

Edinburgh Research Explorer

Probabilistic Programming

Citation for published version:
Gordon, AD, Henzinger, TA, Nori, AV & Rajamani, SK 2014, Probabilistic Programming. in Proceedings of
the on Future of Software Engineering. ACM, New York, NY, USA, pp. 167-181. DOI:
10.1145/2593882.2593900

Digital Object Identifier (DOI):
10.1145/2593882.2593900

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Early version, also known as pre-print

Published In:
Proceedings of the on Future of Software Engineering

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 05. Apr. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/43711925?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1145/2593882.2593900
https://www.research.ed.ac.uk/portal/en/publications/probabilistic-programming(7b28bcce-5f80-4f51-9316-561945d0f976).html

Probabilistic Programming

Andrew D. Gordon
Microsoft Research
adg@microsoft.com

Thomas A. Henzinger
IST Austria
tah@ist.ac.at

Aditya V. Nori
Microsoft Research

adityan@microsoft.com

Sriram K. Rajamani
Microsoft Research

sriram@microsoft.com

Abstract
Probabilistic programs are usual functional or imperative programs
with two added constructs: (1) the ability to draw values at random
from distributions, and (2) the ability to condition values of vari-
ables in a program via observations. Models from diverse applica-
tion areas such as computer vision, coding theory, cryptographic
protocols, biology and reliability analysis can be written as proba-
bilistic programs.

Probabilistic inference is the problem of computing an explicit
representation of the probability distribution implicitly specified by
a probabilistic program. Depending on the application, the desired
output from inference may vary—we may want to estimate the
expected value of some function f with respect to the distribution,
or the mode of the distribution, or simply a set of samples drawn
from the distribution.

In this paper, we describe connections this research area called
“Probabilistic Programming” has with programming languages and
software engineering, and this includes language design, and the
static and dynamic analysis of programs. We survey current state
of the art and speculate on promising directions for future research.

1. Introduction
Probabilistic programs are “usual” programs (written in languages
like C, Java, LISP or ML) with two added constructs: (1) the ability
to draw values at random from distributions, and (2) the ability to
condition values of variables in a program via observe statements
(which allow data from real world observations to be incorporated
into a probabilistic program). A variety of probabilistic program-
ming languages and systems has been proposed [5, 19, 21, 22, 31,
33, 41, 49]. However, unlike “usual” programs which are written
for the purpose of being executed, the purpose of a probabilistic
program is to implicitly specify a probability distribution. Prob-
abilistic programs can be used to represent probabilistic graphi-
cal models [32], which use graphs to denote conditional depen-
dences between random variables. Probabilistic graphical models
are widely used in statistics and machine learning, with diverse

[Copyright notice will appear here once ’preprint’ option is removed.]

application areas including information extraction, speech recog-
nition, computer vision, coding theory, biology and reliability anal-
ysis.

Probabilistic inference is the problem of computing an explicit
representation of the probability distribution implicitly specified
by a probabilistic program. If the probability distribution is over
a large number of variables, an explicit representation of the joint
probability distribution may be both difficult to obtain efficiently,
and unnecessary in the context of specific application contexts. For
example, we may want to compute the expected value of some
function f with respect to the distribution (which may be more effi-
cient to calculate without representing the entire joint distribution).
Alternatively, we may want to calculate the most likely value of the
variables, which is the mode of the distribution. Or we may want
to simply draw a set of samples from the distribution, to test some
other system which expects inputs to follow the modeled distribu-
tion.

The goal of probabilistic programming is to enable probabilis-
tic modeling and machine learning to be accessible to the work-
ing programmer, who has sufficient domain expertise, but perhaps
not enough expertise in probability theory or machine learning. We
wish to hide the details of inference inside the compiler and run-
time, and enable the programmer to express models using her do-
main expertise and dramatically increase the number of program-
mers who can benefit from probabilistic modeling.

The goal of this paper is to give an overview of probabilistic
programming for the software engineering community. We assume
familiarity with program analysis and program semantics, but pro-
vide all the necessary background in probabilistic inference. We
use a simple C-like programming language notation for probabilis-
tic programs. We draw connections between probabilistic inference
and static and dynamic program analysis. We discuss language
design issues, and bring out several challenges that remain to be
solved in order for probabilistic programming to truly democratize
access to machine learning.

In Section 2, we give an introduction to probabilistic programs,
starting with examples and ending with a precise formal semantics.
In Section 3, we describe the relationship between probabilistic
programs and other probabilistic models that readers may be famil-
iar with, such as Markov Chains and Bayesian Networks, and how
these models can be encoded as probabilistic programs. In Section
4, we describe how applications from diverse fields such as ma-
chine learning, security and biology can be encoded as probabilis-
tic programs. In Section 5, we describe language design issues for
probabilistic programs, and how we can use high-level languages
such as Excel tables to describe probabilistic programs. In Section

1 2014/1/24

1: bool c1, c2;
2: c1 = Bernoulli(0.5);
3: c2 = Bernoulli(0.5);
4: return(c1, c2);

1(a)

1: bool c1, c2;
2: c1 = Bernoulli(0.5);
3: c2 = Bernoulli(0.5);
4: observe(c1 || c2);
5: return(c1, c2);

1(b)

1: bool c1, c2;
2: int count = 0;
3: c1 = Bernoulli(0.5);
4: if (c1) then
5: count = count + 1;
6: c2 = Bernoulli(0.5);
7: if (c2) then
8: count = count + 1;
9: observe(c1 || c2);
10:return(count);

Example 1. Example 2.

Figure 1. Simple probabilistic programs.

6, we describe techniques for performing probabilistic inference
and draw parallels to static and dynamic program analysis. In Sec-
tion 7, we discuss several open questions and opportunities for fu-
ture research in probabilistic programming.

2. Background
We start this section with some examples to familiarize the reader
with probabilistic programs, and also informally explain the main
ideas behind giving semantics to probabilistic programs. We con-
clude the section with a precise description of syntax and semantics
of probabilistic programs.

Examples of Simple Probabilistic Programs. We introduce the
syntax and semantics of probabilistic programs using three simple
probabilistic programs from Figure 1. The program at the top left,
Example 1(a), tosses two fair coins (simulated by draws from a
Bernoulli distribution with mean 0.5), and assigns the outcomes of
these coin tosses to the Boolean variables c1 and c2 respectively,
and returns (c1, c2). The semantics of this program is the expecta-
tion of its return value. In this case, this is equal to (1/2, 1/2).
Since we have that Pr(c1=false, c2=false) = Pr(c1=false,
c2=true) = Pr(c1=true, c2=false) = Pr(c1=true, c2=true)
= 1/4, we have that the expectation on the return value is given by
1/4×(0, 0)+1/4×(0, 1)+1/4×(1, 0)+1/4×(1, 1) = (1/2, 1/2)
(by treating true as 1 and false as 0).

The program in Example 1(b) is slightly different from Ex-
ample 1(a)—it executes the observe statement observe(c1||c2)
before returning the value of (c1, c2). The observe statement
blocks runs which do not satisfy the boolean expression c1||c2
and does not permit those executions to happen. Executions that
satisfy c1||c2 are permitted to happen. The semantics of the
program is the expected return value, conditioned by permitted
executions. Since conditioning by permitted executions yields
Pr(c1=false,c2=false) = 0, and Pr(c1=false,c2=true) =
Pr(c1=true,c2=false) = Pr(c1=true,c2=true) = 1/3, we have
that the expected return value is 0× (0, 0) + 1/3× (0, 1) + 1/3×
(1, 0) + 1/3× (1, 1) = (2/3, 2/3).

Another variation of this example is shown in Example 2.
This program also counts the number of coin tosses that re-
sult in the value true, and stores this count in the variable
count. The semantics of the program is the expected return value,
conditioned by permitted executions. Once again, since condi-
tioning by permitted executions yields Pr(c1=false,c2=false)
= 0, and Pr(c1=false,c2=true) = Pr(c1=true,c2=false) =
Pr(c1=true,c2=true) = 1/3, we have that the expected return
value is 0× 0 + 1/3× 1 + 1/3× 1 + 1/3× 2 = 4/3.

We note that the statement observe(x) is very related to the
statement assume(x) used in program verification literature [2, 15,
42]. Also, we note that observe(x) is equivalent to the while-loop

1: bool c1, c2;
2: int count = 0;
3: c1 = Bernoulli(0.5);
4: if (c1) then
5: count = count + 1;
6: c2 = Bernoulli(0.5);
7: if (c2) then
8: count = count + 1;
9: while !(c1 || c2) {
10: count = 0;
11: c1 = Bernoulli(0.5);
12: if (c1) then
13: count = count + 1;
14: c2 = Bernoulli(0.5);
15: if (c2) then
16: count = count + 1;
17:}
18: return(count);
}

1: bool b, c;
2: b := 1;
3: c := Bernoulli(0.5);
4: while (c){
5: b := !b;
6: c := Bernoulli(0.5);
7: }
8: return(b);

Example 3. Example 4.

Figure 2. Probabilistic programs with loops.

while(!x) skip since the semantics of probabilistic programs is
concerned about the normalized distribution of outputs over ter-
minating runs of the program, and ignores non-terminating runs.
However, we use the terminology observe(x) because of its com-
mon use in probabilistic programming systems [5, 22].

Loopy Probabilistic Programs. Figure 2 shows two probabilistic
programs with loops. The program in the left side of Figure 2,
Example 3, is equivalent to the program in Example 2, in which
the observe statement has been equivalently encoded using a while
loop. The observe statement in line 9 of Example 2 admits only
executions that satisfy the condition (c1||c2). The while loop in
lines 9-17 has equivalent functionality to the observe statement.
If (c1||c2) holds, then the loop exits. If not, it merely re-samples
c1 and c2, re-calculates count and checks the condition (c1||c2)
again.

In general, observe statements can be encoded using loops.
However, the converse is difficult to do without computing loop
invariants. To illustrate this, consider Example 4 on the right side
of Figure 2. In this program, the return value of b is 1 iff the
while loop in lines 3-7 executes an even number of times, and it
is 0 if the while loop executes an odd number of times. Thus, the
expected value of b returned by the program, which is the same
as the probability that b is 1, is equal to the probability that the
while loop executes an even number of times. The probability that
the loop executes 0 times is given by 0.5, since this is the same
as the probability that c is assigned 1 in line 3. The probability
that the loop executes 2 times is equal to the probability that c is
assigned 0 in line 3, and that it is assigned 0 the first time line 6 is
executed, and that it is assigned 1 the second time line 6 is executed,
which is equal to 0.53 since the three assignments to c are each
independent Bernoulli trials each with probability 0.5. Summing
up this for all even number of executions, we get the geometric
series 0.5 + 0.53 + 0.55 + · · · which evaluates to 2/3.

Syntax and Semantics. Now that we have introduced probabilistic
programs using simple examples, we proceed to give a precise
syntax and semantics. (Our semantics is a variation of one of the
classic semantics of probabilistic programs due to Kozen [35].)
The probabilistic programming language PROB that we consider
is a C-like imperative programming language with two additional
statements:

1. The probabilistic assignment “x ∼ Dist(θ̄)” draws a sam-
ple from a distribution Dist with a vector of parameters θ̄,
and assigns it to the variable x. For instance, the statement
“x ∼ Gaussian(µ, σ)” draws a value from a Gaussian distri-

2 2014/1/24

x ∈ Vars
uop ::= · · · C unary operators
bop ::= · · · C binary operators
ϕ,ψ ::= · · · logical formula

E ::= expressions
| x variable
| c constant
| E1 bop E2 binary operation
| uop E unary operation

S ::= statements
| x = E deterministic assignment
| x ∼ Dist(θ̄) probabilistic assignment
| skip skip
| observe (ϕ) observe

| S1;S2 sequential composition
| if E then S1 else S2 conditional composition
| while E doS while−do loop

P ::= S return (E) program

Figure 3. Syntax of PROB.

bution with mean µ and standard deviation σ, and assigns it to
the variable x.

2. The observe statement “observe(ϕ)” conditions a distribution
with respect to a predicate or conditionϕ that is defined over the
variables in the program. In particular, every valid execution of
the program must satisfy all conditions in observe statements
that occur along the execution.

The syntax of PROB is formally described in Figure 3. A pro-
gram consists of a statement and a return expression. Variables have
base types such as int, bool, float and double. Expressions include
variables, constants, binary and unary operations.

Statements include primitive statements (deterministic assign-
ment, probabilistic assignment, observe, skip) and composite state-
ments (sequential composition, conditionals and loops). Features
such as arrays, pointers, structures and function calls can be in-
cluded in the language, and their treatment does not introduce any
additional challenges due to probabilistic semantics. Therefore, we
omit these features, and focus on a core language.

The semantics of PROB is described in Figure 4. A state σ of
a program is a (partial) valuation to all its variables. The set of all
states (which can be infinite) is denoted by Σ. We also consider the
natural lifting of σ : Vars ⇀ Val to expressions σ : Exprs→ Val.
We make this lifting a total function by assuming default values for
uninitialized variables; we write ⊥ for the state that assigns the
default value to each variable. The definition of the lifting σ for
constants, unary and binary operations is standard.

The meaning of a probabilistic program is the expected value
of its return expression. The return expression of a program is a
function f : Σ → R∞≥0 from program states to non-negative reals.
The denotational semantics JSK(f)(σ) gives the expected value
returned by a program with statement S, return expression f , and
initial state σ. The semantics is completely specified using the rules
in Figure 4.

The skip statement merely applies the return expression f to
the input state σ, since the statement does not change the input
state. The deterministic assignment statement first transforms the
state σ by executing the assignment and then applies f . The mean-
ing of the probabilistic assignment is the expected value obtained
by sampling v from the distribution Dist, executing the assignment
with v as the RHS value, and applying f on the resulting state (the

• Unnormalized Semantics for Statements
JskipK(f)(σ) := f(σ)

Jx = EK(f)(σ) := f(σ[x← σ(E)])
Jx ∼ Dist(θ̄)K(f)(σ) :=

∫
v∈Val Dist(σ(θ̄))(v)× f(σ[x← v]) dv

Jobserve(ϕ)K(f)(σ) :=

{
f(σ) if σ(ϕ) = true
0 otherwise

JS1;S2K(f)(σ) := JS1K(JS2K(f))(σ)

Jif E thenS1 elseS2K(f)(σ) :=

{
JS1K(f)(σ) if σ(E) = true
JS2K(f)(σ) otherwise

Jwhile E doSK(f)(σ) := supn≥0 Jwhile E don SK(f)(σ)
where
while E do0 S = observe(false)
while E don+1 S = if E then (S; while E don S) else (skip)

• Normalized Semantics for Programs

JS return EK :=
JSK(λσ. |σ(E)|)(⊥)

JSK(λσ. 1)(⊥)

Figure 4. Denotational Semantics of PROB: For each statement S,
we have JSK ∈ (Σ→ R∞≥0)→ Σ→ R∞≥0.

expectation is the integral over all possible values v). The observe
statement functions like a skip statement if the expression ϕ eval-
uates to true in the initial state σ, and returns the value 0 other-
wise. Due to the presence of observe statements, the semantics of
statements shown in Figure 4 is unnormalized. The normalized se-
mantics for programs is obtained by appropriately performing the
normalization operation as shown in the second part of Figure 4.
The sequential and conditional statements behave as expected and
the while-do loop has a standard fixpoint semantics.

From Expectations to Distributions. Before we conclude this sec-
tion, we remark that even though we have chosen to give semantics
of probabilistic programs as the expected return value of the pro-
gram, the semantics is fairly general. For instance, if we want to
calculate the probability that the program terminates in a particular
state σ̂, we can return a predicate σ = σ̂, which returns 1 iff the
state just before returning is σ̂ and 0 otherwise. The expected value
thus returned is PDF of the distribution of output states (also called
posterior distribution) evaluated at σ̂.

3. Relationships with Other Models
In this section, we explore the relationships between probabilistic
programs and other probabilistic models that readers may have en-
countered before. In particular, we consider (1) Bayesian Networks
and (2) Discrete Time Markov Chains. We show that Bayesian
Networks can be encoded as loop-free probabilistic programs. We
also show that while Markov Chains can be encoded as loopy
probabilistic programs, the steady state probability distribution
of Markov Chains can be represented as outputs of probabilis-
tic programs (and hence computed using probabilistic inference)
only for a restricted class of Markov Chains, since our semantics
for probabilistic programs considers only terminating executions
and Markov Chains have non-terminating executions. Finally, we
briefly relate probabilistic programs to probabilistic databases and
Markov Logic Networks.

3.1 Bayesian Networks
A Bayesian Network [32] is a directed acyclic graph G = 〈V,E〉,
where every vertex v ∈ V is associated with a random variableXv ,
and every edge (u, v) ∈ E represents a direct dependence from the
random variable Xu to the random variable Xv . Let Deps(v) =
{u | (u, v) ∈ E} denote the direct dependences of node v ∈ V . In
a Bayesian Network, each node v ∈ V of the graph is associated

3 2014/1/24

Difficulty Intelligence

Grade
SAT

Letter

𝑑0 𝑑1

0.6 0.4

𝑖0 𝑖1

0.7 0.3

𝑔0 𝑔1

𝑖0, 𝑑0 0.3 0.7

𝑖1, 𝑑1 0.05 0.95

𝑖1, 𝑑0 0.9 0.1

𝑖1, 𝑑1 0.5 0.5

𝑙0 𝑙1

𝑔0 0.9 0.1

𝑔1 0.4 0.6

𝑠0 𝑠1

𝑖0 0.95 0.05

𝑖1 0.2 0.8

Figure 5. Bayesian Network example.

with a conditional probability distribution CPD(v), which denotes
the probability distribution of Xv conditioned over the values of
the random variables associated with the direct dependences D(v).

Figure 5 shows an example Bayesian Network with 5 nodes and
corresponding random variables (1) Difficulty, (2) Intelligence, (3)
Grade, (4) SAT and (5) Letter. The example is adapted from [32]
and describes a model which relates the intelligence of a student,
the difficulty of a course he takes, the grade obtained by the student,
the SAT score of the student, and the strength of the recommenda-
tion letter obtained by the student from the professor. We denote
these random variables with their first letters I , D, G, S and L
respectively in the discussion below.

Each of the random variables in this example are discrete ran-
dom variables and take values from a finite domain. Consequently,
the CPD at each node v can be represented as tables, where rows
are indexed by values of the random variables associated with
Deps(v) and the columns are the probabilities associated with each
value of Xv . For example, the CPD associated with the node for
the random variable G has 2 columns associated with the 2 possi-
ble values ofG namely g0, g1, and 4 rows corresponding to various
combinations of values possible for the direct dependencies of the
node namely namely i0, d0, i0, d1, i1, d0, and i1, d1.

The graph structure together with the CPD at each node speci-
fies the joint probability distribution over I , D, G, S and L com-
pactly. The probability of a particular state in the joint distribution
can be evaluated by starting at the leaf nodes of the Bayesian Net-
work (that is the nodes at the “top” without any inputs) and pro-
ceeding in topological order. For instance

P (i1, d0, g1, s1, l0) =
P (i1)P (d0)P (g1 | i1, d0)P (s1 | i1)P (l0 | g1) =
0.3× 0.6× 0.1× 0.8× 0.4 = 0.00576

Example 5 in the left-side of Figure 6 shows how to encode the
Bayesian Network from Figure 5 as a probabilistic program. Note
that the program just traverses the Bayesian Network in topological
order and performs evaluation according to the CPD at each node.

Bayesian Networks can be used to pose and answer condi-
tional queries, and this can be encoded in probabilistic programs
using observe statements. For example, we can ask the question
P (L | G = g1) which asks for the probability distribution (or the
expected value of L, given that we observe G = g1). Such a ques-
tion can be encoded as a probabilistic program shown in Example
6, to the right-side of Figure 6. At line 12 the observe statement

1: bool i, d, s, l, g;
2: i = Bernoulli(0.3);
3: d = Bernoulli(0.4);

4: if (!i && !d)
5: g = Bernoulli(0.7);
6: else if (!i && d)
7: g = Bernoulli(0.95);
8: else if (i && !d)
9: g = Bernoulli(0.1);
10: else
11: g = Bernoulli(0.5);

12: if (!i)
13: s = Bernoulli(0.05);
14: else
15: s = Bernoulli(0.8);

16: if (!g)
17: l = Bernoulli(0.1);
18: else
19: l = Bernoulli(0.6);

20: return (i,d,g,s,l);

1: bool i, d, s, l, g;
2: i = Bernoulli(0.3);
3: d = Bernoulli(0.4);

4: if (!i && !d)
5: g = Bernoulli(0.7);
6: else if (!i && d)
7: g = Bernoulli(0.95);
8: else if (i && !d)
9: g = Bernoulli(0.1);
10: else
11: g = Bernoulli(0.5);
12: observe(g = 1);

13: if (!i)
14: s = Bernoulli(0.05);
15: else
16: s = Bernoulli(0.8);

17: if (!g)
18: l = Bernoulli(0.1);
19: else
20: l = Bernoulli(0.6);

21: return l;

(a) Example 5. (b) Example 6.

Figure 6. Encoding Bayesian Networks.

observe(g = 1) conditions the value of g to 1. Then, at line 21
the program returns l. Thus, the meaning of the program is equal
to P (L | G = g1).

In general, every Bayesian Network can be encoded as an
acyclic probabilistic program in a straightforward manner, and con-
ditioning can be modeled using observe statements in the proba-
bilistic program.

3.2 Discrete Time Markov Chains
A Discrete Time Markov Chain (DTMC) is a 4-tuple 〈V,E, P, v0〉,
where V is a set of nodes, E ⊆ V × V is a set of directed edges,
P : E → R[0,1] labels every edge with a probability such that the
sum of the labels of all outgoing edges of a vertex equals 1, and
vo ∈ V is a distinguished initial vertex.

Informally, we can think of a DTMC 〈V,E, P, v0〉, as starting
at v0 and executing an infinite series of steps. At each step, it
chooses one of the outgoing edges e of the current vertex with
probability P (e) and makes a transition to the target vertex of the
edge, and the execution continues. Let πv(n) denote the probability
that the chain is in vertex v after n steps of execution. Let πv

denote the limit of πv(n) as n tends to infinity. Under certain
conditions (such as aperiodicity and ergodicity, see [46]), the limits
πv exist for all v, and we can think of the vector 〈πv0 , πv1 , . . .〉 as a
probability distribution over V (called the steady state distribution
of the DTMC).

Figure 7 shows an example DTMC with 13 vertices. The DTMC
implements the Knuth-Yao algorithm [30] for obtaining a fair die
from fair coin tosses. It turns out that the steady state probability
πv for each of the vertices 11 through 16 is 1/6 and for each of the
other vertices is 0.

Every DTMC can be encoded as a probabilistic program. Cy-
cles in the DTMC graph can be encoded using while-loops in the
probabilistic program. For example, Figure 8 shows a probabilistic
program equivalent to the DTMC in in Figure 7.

Unlike the semantics we have given for probabilistic programs,
which considers terminating runs (which are finite), the semantics
of DTMCs inherently considers infinite runs. However, in cases
where every terminal SCC (strongly-connected component) of a
DTMC is a singleton vertex (which is the case, for instance, in the
DTMC in Figure 7 where the 6 terminal SCCs are each singleton

4 2014/1/24

0

1 2

3 4 5 6

0.5 0.5

0.50.5

0.5 0.5 0.5 0.5

0.5 0.5 0.5 0.5 0.5 0.5

1

11

1

12

1

13

1

14

1

15

1

16

Figure 7. Discrete Time Markov Chain example.

1: int x = 0;
2: while (x < 11) {
3: bool coin = Bernoulli(0.5);
4: if(x=0)
5: if (coin) x = 1 else x = 2;
6: else if (x=1)
7: if (coin) x = 3 else x = 4;
8: else if (x=2)
9: if (coin) x = 5 else x= 6;
10: else if (x=3)
11: if (coin) x = 1 else x = 11;
12: else if (x=4)
13: if (coin) x = 12 else x = 13;
14: else if (x=5)
15: if (coin) x = 14 else x = 15;
16: else if (x=6)
17: if (coin) x = 16 else x = 2;

}
18: return (x);

Example 7.

Figure 8. Encoding Discrete Time Markov Chains.

vertices 11–16), we can terminate the execution of the probabilistic
program on reaching the terminal SCC as we show in Figure 8.
In cases where the terminal SCC of a DTMC contains multiple
vertices, if we want the probabilistic program to compute steady
state probabilities of vertices, the semantics in Section 2 will have
to be adapted to consider infinite runs.

3.3 Extensions
Several extensions to Discrete Time Markov Chains have been
widely studied. We briefly mention two such extensions. The first
extension is Markov Decision Processes (MDPs) which are ob-
tained by adding nondeterminism to DTMCs. That is, in addition to
the probabilistic choice made at each vertex, the model also allows
a nondeterministic choice. Resolving the nondeterministic choice
at each vertex can be done using a so-called strategy, and once a
strategy is picked, we obtain a DTMC. Several algorithms for com-
puting strategies in MDPs have been studied [50]. The second ex-
tension is Continuous Time Markov Chains (CTMCs), where there
is an implicit notion of time, and each transition is annotated with
a rate γ, and in each state the system spends time that is deter-
mined by an exponential distribution. Several applications in chem-
istry (CTMCs are models of well-stirred mixtures of molecules,
often biomolecules) and other sciences are naturally expressed as

float skillA, skillB,skillC;
float perfA1,perfB1,perfB2,

perfC2,perfA3,perfC3;
skillA = Gaussian(100,10);
skillB = Gaussian(100,10);
skillC = Gaussian(100,10);

// first game:A vs B, A won
perfA1 = Gaussian(skillA,15);
perfB1 = Gaussian(skillB,15);
observe(perfA1 > perfB1);

// second game:B vs C, B won
perfB2 = Gaussian(skillB,15);
perfC2 = Gaussian(skillC,15);
observe(perfB2 > perfC2);

// third game:A vs C, A won
perfA3 = Gaussian(skillA,15);
perfC3 = Gaussian(skillC,15);
observe(perfA3 > perfC3);

Figure 9. Bayesian skill rating (TrueSkill [26]).

CTMCs. CTMCs can be encoded as probabilistic programs by ex-
plicitly introducing time as a program variable, and using a tech-
nique known as uniformization [46]. We return to these extensions
in later sections.

3.4 Probabilistic Databases
A probabilistic database [55] is a relational database in which the
tuples stored have associated uncertainties. That is, each tuple t has
an associated indicator random variable Xt which takes a value 1
if the tuple is present in the database and 0 if the tuple is absent.
Each instantiation of values to all of the random variables is called
a world. The probabilistic database is the joint probability distri-
bution over the random variables, which implicitly specifies a dis-
tribution over all the possible worlds. The answer to a query Q on
a probabilistic database is the set of tuples T that are possible an-
swers to Q, along with a probability P (t) for every t ∈ T denoting
the probability that t belongs the answer for queryQ. A probabilis-
tic database together with a query can be encoded as a probabilis-
tic program, and the answer to query evaluation can be phrased as
probabilistic inference. Work in probabilistic databases has identi-
fied a class of queries (called safe queries) for which query eval-
uation can be performed efficiently, by pushing the probabilistic
inference inside particular query plans (called safe plans). Markov
Logic Networks [17] use weighted first order logic formulas to con-
struct probabilistic models, and specify distributions over possible
worlds. Markov Logic Networks can also be encoded as probabilis-
tic programs. Extensive work has been done on efficient inference
algorithms for Markov Logic Networks and these algorithms have
been implemented in the tool Alchemy [31].

4. Applications
In this section, we present applications from various areas includ-
ing machine learning, clinical diagnosis, ecology and security, and
show how these applications can be modeled as probabilistic pro-
grams. We use a few language constructs such as function calls and
switch statements, which are additions to the syntax presented in
Section 2.

Skill Rating in Online Games. Online gaming systems such as
Microsoft’s Xbox Live rate relative skills of players playing online
games so as to match players with comparable skills for game
playing. The problem is to come up with an estimate of the skill
of each player based on the outcome of the games each player has
played so far. A Bayesian model for this has been proposed [26].
In Figure 9 we show how this model, called TrueSkill, can be

5 2014/1/24

int goats, tigers;
double c1, c2, c3, curTime;
// initialize populations
goats = 100; tigers = 4;
// initialize reaction rates
c1 = 1; c2 = 5; c3 = 1;
//initialize time
curTime = 0;

while (curTime < TIMELIMIT)
{

if (goats > 0 && tigers > 0)
{

double rate1, rate2, rate3,
rate;

rate1 = c1 * goats;
rate2 = c2 * goats * tigers;
rate3 = c3 * tigers;
rate = rate1 + rate2 + rate3;

double dwellTime =
Exponential(rate);

int discrete =
Disc3(rate1/rate,rate2/rate);

curTime += dwellTime;
switch (discrete)
{

case 0: goats++; break;
case 1: goats--; tigers++;

break;
case 2: tigers--; break;

}
}

else if (goats > 0)
{

double rate;
rate = c1 * goats;
double dwellTime =

Exponential(rate);
curTime += dwellTime;
goats++;

}
else if (tigers > 0)

{
double rate;
rate = c3 * tigers;
double dwellTime =

Exponential(rate);
curTime += dwellTime;
tigers--;

}
}//end while loop
return(goats,tigers);
}

Figure 10. Lotka-Volterra Population Model.

expressed as a probabilistic program. We consider 3 players, A,
B and C, whose skills are given by variables skillA, skillB
and skillC respectively, which are initialized by drawing from a
Gaussian distribution with mean 100 and variance 10. Based on
the outcomes of some number of played games (which is 3 games
in this example), we condition the skills thus generated. The first
game was played between A and B, and A won the game. This
is modeled by assigning to the two random variables perfA1 and
perfB1 denoting the performance of the two players in the first
game, and constraining that perfA1 is greater than perfB1 using
an observe statement. Note that the performance of a player (such
as player A) is a function of her skill, but with additional Gaussian
noise introduced in order to model the variation in performance
we may see because of incompleteness in our model (such as the
amount of sleep the player got the previous night). The second
game was played between B and C, and B won the game. The third
game was played between A and C, and A won the game. Using
this model, we want to calculate the joint probability distribution
of these random variables, and use this to estimate the relative
skills of the players. Note that each observe statement constrains
performances in a game, and implicitly the skills of the players,
since performances depend on skills. Such a rating can be used to
give points, or match players having comparable skill for improved
gaming experience. In this example, the skills skillA, skillB,
and skillC that are obtained by inference (using the techniques
in Section 6) are: skillA = Gaussian(105.7, 0.11), skillB =
Gaussian(100.0, 0.11), skillC = Gaussian(94.3, 0.11). Since
A won against both B and C, and B won against C, the resulting
distribution agrees with our intuitive assessment of their relative
skills.

Predator Prey Population Model. The Lotka-Volterra predator-
prey model [37, 57] is a population model which describes how the
population of a predator species and prey species evolves over time.
It is specified using a system of so called “stoichiometric” reactions

as follows:
G −→ 2G

G+ T −→ 2T
T −→ 0

We consider an ecosystem with goat (denoted by G) and tiger (de-
noted by T). The first reaction models goat reproduction. The sec-
ond reaction models consumption of goat by tiger and consequent
increase in tiger. The third reaction models death of tiger due to
natural causes.

It turns out that this system can be equivalently modeled as a
Continuous Time Markov Chain (CTMC) whose state is an ordered
pair (G,T) consisting of the number of goats G and the number of
tigers T . The first reaction can be thought of as a transition in the
CTMC from state (G,T) to (G + 1, T) and this happens with a
rate equal to c1 ·G, where c1 is some rate constant, and is enabled
only when G > 0. Next, the second reaction can be thought of as
a transition in the CTMC from state (G,T) to (G− 1, T + 1) and
this happens with a rate equal to c2 · G · T , where c2 is some rate
constant, and is enabled only when G > 0 and T > 0. Finally, the
last reaction can be thought of as a transition in the CTMC from
from state (G,T) to (G,T − 1) and this happens with a rate equal
to c3 · T , where c3 is some rate constant, and is enabled only when
T > 0.

Using a process called uniformization, such a CTMC can be
modeled using an embedded DTMC, and encoded as a probabilis-
tic program, shown in Figure 10. The program starts with an initial
population of goats and tigers and executes the transitions of the
Lotka-Volterra model until a prescribed time limit is reached, and
returns the resulting population of goats and tigers. Since the execu-
tions are probabilistic, the program models the output distribution
of the population of goats and tigers. The body of the while loop
is divided into 3 conditions: (1) The first condition models the sit-
uation when both goats and tigers exist, and models the situation
when all 3 reactions are possible. (2) The second condition mod-
els the situation when only goats exist, which is an extreme case,
where only reproduction of goats is possible. (3) The third condi-
tion models the situation when only tigers exist, which is another
extreme case, where only death of tigers is possible.

The encoding of the model as a probabilistic program is compli-
cated, nonmodular and inefficient—at each state, the program has
to first find out which reactions are enabled, and then compute total
rates of each of the enabled reactions and perform uniformization.
A more direct encoding, in terms of both syntax and semantics, is
desirable and we discuss this further in Section 7.

Sensitivity Analysis for Estimating Kidney Disease. In medical
diagnostics, doctors have to often make a decision whether a pa-
tient has a particular disease based on measurements from labora-
tory tests and information from the electronic medical record of pa-
tients. However, the test results can be noisy. Further, suppose that
there can be transcription errors in the electronic medical records.
We wish to evaluate the sensitivity of our decision making because
of noisy tests and transcription errors.

Figure 11 shows a probabilistic program that models the sys-
tem’s behavior, taken from [52]. We describe the model, also fol-
lowing assumptions as made in [52]. A common measure of kidney
disease in adults is a quantity called Estimated Glomerular Filtra-
tion Rate (eGFR), which is computed based on age, gender, eth-
nicity and measured Serum Creatinine levels of the patient. We use
a function estimateLogEGFR according to a widely used formula
called CKD-EPI 1. The program considers noise in all the inputs
–the Serum Creatinine level (denoted by the logScr) variable, the
gender (the isFemale variable) and ethnicity (the isAA variable,
which is true if the patient is African American), and calculates the

1 http://nephron.com/epi equation.

6 2014/1/24

double logScr, age;
bool isFemale, isAA;

double f1 =
estimateLogEGFR(logScr,age,

isFemale, isAA);
double nLogScr, nAge;
bool nIsFemale, nisAA;

nLogScr = logScr +
Uniform(-0.1, 0,1);

nAge = age +
Uniform(-1, 1);

nIsFemale = isFemale;
if(Bernoulli(0.01))

nIsFemale = !isFemale;

nIsAA = isAA;
if(Bernoulli(0.01))

nIsAA = !isAA;

double f2 =
estimateLogEGFR(nLogScr,nAge,

nIsFemale, nIsAA);

bool bigChange = 0;
if(f1 - f2 >= 0.1)

bigChange = 1;
if(f2 - f1 >= 0.1)

bigChange = 1;

return(bigChange);

double estimateLogEGFR(
double logScr, double age,
bool isFemale, bool isAA)

{
double k, alpha;
double f = 4.94;
if(isFemale){

k = -0.357;
alpha= -0.328;

}
else{

k = -0.105;
alpha = -0.411;

}

if(logScr < k)
f = alpha * (logscr-k);

else
f = -1.209 * (logscr-k);

f = f - 0.007 * age;

if(isFemale) f = f + 0.017;
if(isAA) f = f + 0.148;

return f;
}

Figure 11. Kidney Disease eGFR Sensitivity Estimation.

probability that the computed eGFR value can vary by 0.1 or more
due to these variations. The variable bigChange models the situ-
ation when the eGFR value changes by 0.1 or more due to these
variations. The program returns this value, and hence can be used
to estimate the probability of such an error in eGFR happening due
to assumptions on noise in the inputs.

Knowledge-Based Security Policies. Mardziel and others [39]
have explored knowledge-based security policies, an access control
mechanism based on probabilistic programming. In their work,
based on the theory of Clarkson and others [12], a user’s agent U
receives queries over secret data belonging to the user, and decides
whether to accept the query or not by monitoring the knowledge
of each querying principal Q, represented as a distribution over the
secret data. The policy is given by knowledge thresholds on aspects
of the secrets.

For example, suppose the secret data consists of U ’s birthday
and year, which is say September 27, 1980, and that these are
stored in integer variables bday = 270 and byear = 1980. The
access control policy is configured in this case by two knowledge
thresholds. First, the querier should have less than 20% chance of
guessing the birthday. Second, the querier should have less than a
5% chance of guessing both the birthday and the year.

Suppose further that based on demographic information, the
prior knowledge of the querier Q, an advertiser, is that the values
in the ranges 0 ≤ bday < 365 and 1956 ≤ byear < 1993 are
equally likely. We can represent this prior belief as the following
probabilistic program.
bday = DiscreteUniform(365);
byear = 1956 + DiscreteUniform(37);

Now, suppose the querier wishes to identify those users whose
birthday is in the next week to alert them to a special offer. To do
so, the advertiser sends the user the following query.
output = 0;
today = 260; // the current date
if ((bday>=today) && (bday<today+7)) output=1;

The access control question is whether to allow the advertiser
to see the output, and the policy is to allow it so long as the
advertiser’s knowledge of the secret data after running the query
does not exceed the knowledge thresholds stated above.

We decide the access control question by probabilistic in-
ference. First, we infer the posterior distributions of the proba-
bilistic programs obtained from the prior belief plus the query
plus either of the two possibilities observe(output == 0) or
observe(output == 1). Second, in each case we ask whether the
posterior probability of any possible value of bday exceeds 20%,
or whether the probability of any possible values of (bday, byear)
exceeds 5%. If not, it is within policy to return the query result to
the advertiser Q, but otherwise the query is rejected. After each
query from Q is run, we update our representation of the knowl-
edge of Q, to be used in the next access control decision.

Notice that access control is decided by checking that the
knowledge thresholds would not be exceeded for any possible
value of the secret, as opposed to the actual secret. Consider the
situation where the advertiser wants to run the query on two con-
secutive days, first for today = 260, and second for today = 261.
If we use the true secret bday = 270 to make the decision, run-
ning the query output = 0, in both cases, without breaching any
of the knowledge thresholds. But suppose in fact the secret was
bday = 267, then running these two queries would reveal the se-
cret with certainty, as the first would return output = 0 and the
second output = 1, which is only possible if bday = 267. Hence,
we would need to refuse the second query, after allowing the first,
but that refusal itself would leak information about the secret, pos-
sibly violating the knowledge thresholds. To avoid this dilemma,
the decision is made by quantifying over all possible values of the
secrets.

The authors of [39] describe an implementation of their scheme
that makes use of a sound abstract interpretation, based on polyhe-
dra, and describe a performance evaluation. This work is still at an
early stage, but is a promising avenue for future research.

5. Language Design

Imperative, Functional, and Logical Paradigms. Just as with
deterministic programming languages, there are probabilistic lan-
guages in the imperative, functional, and logical paradigms. Our
prototypical language PROB is imperative, as is the C#-based mod-
eling language underlying Infer.NET [41], and also PWHILE, the
cryptographic modeling language used by the CertiCrypt [3] and
EasyCrypt [4] verification tools for reasoning about cryptographic
algorithms and protocols. The most widely adopted probabilis-
tic programming language BUGS [19] is functional. There have
been many subsequent functional probabilistic languages includ-
ing IBAL [49], STAN [54], and Church [21], which is based on the
stochastic lambda-calculus. Probabilistic logic languages include
BLOG [40], Alchemy [31], and Tuffy [43]. This brief list is far
from exhaustive; see the Wiki probabilistic-programming.
org for discussion of many more probabilistic languages.

Avoiding the Impedance Mismatch. The impedance mismatch
between programming language types and database schemas is a
longstanding problem for conventional programming. For example,
programs accessing relational databases need to rely on boilerplate
code or libraries to connect external tables to the programming lan-
guage types such as arrays or collection classes in conventional lan-
guages. The same mismatch arises for probabilistic programming
languages, with aggregate data being represented in a program as
multiple arrays, but in the database as a set of relational tables.

Tabular [23] is a new probabilistic programming language
whose most distinctive feature is that programs are written as anno-
tated relational schemas. Conventionally, in SQL or other relational

7 2014/1/24

notations, the schema of table describes the types of each item in
each row of the table. In Tabular, the conventional schema is en-
riched with probabilistic expressions that define how to sample
each row of the table, hence constituting a probabilistic generative
model of the data. The Tabular schema of a table corresponds to
the plate notation often used to define graphical models.

For example, here is the Tabular schema for the TrueSkill model
discussed earlier. There is a table of players and a table of matches
between players. We can think of a Tabular schema as a function
that given a concrete database—our actual data—defines a predic-
tive database, a distribution over tables with the same columns as
the concrete database but enhanced with latent columns. In the case
of TrueSkill, the players table has a latent column of skills, and the
matches tables has latent columns for the performances.

Players
Name string input
Skill real latent Gaussian(100,10)

Matches
Player1 link(Players) input
Player2 link(Players) input
Perf1 real latent Gaussian(Player1.Skill,15)
Perf2 real latent Gaussian(Player2.Skill,15)
Win1 bool output Perf1 > Perf2

The schema generates the predictive database as follows.
For each row r in the concrete Players table, generate:

Name = r.Name
Skill ∼ Gaussian(100, 10)

For each row r in the concrete Matches table, generate:
Player1 = r.Player1
Player2 = r.Player2
Perf1 ∼ Gaussian(Players[Player1].Skill, 15)
Perf2 ∼ Gaussian(Players[Player2].Skill, 15)
Win1 = (Perf1 > Perf2)
if(r.Win1! = null)
observe(Win1 == r.Win1)

The columns marked as latent appear only in the predictive
database. The input and output columns must exist in the concrete
database. The difference is that there may be null entries in output
columns, but no missing values are allowed in input columns. The
probabilistic expressions on output columns are used to predict
missing values, and during the generative process, we add observe
constraints that equate the predicted value with the value from the
concrete database, when it is not null. Although the model may
depend (and hence be conditioned) on input data, it cannot predict
missing input values.

Tabular is implemented by translating to an imperative prob-
abilistic program, much like a PROB program, and running In-
fer.NET to compute posterior marginal distributions for each cell
in the predictive database. For a concrete database corresponding
to our example in Section 4, where A beats B, B beats C, and A
beats C, the result of inference is as follows:

Players
Name Skill
A Gaussian(105.7, 0.11)
B Gaussian(100, 0.11)
C Gaussian(94.3, 0.11)

In a similar way, the predictive form of the Matches table fills
in the latent performances.

Early experimental evaluations of Tabular provide some evi-
dence that models are significantly more succinct, and arguably
easier to read and understand, than equivalent models written us-
ing the Infer.NET input language, while returning the same results
without much loss in speed [23]. The hope is that Tabular brings
the benefits of probabilistic programming to data enthusiasts who
wish to model their data by using a spreadsheet, rather than coding
in a full programming environment.

Figure 12. Bayesian Network for Pearl’s example.

6. Inference
Calculating the distribution specified by a probabilistic program
is called probabilistic inference. The inferred probability distribu-
tion is called the posterior probability distribution, and the initial
guess made by the program is called the prior probability distribu-
tion. There are a number of methods for performing inference. We
briefly note that exact inference is undecidable for programs with
unbounded domains. Even for programs with just boolean vari-
ables, exact inference is #P-complete [51]. Thus, in this section,
we discuss only techniques for approximate inference.

6.1 Inference for Bayesian Networks
We first survey inference algorithms for Bayesian networks, For
Bayesian networks, efficient and approximate inference is usually
performed by message passing algorithms such as belief propa-
gation [47] or sampling techniques such as Markov-Chain-Monte-
Carlo (MCMC) algorithms [38].

Message Passing. In Section 2, we saw that a Bayesian network
represents a joint probability distribution over its variables. In par-
ticular, we also saw that the structure of the Bayesian network rep-
resents a particular factorization of the joint probabilistic distribu-
tion (using the dependency structure, as a product of the CPD at
each node). Message passing algorithms such as belief propaga-
tion [47] exploit this factorization in order to efficiently compute
the probability distributions for each of the variables in the net-
work.

Consider the Bayesian network shown in Figure 12 due to
Pearl [47]. The joint distribution represented by this Bayesian net-
work isP (B,E, J,M) =P (B)P (E)P (A|B,E)P (J |A)P (M |A).
A query P (B|J = j0,M = m0) can be computed as:
η
∑

E,A P (B,E,A, J = j0,M = m0) =

η
∑

E,A P (B)P (E)P (A|B,E)P (J = j0|A)P (M = m0|A),
where η is a normalization constant. A more efficient computation
would exploit the structure of the factorization ofP (B,E,A, J,M)
that is induced by the structure of the Bayesian network. We note
that P (B|J = j0,M = m0) can also be written as:
ηP (B)

(∑
E P (E)

(∑
A P (A|B,E)P (J = j0|A)P (M = m0|A)

))
which involves a fewer number of arithmetic operations than the
earlier naive computation. Belief propagation based inference al-
gorithms use such reordering of sum and product operators to com-
pute answers to queries efficiently.

Sampling. Sampling based techniques work by drawing samples
from the probability distribution represented by the Bayesian net-
work and use the samples to estimate the probability distribu-
tions for the variables in the network. Markov Chain Monte Carlo
(MCMC) algorithms are widely used for performing such sampling

8 2014/1/24

for high-dimensional problems (with a large number of variables).
One common MCMC algorithm is the Metropolis-Hastings (MH)
algorithm [10]. It makes use of a proposal distribution Q to gen-
erate samples. In particular, the MH algorithm [10] takes a target
distribution P (x̄) as input (in some implicit form where P can be
evaluated at every point) and returns samples that are distributed
according to this target distribution. These samples can be used
to compute any estimator such as expectation of a function with
respect to the target distribution P (x̄). Two key steps of the MH
algorithm are:

1. Every sample for a variable x is drawn from a proposal distri-
bution Q(xold → xnew)—this is used to pick a new value xnew

for the variable x by appropriately perturbing its old value xold.

2. A parameter β is used to decide whether to accept or reject a
new sampled value for x, and is defined as follows:

β = min

{
1,
P (xnew) ·Q(xnew → xold)

P (xold) ·Q(xold → xnew)

}
The sample is accepted if a random value drawn from the
uniform distribution over [0, 1] is less than β, otherwise it is
rejected.

It can be shown that repeated application of the above steps will
lead to samples which are drawn according to the target distribution
P [38].

6.2 Inference for Probabilistic Programs
A variety of inference techniques have been implemented in prob-
abilistic programming systems [5, 19, 21, 27, 31, 33, 41, 49].
These techniques are variants of the techniques described above
for Bayesian networks, and can be broadly classified as follows:

1. Static inference: The approach here is to compile the proba-
bilistic program to a probabilistic model such as a Bayesian net-
work, and performing inference using algorithms such as belief
propagation and its variants [47]. Infer.NET [41] is one example
of such a tool.

2. Dynamic inference: Another approach is to execute the pro-
gram several times using sampling to execute probabilistic
statements, observe values of the desired variables in valid
runs, and compute statistics on the observed values to infer
an approximation to the desired distribution. The Church [21]
and Stan [27] probabilistic programming systems are examples
of tools that use dynamic inference techniques.

In the remainder of this section, we make important connections
between these approaches and work in program analysis. We show
that inference is program analysis generalized to probabilistic pro-
grams [7, 44], and hence explore opportunities for work in the soft-
ware engineering and program analysis community to contribute to
the area of probabilistic programming.

Static Analysis. The semantics of a probabilistic program can be
calculated using data flow analysis. The data flow facts here are
probability distributions and they can be propagated by symboli-
cally executing each statement, merging the data flow facts at join
points, and performing fixpoints at loops. In [11] we show how
to perform this analysis efficiently using Algebraic Decision Dia-
grams (ADDs). An ADD [1] is graphical data structure for com-
pactly representing finite functions (in this case a symbolic repre-
sentation of a joint probability distribution).

We illustrate this analysis for Example 1(b) (from Figure 1)
in Figure 13. Symbolically executing the first two statements
“c1 = Bernoulli(0.5)” and “c2 = Bernoulli(0.5)” results in
uniform distributions over c1 and (c1, c2) respectively. Both these
distributions are compactly represented by an Algebraic Decision

Figure 13. Data flow analysis of a probabilistic program using
ADDs.

1: bool d, i, s, l, g;
2: d = Bernoulli(0.6);
3: i = Bernoulli(0.7);

4: if (!i && !d)
5: g = Bernoulli(0.3);
6: else if (!i && d)
7: g = Bernoulli(0.05);
8: else if (i && !d)
9: g = Bernoulli(0.9);
10: else
11: g = Bernoulli(0.5);

12: if (!i)
13: s = Bernoulli(0.2);
14: else
15: s = Bernoulli(0.95);

16: if (!g)
17: l = Bernoulli(0.1);
18: else
19: l = Bernoulli(0.4);

20: observe(l = true);
21: return s;

1: bool i, s;
3: i = Bernoulli(0.7);

12: if (!i)
13: s = Bernoulli(0.2);
14: else
15: s = Bernoulli(0.95);

20: return s;

(a) (b)

Figure 14. Examples to illustrate slicing of probabilistic programs.

Diagram (ADD) with a single leaf node. Next, upon processing
the statement observe(c1||c2), the analysis computes a sub-
distribution represented by the ADD shown in the figure. Finally,
upon normalizing this sub-distribution, the final ADD represent-
ing the posterior distribution of (c1, c2) is obtained. The reader is
referred to [11] for further details.

It is also possible to use abstract interpretation [13] based tech-
niques to compute estimates of posterior probabilities—indeed,
there is interesting recent work in this direction [39, 52].

Static analysis can also be employed for slicing probabilistic
programs [45] and improve the efficiency of inference. Consider
the program shown in Figure 14(a). This is a variant of the pro-
gram shown in Example 6. Usual static program slicing techniques
based on control and data program dependences [18] produce the
program in Figure 14(b), and this computation is incorrect since
the sliced program and the original program can be shown to be not
equivalent.

The observe statement (in line 20) introduces new kinds of de-
pendences that are not present in usual programs. Specifically, the
observation of the value of l influences the value of g, which in-

9 2014/1/24

1: bool earthquake, burglary, alarm, phoneWorking,
maryWakes,called;

2: earthquake = Bernoulli(0.001);
3: burglary = Bernoulli(0.01);
4: alarm = earthquake || burglary;
5: if(earthquake)
6: phoneWorking = Bernoulli(0.6);
7: else
8: phoneWorking = Bernoulli(0.99);
9: if (alarm && earthquake)
10: maryWakes = Bernoulli(0.8);
11: else if (alarm)
12: maryWakes = Bernoulli(0.6);
13: else
14: maryWakes = Bernoulli(0.2);
15: called = maryWakes && phoneWorking;
16: observe(called);
17: return burglary;

Figure 15. Pearl’s burglar alarm example.

directly influences i, and ultimately influences s. In addition, this
flow of influence from i to g also “opens up” a path for influence to
flow from d to i, and ultimately to s as well. This flow of influences
is explained using a new notion called observe dependence in [45],
and is related to active trails in Bayesian networks [32]. Observe
dependence together with the usual notions of control and data de-
pendence can be used to slice probabilistic programs. Furthermore,
the slicing algorithm can be implemented as a source-to-source pro-
gram transformation, which greatly improves the efficiency of in-
ference by removing irrelevant statements, while providing prov-
ably equivalent answers. In the current example, it turns out that all
the variables d, i, g, l and s are relevant in this program (and
all these dependences are identified if we consider observe depen-
dences together with control and data dependences), and the only
slice that is semantically equivalent to the program in Figure 14(a)
is the entire program!

Dynamic Analysis. Dynamic approaches (which are also called
sampling based approaches) are widely used, since running a prob-
abilistic program is natural, regardless of the programming lan-
guage used to express the program. The main challenge in this set-
ting is that many samples that are generated during execution are
ultimately rejected for not satisfying the observations. This is anal-
ogous to rejection sampling for standard probabilistic models [38].
In order to improve efficiency, it is desirable to avoid generating
samples that are later rejected, to the extent possible. In [44], we
propose a sampling algorithm R2 that uses program analysis in or-
der to address this challenge. In particular, R2 consists of the fol-
lowing steps:

1. Propagation of observations back through the program using the
pre-image operation [16] or PRE analysis to place an observe
statement immediately next to every probabilistic assignment.
This transformation preserves program semantics (as defined in
Figure 4), and helps perform efficient sampling (defined in the
next step).

2. Perform a modified Metropolis-Hastings (MH) sampling [10]
over the transformed probabilistic program. The modifications
exploit the structure in the transformed programs that observe
statements immediately follow probabilistic assignments, and
sample from sub-distributions in order to avoid rejections.

The above two steps prevent rejections due to executions that
fail to satisfy observations, and significantly improve the number
of accepted MH samples in a given time budget. In contrast, pre-
vious approaches [21, 48, 58, 59] have not specifically addressed
rejections due to failing observations.

1: bool earthquake, burglary, alarm, phoneWorking,
maryWakes,called;

2: earthquake = Bernoulli(0.001);
3: burglary = Bernoulli(0.01);
4: alarm = earthquake || burglary;
5: if(earthquake) {
6: phoneWorking = Bernoulli(0.6);
7: observe(phoneWorking);
8: }
9: else {
10: phoneWorking = Bernoulli(0.99);
11: observe(phoneWorking);
12: }
13: if (alarm && earthquake){
14: maryWakes = Bernoulli(0.8);
15: observe(maryWakes && phoneWorking);
16: }
17: else if (alarm){
19: maryWakes = Bernoulli(0.6);
20: observe(maryWakes && phoneWorking);
21: }
22: else {
23: maryWakes = Bernoulli(0.2);
24: observe(maryWakes && phoneWorking);
25: }
26: called = maryWakes && phoneWorking;
27: return burglary;

Figure 16. Pearl’s burglar alarm example after the PRE analysis.

Consider the probabilistic program shown in Figure 15, orig-
inally from Pearl’s work [47]. This program has probabilistic as-
signment statements which draw values from distributions. For in-
stance, in line 2, the statement “earthquake= Bernoulli(0.001)”
draws a value from a Bernoulli distribution with mean 0.001 and
assigns it to the variable x. The program also has observe state-
ments that are used to condition values of variables. For instance,
the statement “observe(phoneWorking)” (line 7) blocks all exe-
cutions of the program that do not satisfy the boolean expression
(phoneWorking = true) at line 7. The meaning of a probabilistic
program is the expected value of the expression returned by the
program with respect to the implicit probability distribution that
the program represents. In this example, the variable burglary
is returned by the program and we are interested in estimating its
expected value. Naive sampling, which corresponds to running the
program, can result in rejected samples leading to wasteful compu-
tation and subsequently loss in efficiency.

For the program shown in Figure 15, R2 first performs a so-
called PRE analysis to obtain the transformed program shown in
Figure 16. The analysis, which is a backward traversal over the pro-
gram, starts from the observe statement observe(called) in line
16. The value of called is calculated using the deterministic as-
signment, which assigns it the value maryWakes&&phoneWorking
(line 15). The pre-image of called with respect to this assignment
statement is maryWakes&&phoneWorking, which is propagated
back through the program. Next to each probabilistic assignment,
the propagated pre-image is inserted as an observe statement. For
instance, right after each probabilistic assignment for maryWakes,
the PRE analysis introduces the observe statement with the predi-
cate maryWakes&&phoneWorking. This can be seen in Figure 16,
which is the program obtained by applying the PRE analysis to
Pearl’s burglar alarm example. Also, note that the original observe
statement in line 16 of Figure 15 has been deleted in Figure 16.
This is because the effect of this observe statement has been prop-
agated backward to other observe statements that are right next to
each probabilistic assignment.

The PRE analysis illustrated in the above example is semantics
preserving (in other words, the expected values of burglary in
the programs shown in Figures 15 and 16 are equal) [44]—this is
crucial for proving the correctness of R2.

10 2014/1/24

Next, R2 performs sampling over the transformed program in
order to compute the expected value of burglary. This is done us-
ing a modified version of the MH sampling algorithm that truncates
the distribution in each probabilistic assignment statement with the
condition in the observe statement following it. More precisely, in
the modified MH algorithm, both the proposal distribution and the
target density function at each probabilistic assignment statement
are modified to use truncated distributions. This ensures that the
values drawn from the truncated distributions are such that every
program execution is a valid one (that is, the execution satisfies all
observe statements), thus avoiding wasteful rejected samples.

We believe that further cross fertilization of ideas from static
and dynamic program analysis can improve the precision and scal-
ability of inference for large probabilistic programs, and consider it
a promising avenue for future research.

7. Discussion
In this section we outline some avenues for future work. We start by
discussing the relationship between Probabilistic Programming and
Probabilistic Model Checking. While the goals of the communities
have been different, we believe that cross-fertilization between the
two communities is an interesting direction for future work. We
also explore scope for interaction with other sub-communities in
machine learning such as the optimization community. We explore
adding some new features that are currently absent in probabilistic
programming languages—in particular we discuss adding nonde-
terminism and continuous time (more natively). Finally, we discuss
several advances in tool support that are needed for probabilistic
programs to be widely usable by non-experts in machine learning.

Probabilistic Model Checking. Probabilistic Model Checking in-
volves checking if a probabilistic model satisfies a quantitative
specification. Though the idea has been around since the 80’s [34,
56], in the past decade there has been a lot of progress in building
model checkers such as PRISM [36] and MRMC [29]. PRISM sup-
ports various kinds of probabilistic models such as Discrete Time
Markov Chains, Continuous Time Markov Chains and Markov De-
cision Processes. All models are expressed in a guarded-command-
like syntax and properties are expressed in probabilistic temporal
logics such as PCTL [24]. The properties typically place quantita-
tive bounds on probabilities or expectations. An example property
illustrating bounds on probability is “the probability that an airbag
fails to deploy within 0.02 seconds after a crash is less than 0.01”.
Another example which illustrates bounding the expected value is
“the expected time for the protocol to finish transmitting one packet
is less than 3 milliseconds”.

Probabilistic model checking and probabilistic programming
systems have evolved as different communities, with different
goals, even though the analysis techniques used are very related.
The goal of a probabilistic program is to represent (and model) a
probability distribution. The view point taken is Bayesian, and typ-
ically a probabilistic program assigns to variables from a “prior”
distribution, and then constrains the relationships between vari-
ables using observe statements, and the goal of the program is to
represent a “posterior” distribution obtained by conditioning the
prior distribution using observations. The goal of a probabilistic
inference (as implemented in a probabilistic programming system)
is to compute appropriate representations of this posterior distri-
butions, or expectations of functions with respect to this posterior
distribution. In contrast, the goal of probabilistic model checking is
to perform verification, that is, to model a system with probabilistic
components and verify properties that place quantitative bounds on
all possible behaviors of the system.

However, not withstanding this difference in goals, the two
communities still use related techniques. For instance, Multi Ter-

double mean, sd;
mean =
NDChoice({50,51,52,53,54,55});

variance = 10.0;
result = Gaussian(mean,variance)
return(result);

double mean, sd;
mean =
Uniform({50,51,52,53,54,55});

variance = 10,0
result = Gaussian(mean,variance)
return(result);

Figure 17. Illustration of nondeterminism

minal Decision Diagrams (MTDDs) are used by PRISM to perform
symbolic analysis of finite-state probabilistic models [14], and Al-
gebraic Decision Diagrams (ADDs) have been used by probabilis-
tic programming systems to perform posterior inference [11], as
well as by Bayesian Networks to perform inference by variable
elimination [9]. Thus, we believe that there is scope for the proba-
bilistic programming and probabilistic model checking communi-
ties to build on the learnings of each other.

Other Approaches in Machine Learning. Current approaches to
Probabilistic Programming are heavily influenced by the Bayesian
approach to machine learning. The view of a probabilistic program
as a generative model, starting with a prior distribution, and giv-
ing semantics to probabilistic programs as posterior distribution af-
ter conditioning by observations is distinctly Bayesian in philoso-
phy. It is interesting to explore language notations for expressing
machine learning approaches from other sub-communities in ma-
chine learning, such as the optimizations community which has
built various scalable tools for large scale machine learning (see,
for instance [28]). Even with the current semantics of probabilistic
programs (which is Bayesian), if our goal is to find the mode of
the posterior distribution (for computing maximum likelihood esti-
mate, for instance), then optimization techniques such as gradient
descent may be applicable after appropriate smoothing transforma-
tions [8] on the probabilistic programs to ensure that the posterior
distribution is continuous. This is a promising avenue since op-
timization techniques scale better than search techniques such as
MCMC (which were discussed in Section 6).

Nondeterminism. Nondeterminism is a powerful modeling tool to
deal with unknown information, as well as to specify abstractions
in situations where details are unimportant. For instance, consider
the two programs in Figure 17. The program on the left side of Fig-
ure 17 models an unknown value being used as mean, where the
only information we have is that the mean is one of the values 50,
51, 52, 53, 54 or 55, but we do not know which of these values
has been picked. Currently, most probabilistic programming sys-
tems are unable to represent (and hence analyze) such a model. In-
stead, an approximate model based on probabilistic choice, which
is shown in the right side of Figure 17 is used. The difference is that
in the program on the right side, mean is chosen uniformly at ran-
dom from the set {50, 51, 52, 53, 54, 55}. An important difference
between the two programs is that the meaning of the program on
the left-side is a set of Gaussian distributions (each with a different
mean), whereas the meaning of the program in the right-side is a
single Gaussian distribution, whose mean is obtained from another
distribution.

The use of nondeterminism is also fundamental in Markov De-
cision Processes, which are widely used in control theory [6] to
represent modeling problems for controller synthesis. In such situ-
ations, the model has several points where nondeterministic choices
are made (and represented as an MDP), and the goal of controller
synthesis is to come up with a so called strategy which maps states
of the system to resolution of the nondeterministic choices the con-
troller should make in order to maximize some objective function
(usually specified as some aggregation of rewards obtained through
the run of the system). Such controller synthesis algorithms (such

11 2014/1/24

as policy iteration or value iteration) are well known in MDP liter-
ature and are implemented in controller synthesis tools [6] as well
as in Probabilistic Model Checkers such as PRISM [36]. However,
the use of nondeterminism as a modeling tool for representing un-
known quantities in probabilistic programs is not common. Provid-
ing such a facility allows expressing natural models in several situ-
ations. However, representing and inferring sets of distributions is
more complicated than dealing with a single distribution, and hence
there are several technical challenges in adding nondeterminism to
probabilistic programs and still be able to provide scalable infer-
ence.

Modeling Continuous Time. Continuous time models (such as
CTMCs) are fundamental model in chemistry, biochemistry, popu-
lation genetics, and also performance analysis, queuing theory, etc.
In CTMCs, the probabilistic choice is not between alternatives, but
over time. Events in such models happen at random, typically expo-
nentially distributed in time, and different events race against each
other and a transition happens when the first event occurs in a state.
While we have shown one way to encode continuous time in prob-
abilistic programs in Section 3 (see Figure 10 for an encoding of
the Lotka-Volterra population model), the approach is unsatisfac-
tory for two reasons. First, the approach is non-compositional. If
we were to add an extra reaction to the three reactions for the pop-
ulation model in Section 3, the changes to the probabilistic program
in Figure 10 are non-local, and we need to change the entire pro-
gram. This is because, the program in Figure 10 models time as a
variable, and computes at each state the set of enabled transitions,
and performs case analysis to compute total rates and uniformiza-
tion at each state. Second, the uniformization approach is known
to not work well when there are some reactions with very low rates
and some with very high rates. Thus, a more native encoding of real
time can be beneficial both for compositionality as well as more ef-
ficient, scalable inference. However, adding time complicates the
semantics and tooling needed for probabilistic programs and hence
needs to be done carefully without exploding the complexity of the
entire system.

Tools and Infrastructure. The goal of probabilistic programming
is to help the large number of programmers who have domain ex-
pertise, but lack of expertise in machine learning. Several advances
in tools and infrastructure are needed before this goal can become a
reality. We outline some directions for such advances here. First, it
is interesting to explore learning the structure of probabilistic pro-
grams (with some help from the programmer) from the data. Sim-
ilar ideas have been explored in the context of structure learning
in Bayesian Networks [25] and Markov Logic Networks [20]. Hav-
ing the programmer sketch [53] some outline of the program and
having the system automatically fill in the details will greatly help
improve usability. Next, several improvements are needed in the
entire tool chain starting from the compiler, inference system, and
runtime infrastructures for probabilistic programs. Compilers need
to implement the equivalent of common compiler optimizations for
probabilistic programs, and runtimes need to exploit the power of
massive parallelism available in today’s GPUs and cloud services.
Diagnostic information needs to be provided to the programmer to
help her identify programming errors, and improve the quality of
the programs she writes. Substantial improvements in these areas
will need interplay between compiler analysis, machine learning
and usability research with programmers and data scientists.

Acknowledgments
We are grateful to Johannes Borgström, Audris Mockus, Dan Su-
ciu, and Marcin Szymczak for feedback on a draft. This work was
supported in part by the ERC Advanced Grant QUAREM (Quanti-

tative Reactive Modeling) and the FWF NFN RiSE (Rigorous Sys-
tems Engineering).

References
[1] R. I. Bahar, E. A. Frohm, C. M. Gaona, G. D. Hachtel, E. Macii,

A. Pardo, and F. Somenzi. Algebraic decision diagrams and their
applications. Formal Methods in System Design, 10(2/3):171–206,
1997.

[2] T. Ball, R. Majumdar, T. Millstein, and S. K. Rajamani. Automatic
predicate abstraction of C programs. In Programming Language
Design and Implementation (PLDI), pages 203–213, 2001.

[3] G. Barthe, B. Grégoire, and S. Zanella Béguelin. Formal certification
of code-based cryptographic proofs. In Principles of Programming
Languages (POPL), pages 90–101, 2009.

[4] G. Barthe, B. Grgoire, S. Heraud, and S. Zanella Béguelin. Computer-
aided security proofs for the working cryptographer. In Advances in
Cryptology (CRYPTO), pages 71–90. 2011.

[5] J. Borgström, A. D. Gordon, M. Greenberg, J. Margetson, and J. Van
Gael. Measure transformer semantics for Bayesian machine learn-
ing. In European Symposium on Programming (ESOP), pages 77–96,
2011.

[6] C. G. Cassandras and S. Lafortune. Introduction to Discrete Event
Systems. Springer Science+Business Media, LLC, 2008.

[7] A. T. Chaganty, A. V. Nori, and S. K. Rajamani. Efficiently sampling
probabilistic programs via program analysis. In Artificial Intelligence
and Statistics (AISTATS), pages 153–160, 2013.

[8] S. Chaudhuri and A. Solar-Lezama. Smooth interpretation. In Pro-
gramming Language Design and Implementation, pages 279–291,
2010.

[9] M. Chavira and A. Darwiche. Compiling bayesian networks using
variable elimination. In International Joint Conference on on Artificial
Intelligence (IJCAI), pages 2443–2449, 2007.

[10] S. Chib and E. Greenberg. Understanding the Metropolis-Hastings
algorithm. American Statistician, 49(4):327–335, 1995.

[11] G. Claret, S. K. Rajamani, A. V. Nori, A. D. Gordon, and J. Borgström.
Bayesian inference using data flow analysis. In Foundations of Soft-
ware Engineering (FSE), pages 92–102, 2013.

[12] M. R. Clarkson, A. C. Myers, and F. B. Schneider. Quantifying
information flow with beliefs. Journal of Computer Security, 17(5):
655–701, 2009.

[13] P. Cousot and R. Cousot. Abstract interpretation: A unified lattice
model for static analysis of programs by construction or approxima-
tion of fixpoints. In Principles of Programming Languages (POPL),
pages 238–252, 1977.

[14] L. de Alfaro, M. Z. Kwiatkowska, G. Norman, D. Parker, and
R. Segala. Symbolic model checking of probabilistic processes us-
ing mtbdds and the kronecker representation. In Tools and Algorithms
for Construction and Analysis of Systems (TACAS), pages 395–410,
2000.

[15] D. L. Detlefs, K. R. M. Leino, G. Nelson, and J. B. Saxe. Extended
static checking. Technical Report Research Report 159, Compaq
Systems Research Center, December 1998.

[16] E. W. Dijkstra. Guarded commands, nondeterminacy and formal
derivation of programs. Communications of the ACM (CACM), 18
(8):453–457, 1975.

[17] P. Domingos. Markov logic: a unifying language for knowledge and
information management. In CIKM: ACM Conference on Information
and Knowledge Management, page 519, 2008.

[18] J. Ferrante, K. J. Ottenstein, and J. D. Warren. The program depen-
dence graph and its use in optimization. Transactions on Programming
Languages and Systems (TOPLAS)., 9(3):319–349, 1987.

[19] W. R. Gilks, A. Thomas, and D. J. Spiegelhalter. A language and
program for complex Bayesian modelling. The Statistician, 43(1):
169–177, 1994.

12 2014/1/24

[20] V. Gogate, W. A. Webb, and P. Domingos. Learning efficient markov
networks. In Neural Information Processing Systems (NIPS), pages
748–756, 2010.

[21] N. D. Goodman, V. K. Mansinghka, D. M. Roy, K. Bonawitz, and J. B.
Tenenbaum. Church: a language for generative models. In Uncertainty
in Artificial Intelligence (UAI), pages 220–229, 2008.

[22] A. D. Gordon, M. Aizatulin, J. Borgström, G. Claret, T. Graepel,
A. V. Nori, S. K. Rajamani, and C. Russo. A model-learner pattern
for Bayesian reasoning. In Principles of Programming Languages
(POPL), pages 403–416, 2013.

[23] A. D. Gordon, T. Graepel, N. Rolland, C. Russo, J. Borgström, and
J. Guiver. Tabular: A schema-driven probabilistic programming lan-
guage. In Principles of Programming Languages (POPL), 2014. To
appear.

[24] H. Hansson and B. Jonsson. A logic for reasoning about time and
reliability. Formal Aspects of Computing, 6(5):512–535, 1994.

[25] D. Heckerman, D. Geiger, and D. M. Chickering. Learning bayesian
networks: The combination of knowledge and statistical data. Machine
Learning, 20(3):197–243, 1995.

[26] R. Herbrich, T. Minka, and T. Graepel. TrueSkill: A Bayesian skill
rating system. In Neural Information Processing Systems (NIPS),
pages 569–576, 2006.

[27] M. D. Hoffman and A. Gelman. The no-U-turn sampler: Adaptively
setting path lengths in Hamiltonian Monte Carlo. Journal of Machine
Learning Research, in press, 2013.

[28] John Langford. Vowpal Wabbit. URL https://github.com/
JohnLangford/vowpal_wabbit/wiki.

[29] J.-P. Katoen, I. S. Zapreev, E. M. Hahn, H. Hermanns, and D. N.
Jansen. The ins and outs of the probabilistic model checker MRMC.
In Quantitative Evaluation of Systems (QEST), pages 167–176, 2009.

[30] D. Knuth and A. Yao. Algorithms and Complexity: New Directions
and Recent Results, chapter The complexity of nonuniform random
number generation. Academic Press, 1976.

[31] S. Kok, M. Sumner, M. Richardson, P. Singla, H. Poon, D. Lowd,
and P. Domingos. The Alchemy system for statistical rela-
tional AI. Technical report, University of Washington, 2007.
http://alchemy.cs.washington.edu.

[32] D. Koller and N. Friedman. Probabilistic Graphical Models: Princi-
ples and Techniques. MIT Press, 2009.

[33] D. Koller, D. A. McAllester, and A. Pfeffer. Effective Bayesian
inference for stochastic programs. In National Conference on Artificial
Intelligence (AAAI), pages 740–747, 1997.

[34] D. Kozen. Semantics of probabilistic programs. Journal of Computer
and System Sciences, 22(3):328–350, 1981.

[35] D. Kozen. A probabilistic PDL. J. Comput. Syst. Sci., 30(2):162–178,
1985.

[36] M. Z. Kwiatkowska, G. Norman, and D. Parker. PRISM 4.0: Verifica-
tion of probabilistic real-time systems. In Computer Aided Verification
(CAV), pages 585–591, 2011.

[37] A. Lotka. Elements of physical biology. Williams & Wilkins company,
Baltimore, 1925.

[38] D. J. C. MacKay. Information Theory, Inference & Learning Algo-
rithms. Cambridge University Press, New York, NY, USA, 2002.

[39] P. Mardziel, S. Magill, M. Hicks, and M. Srivatsa. Dynamic enforce-
ment of knowledge-based security policies using probabilistic abstract
interpretation. Journal of Computer Security, January 2013.

[40] B. Milch, B. Marthi, S. J. Russell, D. Sontag, D. L. Ong, and
A. Kolobov. BLOG: Probabilistic models with unknown objects. In
Probabilistic, Logical and Relational Learning — A Further Synthe-
sis, 2005.

[41] T. Minka, J. Winn, J. Guiver, and A. Kannan. Infer.NET 2.3, Nov.
2009. Software available from http://research.microsoft.
com/infernet.

[42] G. Nelson. A generalization of Dijkstra’s calculus. Transactions
on Programming Languages and Systems (TOPLAS)., 11(4):517–561,
1989.

[43] F. Niu, C. Ré, A. Doan, and J. W. Shavlik. Tuffy: Scaling up statistical
inference in Markov Logic Networks using an RDBMS. Very Large
Databases (PVLDB), 4(6):373–384, 2011.

[44] A. V. Nori, C. Hur, S. K. Rajamani, and S. Samuel. The R2 probabilis-
tic programming system. 2013. http://research.microsoft.
com/r2.

[45] A. V. Nori, C. Hur, S. K. Rajamani, and S. Samuel. Slicing probabilis-
tic programs. 2013. Working draft.

[46] J. R. Norris. Markov chains. Cambridge series in statistical and
probabilistic mathematics. Cambridge University Press, 1998.

[47] J. Pearl. Probabilistic Reasoning in Intelligence Systems. Morgan
Kaufmann, 1996.

[48] A. Pfeffer. A general importance sampling algorithm for probabilistic
programs. Technical report, Harvard University TR-12-07, 2007.

[49] A. Pfeffer. The design and implementation of IBAL: A general-
purpose probabilistic language. In Statistical Relational Learning.
MIT Press, 2007.

[50] M. L. Puterman. Markov Decision Processes. Wiley, 1994.
[51] D. Roth. On the hardness of approximate reasoning. Artificial Intelli-

gence, 82(1–2):273–302, 1996.
[52] S. Sankaranarayanan, A. Chakarov, and S. Gulwani. Static analysis

of probabilistic programs: Inferring whole program properties from
finitely many executions. In Programming Languages Design and
Implementation (PLDI), 2013.

[53] A. Solar-Lezama. The sketching approach to program synthesis. In
Asian Symposium on Programming Languages and Systems (APLAS),
pages 4–13, 2009.

[54] Stan Development Team. Stan: A C++ library for probability and
sampling, version 2.0, 2013. URL http://mc-stan.org/.

[55] D. Suciu, D. Olteanu, C. Ré, and C. Koch. Probabilistic Databases.
Synthesis Lectures on Data Management. Morgan & Claypool Pub-
lishers, 2011.

[56] M. Y. Vardi. Automatic verification of probabilistic concurrent finite-
state programs. In Foundations of Computer Science (FOCS), pages
327–338, 1985.

[57] V. Volterra. Fluctuations in the abundance of a species considered
mathematically. Nature, 118:558–560, 1926.

[58] D. Wingate, N. D. Goodman, A. Stuhlmüller, and J. M. Siskind. Non-
standard interpretations of probabilistic programs for efficient infer-
ence. In Neural Information Processing Systems (NIPS), pages 1152–
1160, 2011.

[59] D. Wingate, A. Stuhlmüller, and N. D. Goodman. Lightweight imple-
mentations of probabilistic programming languages via transforma-
tional compilation. International Conference on Artificial Intelligence
and Statistics (AISTATS), 15:770–778, 2011.

13 2014/1/24

