
ary condition, but by the requirement that the domain is larger than the
maximum bubble radius.

The NLAA boundary condition provides excellent results with regard
to the large-scale motion of the bubble. Smaller scale motion, such as the
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pressure waves oscillating within the bubble, are significantly affected by the
boundary conditions, but they themselves have little effect on the bubble
radius or interface pressure.

6. Results in two-dimensions

In our two-dimensional test problems, the computational domain is the
region containing the points 0 ≤ r ≤ RD and 0 ≤ θ ≤ π, and is split
uniformly into cells with side lengths δr and rδθ, where δr = RD/50 and
δθ = π/50. In all cases, we set RD = 1 and use a CFL number of 0.8.

6.1. Problem III-A.1 - Two-dimensional air gun bubble subject to a distur-
bance

We now simulate an air gun bubble as in Problem II-A, but the imposition
of spherical symmetry is relaxed and the initial shape is subject to a small
sinusoidal disturbance, η. For this problem we neglect gravity. The intitial
conditions are given by

(ρ, u, p, γ, pc) =

{
(102, 0, 8.85× 106, 1.4, 0) if 0 < r < 0.1 + η,

(1000, 0, 1.77× 105, 7.0, 3× 108) if 0.1 + η < r < RD,

(53)
where all quantities are given in S.I. units. We set η = 0.001 sin (20θ). Note
that if we set η = 0 the initial conditions do not vary with θ, and the problem
collapses to the one-dimensional problem. We run the simulation twice, with
RD = 1 and RD = 2.

Figure 12 shows the shape of the bubble at different times during collapse,
for the case of RD = 1 (solid line) and RD = 2 (dashed line). As the bubble
expands outwards the disturbances to the interface do not grow, but are
damped slightly, and so we do not show the shape of the bubble during the
expansion phase. As the bubble collapses, the interface becomes unstable
and the disturbances grow. This instability is a expression of Rayleigh-Taylor
instability [46]. Our results agree with [47, 48], in which the changing form
of the bubble surface during collapse can be seen in high-speed photographs
of an air gun bubble. Due to the instability of the surface, the final shape
of the bubble is highly sensitive to small changes during the earlier stages
of oscillation. In Figure 12 the initial bubble shapes for the two cases are
identical, whilst the final shapes of the two bubbles differ significantly. This is
due to the small differences caused by errors due to the boundary condition.
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If the model were used to study bubble surface instabilities, RD, δr and δθ
should be set such that grid converged results in terms of Rint and Pint are
obtained.

Polar coordinate systems contain a singularity at the poles. It is well-
known [49, 50, 51] that this singularity causes Rayleigh-Taylor instabilities
to grow faster at the poles. This phenomenon is a numerical artefact of the
discretisation. We observe this phenomenon in Figure 12, frames (F) to (H),
where a long Rayleigh-Taylor finger protruding along the polar axis is clearly
visible.

6.2. Problem III-A.2 - Two-dimensional air gun bubble under the influence
of gravity

This final problem has the same initial conditions as problem II-A, but
the imposition of spherical symmetry is relaxed, and the problem is subject
to axi-symmetry about the polar axis. The initial conditions are adjusted
to include the effects of gravity by augmenting pressure terms with the hy-
drostatic pressure, phydrostatic = −ρgr cos θ. An effective bubble radius is
obtained by calculating the volume of the bubble, and finding the radius of a
sphere of that volume. The interface pressure is taken as the average pressure
over the bubble surface.

Figure 13 shows the shape of the bubble as it collapses, both with (solid
line) and without (dashed line) gravity. The case without gravity is spher-
ically symmetric, and the bubble does not undergo any translation. We
observe the bubble rising due to gravity, at a rate which is in agreement with
previous numerical simulations [25]. As the bubble collapses, our results
show a jet begins to form on the underside and pierce upwards through the
bubble along the polar axis. This phenomenon is well known, and has been
captured previously, for instance in [25, 52]. For most of the oscillation (the
expansion phase, and frames (A) to (D) in Figure 13) the effects of gravity
on the effective bubble radius and the bubble pressure are negligible. It is
only during the latter stages of collapse that the translation and deformation
of the bubble has a significant effect on the pressure far from the bubble.
As discussed above, there is a singularity at the poles which increases the
speed of growth of instabilities. In long run time simulations, these errors
can evolve into axial jets [51]. We find that as the physical jet directed radi-
ally inwards approaches the origin, the unphysical jet forms in the opposite
direction, and eventually leads to the breakdown of the simulation.
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Figure 12: The shape of the bubble at different times during collapse, with RD = 1.
Gravity is neglected. The initial shape of the bubble is a sphere subject to a sinusoidal
disturbance, η = 0.001 sin (20θ). The solid line shows results with RD = 1. The dashed
line shows results with RD = 2. (A) t = 29.2ms; (B) t = 50.2ms; (C) t = 56.7ms; (D)
t = 61.5ms; (E) t = 64.7ms; (F) t = 67.2ms; (G) t = 69.0ms; (H) t = 70.8ms.

In its current form, the code would take an inordinately long time to sim-
ulate one oscillation of a two-dimensional bubble on a large domain, as we did
for the one-dimensional results in Section 5. Hence we do not have an ‘ideal
boundary condition’ result to allow the calculation of the absolute errors in-
troduced by the boundary condition in two dimensions. Whilst much of the
above discussion is unrelated to our boundary condition, this only serves to
highlight its efficacy. The boundary condition allows two-dimensional simu-
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Figure 13: The shape and position of the bubble at different times during collapse, with
RD = 1, both with (solid line) and without (dotted line) gravity included. (A) t = 56.8ms;
(B) t = 59.8ms; (C) t = 62.7ms; (D) t = 65.3ms; (E) t = 67.7ms; (F) t = 69.9ms; (G)
t = 71.8ms; (H) t = 73.6ms.

lations of oscillating bubbles on small domains, at a reduced computational
cost. This reduction in cost can facilitate research into more interesting
details of bubble motion, such as surface instabilities and the formation of
jets.

7. Conclusions

We have derived a new artificial boundary condition for numerical simu-
lations of oscillating bubbles and similar problems on a finite domain. The
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method is applicable when the problem is spherical in nature and close to
spherically symmetric, and the motion at the domain boundary is of low
Mach number (less than 0.1). The boundary condition is based on the non-
linear acoustic approximation, developed for use in modelling seismic air
guns. We use the non-linear acoustic approximation to calculate an approx-
imate solution to the motion outside the domain based on the solution at
the domain boundary. We apply boundary conditions by using the approx-
imate solution to describe all characteristic waves incoming to the domain
at the boundary. We implement our boundary condition in one- and two-
dimensional two-phase Euler solvers. A Godunov-type scheme is used for
single phase calculations, whilst the interface between phases is modelled us-
ing a ghost fluid method. The scheme is first-order accurate in space and
time. We have tested our method on a range of one- and two-phase problems
in one and two dimensions.

In one dimension, the method performs well, yielding accurate results
for underwater explosion problems, even when the domain boundary is only
slightly larger (0.1%) than the maximum bubble radius. A major benefit
of the method is that it allows long run time (105 time steps with a CFL
number of 0.8) simulations of such problems on a highly trunctated domain,
at a reduced computational cost. The method is robust, and capable of
yielding good conservation properties (errors of less than 1%) over very long
run times. Our two-dimensional results show that the boundary condition
allows long run time simulations of axisymmetric oscillating bubbles provided
computational domain extends some distance into the water such that the
motion at the boundary is close to spherically symmetric. The value of
our boundary condition to two-dimensional simulations is significant, as it
permits complex aspects of bubble behaviour to be simulated at very small
computational costs.
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