
 

 

 
 

 

Edinburgh Research Explorer 
 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Guiding a general-purpose C verifier to prove cryptographic
protocols

Citation for published version:
Dupressoir, F, Gordon, A, Jürjens, J & Naumann, DA 2014, 'Guiding a general-purpose C verifier to prove
cryptographic protocols' Journal of Computer Security, vol. 22, no. 5, pp. 823-866. DOI: 10.3233/JCS-
140508

Digital Object Identifier (DOI):
10.3233/JCS-140508

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Early version, also known as pre-print

Published In:
Journal of Computer Security

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 05. Apr. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/43711922?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.3233/JCS-140508
https://www.research.ed.ac.uk/portal/en/publications/guiding-a-generalpurpose-c-verifier-to-prove-cryptographic-protocols(10a7d596-7f81-4bf7-8eef-24facd356203).html


Guiding a General-Purpose C Verifier to Prove Cryptographic Protocols

François Dupressoir
The Open University

Andrew D. Gordon
Microsoft Research

Jan Jürjens
TU Dortmund & Fraunhofer ISST

David A. Naumann
Stevens Institute of Technology

Abstract—We describe how to verify security properties of
C code for cryptographic protocols by using a general-purpose
verifier. We prove security theorems in the symbolic model of
cryptography. Our techniques include: use of ghost state to
attach formal algebraic terms to concrete byte arrays and to
detect collisions when two distinct terms map to the same byte
array; decoration of a crypto API with contracts based on
symbolic terms; and expression of the attacker model in terms
of C programs. We rely on the general-purpose verifier VCC;
we guide VCC to prove security simply by writing suitable
header files and annotations in implementation files, rather
than by changing VCC itself. We formalize the symbolic model
in Coq in order to justify the addition of axioms to VCC.

I. INTRODUCTION

Economies of scale suggest that it is better, where possi-
ble, to adapt an existing general-purpose tool to a specialist
problem, than to go to the expense of building a specialist
tool for each niche application area.

Our particular concern is the specialist problem of veri-
fying the implementation code of cryptographic protocols
[30][29][10]. This code is mostly written in C, and is
often the first—and sometimes the only—completely pre-
cise description of the message formats and invariants of
cryptographic protocols. Hence, reasoning about such code
offers a way to find and prevent both the design and
implementation flaws that lead to expensive failures (for
instance, [15][38][36]).

Background: Proving Cryptographic Protocol Code:
The prior work on verifying C code of security protocols
relies on special-purpose tools. Csur [30] analyzes C code
for secrecy properties via a custom abstract interpretation,
while ASPIER [16] relies on security-specific software
model-checking techniques, obtaining good results on the
main loop of OpenSSL. Both these tools use the symbolic
model of cryptography introduced by Dolev and Yao [24].

Another line of work considers the problem of verifying
reference implementations written as functional programs.
Initial approaches rely on security-specific analyzers. The
tools FS2PV [10] and FS2CV [28] translate functional pro-
grams in F# to the process calculi accepted by the specialised
verifiers ProVerif [13] and CryptoVerif [14] for automatic
verification in the symbolic and computational models; an
implementation of TLS [11] is a substantial case study.

Instead of translating to a protocol verifier, the type-
checker F7 [9] checks F# by using security-specific refine-
ment types, types qualified with formulas, to express security

properties. The theory of F7 is based on the symbolic model,
although in some circumstances it can be adapted to be
provably computationally sound [5][27].

A subsequent, more flexible, method of using refine-
ment types, based on invariants for cryptographic struc-
tures [12], relies on axiomatizations of cryptographic pred-
icates (such as which data is public); first implemented for
F7, the method works in principle with any general-purpose
refinement-type checker.

Our strategy is to port this method to a verifier for C.
Background: General-Purpose C Verifiers: By now

there are several general-purpose and more-or-less auto-
matic verification tools for C, including Frama-C [22],
VeriFast [32], and VCC [18]. This paper describes our
techniques for guiding one of these, VCC, to verify a range
of security protocol implementations. Although we adopt
VCC, we expect our method would port to other tools.

VCC verifies C code against specifications written as
function contracts in the tradition of Floyd-Hoare logic. It
translates C to an intermediate verifier, Boogie [7], which
itself relies on an SMT solver, Z3 [23]. The translation to
Boogie encodes an accurate low-level memory model for
C. VCC supports concurrency, which we use to model dis-
tributed execution of protocols as well as for multithreaded
code. Specifications use ghost state, that is, specially-marked
program variables that may be mentioned in contracts, but
that are not allowed to affect ordinary state or control flow.
We aim to scale to verify large amounts of off-the-shelf
C code such as OpenSSL; VCC has already proved itself
capable of verifying large pre-existing codebases [18].

A. Outline of our Techniques

We summarize the main aspects of our adaptation to C
and VCC of the method of invariants for cryptographic
structures [12]. Later on, we describe the differences from
the prior work on F# and F7.

1) Language-independent definitional theory: We de-
velop a theory of symbolic cryptography, independent of
any programming language, within the interactive proof
assistant Coq. The theory is definitional in the sense that it
is developed from sound definitional principles (on the basis
of symbolic cryptography), with no additional assumptions.

As usual in the symbolic model [24], the core of our
theory is an algebraic type with constructors corresponding
to the following: the outcomes of cryptographic algorithms



such as keyed hashing, encryptions, and signatures; literal
byte strings (which represent messages, principal names,
keys, and nonces, etc); and reversible pairing (for message
formatting; implemented with a length field).

Our theory accounts for the time-dependent history of
protocol execution by defining a log, L, to be a set of events,
which records progress so far in a protocol run.

Our theory also includes an inductive definition of confi-
dentiality levels of terms, parameterized by the log of events.
Terms may either be public (known to the attacker), or
private (known only to the protocol participants). We need
to parameterize by the log because once events such as a
principal compromise are logged, more data becomes public
(such as keys known to the principal).

2) Theory imported as first-order axioms: C is a low-
level language and does not directly support abstractions for
algebraic types. Also, VCC cannot easily perform proofs by
induction, being based on first-order logic without induction
principles. Still, VCC does allow ghost state and ghost
commands to manipulate unbounded data—ghost data of
type mathint consists of arbitrary mathematical integers—
and VCC allows us to assume arbitrary first-order axioms.
Hence, we can import our Coq theory into VCC by (1) using
ghost data of type mathint to represent algebraic types such as
symbolic terms, and (2) importing Coq theorems about our
inductive definitions as first-order axioms. Results proved
by VCC hold in all models of the axioms, including the
intended one inductively defined in Coq.

3) A ghost table relates bytestrings and symbolic terms:
Our cryptographic library manipulates byte arrays via a C
struct bytes c, which contains a length field together with
a pointer to a heap-allocated chunk of memory with that
length. Additionally, the struct contains a mathint ghost field,
encoding, satisfying an invariant that it encodes the actual
bytestring stored in memory. In global ghost state, we
maintain a representation table, which holds a finite one-
to-one correspondence between bytestrings and symbolic
terms. These are the cryptographically significant bytestrings
arising so far in the run. The predicate table .DefinedB[b] holds
just if bytestring b exists in the table. If so, table .B2T[b] is
the corresponding term. Conversely, if term t is in the table,
table .T2B[t] is the corresponding bytestring.

We rely on the table to write VCC function contracts that
specify symbolic assumptions about concrete cryptographic
routines. For example, the contract for hmacsha1 follows.
It enforces that tb can be MAC’ed with tk only when the
protocol-dependent precondition MACSays(tk, tb) holds.

i n t hmacsha1 ( bytes c ∗k , bytes c ∗b , bytes c ∗ res )
requires ( t ab l e . DefinedB [ k−>encoding ] )
requires ( t ab l e . DefinedB [ b−>encoding ] )
ensures ( ! resul t ==> t ab l e . DefinedB [ res−>encoding ] )
requires

(MACSays( t ab l e . B2T [ k−>encoding ] , t ab l e . B2T [ b−>encoding ] ) )
ensures ( ! resul t ==>

t ab l e . B2T [ res−>encoding ] ==
Hmac( t ab l e . B2T [ k−>encoding ] , t ab l e . B2T [ b−>encoding ] ) ) ;

The contract’s first three lines express the precondition
(using the requires keyword) that the two concrete arguments
are in the table, and the postcondition (using the ensures
keyword) that the concrete result is in the table. The fourth
line requires the MACSays predicate is fulfilled. The final line
ensures the term associated with the result is Hmac(tk, tb),
where terms tk and tb are associated with the concrete
inputs. (As these lines illustrate, we include the ghost field
encoding in bytes c because it allows succinct access in
specifications to the contents of memory.)

The VCC-verified concrete implementation of hmacsha1,
called a hybrid wrapper, simply calls a routine trusted to
compute the MAC of the inputs, and then in ghost code
updates the table with the result, if it is new.

4) Protocol roles described as ordinary C code: Each
role of a protocol is simply code in C, executed as normal,
and verified for memory safety and security with VCC.
We model distributed execution by multiple threads that
communicate concretely by message passing via a network
API, but that share a single representation table. The protocol
code can itself be multithreaded and use shared memory, but
that feature is not used in the simple examples presented
here.

Throughout this article, we take as a running example
the following simple authenticated RPC [12]. This two-party
protocol uses a pre-shared secret key to authenticate requests
and responses and link responses to the corresponding
request, using a keyed hash as MAC. Our verified C code
for this protocol is available in the full version online.
Running example: an authenticated RPC protocol
a : Log(Request(a, b, payload))
a → b: payload | hmac(kab, ”1” | payload)
b : assert(Request(a, b, payload))
b : Log(Response(a, b, payload, payload’))
b → a: payload’ | hmac(kab, ”2” | payload | payload’)
a : assert(Response(a, b, payload, payload’))

The narration logs events marking a’s intent to send a
request, and b’s intent to send a response. At these points
in our code, ghost commands add events to the log. The
narration also includes correspondence assertions marking
b’s conclusion that a has sent a request, and a’s conclusion
that b has sent a response. In our code, these correspondences
become assert statements, to be verified by VCC.

5) Attacker model expressed using C interface: We prove
protocol code secure against a network-based attacker [37],
rather than against say local malware. We consider an
attacker to be a C program consisting simply of a series of
calls to functions in the attacker interface. In keeping with
the symbolic model, the attacker cannot directly manipulate
bytestrings using the bitwise operators of C, but only via
this interface. It includes functions for cryptography, to send
and receive network messages, to create new principals (but
without access to their keys), to create instances of protocol
roles, and to cause the compromise of principals (after which



their keys are available). Since our security results hold in
spite of an arbitrary attacker, we place no bound on the
number of distinct principals or concurrent sessions.

6) Security theorems obtained by running a general-
purpose verifier: By running VCC on the protocol imple-
mentation, we prove both correspondence properties, ex-
pressing authentication and integrity properties, and weak
secrecy properties. As mentioned, correspondences amount
to embedded assert statements. Standard symbolic cryptog-
raphy assumptions are expressed using local assume state-
ments. Weak secrecy properties amount to consequences of
invariants, respected by all verified code. A typical secrecy
property can be explained as follows: if k is a key shared
between a and b and k is public, then either principal a
or principal b is compromised. Proof with VCC is semi-
automatic in that it relies on automatic deductive inference,
but with the help of user-supplied annotations.

B. Contributions of the Paper

To the best of our knowledge, this is the first published
verification methodology for C implementations of cryp-
tographic protocols that proves both memory safety and
security properties for unbounded sessions. Csur [30] proves
secrecy properties, but does not show memory safety; in fact,
verification succeeds despite the example code allowing ac-
cidental access to uninitialized memory. ASPIER [16] proves
various security properties by software model-checking, but
verification considers only a few concurrent sessions, and
relies on substantial abstractions.

Our work takes the idea of invariants for cryptographic
structures [12] away from strongly-typed functional pro-
gramming in F# and F7, and recasts it in the setting of
a weakly-typed low-level imperative language. In C we can
neither rely on abstract types nor escape from the difficulties
of reasoning about mutable memory and aliasing. These are
probably the main new difficulties we address compared to
the prior work with F7 [12]; verifying C is much harder than
verifying F#. In return, we enjoy vastly wider applicability,
as the bulk of production cryptographic protocols is in C. A
less obvious and more technical benefit is that in F7, the log
of events is implicit and its impact on inductively defined
predicates requires a bespoke notion of semantic safety for
F#. By making the log explicit in ghost state, we can work
within a completely standard semantics of assertions on C
programs.

Our method forces the developer to precisely specify
memory safety and security properties. We verify them
with a scalable and practically reliable tool that has clear
semantics in terms of standard C, its compilers and hard-
ware architecture. Since user interaction is by way of code
annotation, the verification effort may be expected to evolve
well as the code base evolves. We may also hope to reap the
benefit of ongoing improvements in automation for general-
purpose verifiers for C. Although we prove our security-

specific theory in Coq, we do trust the VCC/Boogie/Z3 tool
chain and the C compiler.

We have validated our approach on implementations we
developed using our own cryptographic APIs. In future
work, we intend to apply our techniques to pre-existing code.

C. Structure of the Paper

We verify the following stack of C program files, listed
in dependency order, which link to form an executable.

crypto.h/c library: crypto, malloc, etc (not verified)
RPCdefs.h representation table, event log
RPChybrids.h/c hybrid wrappers
RPCprot.h/c protocol roles, setup
RPCshim.h/c network attacker interface
RPCattack 0.c sample attack / application
Section II introduces features of VCC used in our treat-

ment of symbolic cryptography (the topic of Section III,
file RPCdefs.h) and its connection to concrete data (the
topic of Section IV, files RPChybrids.h and RPChybrids.c).
Section V states our assumptions about VCC. Section VI
models symbolic attacks as programs (e.g., RPCattack 0.c)
using an API RPCshim.h. Section VII states and proves
safety of an example protocol implementation (RPCprot.h and
RPCprot.c). Section VIII summarizes our results including
verification of other examples. Section IX covers related
work. Section X concludes with remarks on limitations and
future work.

A preliminary form of this work was presented at an
unrefereed workshop [25]. A technical report [26] has ad-
ditional details. All of the Coq and VCC files are available
online.

II. BACKGROUND ON THE VCC VERIFIER

VCC uses an automatic theorem prover to statically check
correctness of C code with respect to specifications written
as function contracts and other annotation comments. The
tool is based on a precise model of multithreaded, shared-
memory executions of C programs. In order to verify rich
functional specifications without the need for interactive
theorem proving and yet scaling to industrial software using
idiomatic C, VCC relies on a somewhat intricate method-
ology for specifications. This section sketches pertinent
features of the model and methodology. For details that are
glossed over here, see [18], [19] and the tool documentation.
We expect the reader is familiar with C syntax such as macro
definitions (#define) and record declarations (typedef struct).

VCC’s semantics of C is embodied in its verification
condition generator (VCG). The VCG reflects a reason-
ing methodology that includes memory safety and locally
checked invariants. The VCG models preemptive multi-
threading by interpreting code in terms of its atomic steps,
between each of which there may be arbitrary interference
on shared state, constrained only by invariants associated
with data types declared in the program as explained later.
Atomicity is with respect to sequentially consistent hardware



and data types like integers with atomic read and write. (The
methodology has been adapted to reasoning about a weaker
memory model, Total Store Order, but that has not yet been
implemented in VCC [20].)

Memory blocks are arrays of bytes, but a typed view is
imposed in order to simplify reasoning while catering for
idiomatic C and standard compilers. The verifier attempts
to associate a type with each pointer dereferenced by the
program, and imposes the requirement that distinct point-
ers reference separate parts of memory. For example two
integers cannot partially overlap. Structs may nest as fields
inside other structs, in accord with the declared struct types,
but distinct values do not otherwise overlap. Annotations can
specify, however, the re-interpretation of an int as an array
of bytes, changing the typestate of a union, etc.

The declaration of a struct type can be annotated with an
invariant: a formula that refers to fields of an instance this.
(We often say “invariant” for what are properly called “type
invariants”.) Invariants need not hold of uninitialized objects,
so there is a boolean ghost field that designates whether the
object is open or closed: in each reachable state, every closed
object should satisfy the invariant associated with its type.

Useful invariants often refer to more than one object,
but the point of associating invariants with objects is to
facilitate local reasoning: when a field is written, the verifier
only needs to check the invariants of relevant objects, ow-
ing to admissibility conditions VCC imposes on invariants.
Invariants and other specifications designate an ownership
hierarchy: if object o1 owns o2 then the invariant of o1
may refer to the state of o2 and thus must be maintained
by updates of o2. The state of a thread is modeled by a
ghost object. An object is wrapped if it is owned by the
current thread (object) and closed. The owner of an object
is recorded in a ghost field. VCC provides notations unwrap
and wrap to open/close an object, with wrap also asserting
the invariant.

Ownership makes manifest that the invariant for one
object o1 may depend on fields of another object o2, so the
VCG can check o1’s invariant when o2 is updated. Since
hierarchical ownership is inadequate for shared objects like
locks, VCC provides another way to make manifest that
o1 depends on the state of o2: it allows that o1 maintains
a claim on o2—a ghost object with no concrete state but
an invariant that depends on o2. Declaring a type to be
claimable introduces implicit ghost state used by the VCG
to track outstanding claims. The ghost code to create a claim
or store it in a field is part of the annotation provided by
the programmer.

The term invariant encompasses two-state predicates for
the before and after states of a state transition. In this
way, invariants serve as the rely conditions in a form of
rely-guarantee reasoning. Usually two-state invariants are
written as ordinary formulas, using the keyword old to
designate expressions interpreted in the before state. We say

an invariant is one-state to mean that it does not depend on
the before state.

A thread can update an object that it owns, using un-
wrap/wrap. However, in many cases such as locks, having
a single owner is too restrictive, and another mechanism
is needed to allow multiple threads to update the object
concurrently. VCC interprets fields marked volatile as being
susceptible to update by other threads, in accord with the
interpretation of the volatile keyword by C compilers. An
atomic step is allowed to update a volatile field without
opening it, provided that the object is proved closed and the
update maintains the object’s two-state invariant (that being
the interference condition on which interleaved threads rely).
The standard idiom for locks is that several threads each
maintain a claim that the lock is closed, so they may rely
on its invariant; outstanding claims prevent even the owner
from unwrapping the object. Atomic blocks are explicitly
marked as such. An atomic block may make at most one
concrete update, to be sound for C semantics, but may update
multiple ghost fields. We do not use assume statements in
atomic blocks.

III. SYMBOLIC CRYPTOGRAPHY IN VCC

In this section, we introduce the inductive model of
symbolic cryptography and show how it is approximated in
VCC by first-order logic axioms over uninterpreted function
symbols and code manipulating ghost state.

A. Term Algebra

We use a standard symbolic model of cryptography,
where cryptographic primitives (and further operations such
as pairing) are modelled as constructors of an inductive
datatype. Some details are protocol-specific, so for clarity we
focus on a simple model adequate for our running example,
the RPC protocol. We use ordinary mathematical notation
for the following definitions, which are formalized in our
Coq development.
An algebra of cryptographic terms
ti, k,m, p, a, b ::= term

Literal bs with bs a byte array
Pair t1 t2
Hmac k m

Automated verifiers like VCC support specifications in
first-order logic without inductive definitions. So we use
an over-approximation of the term algebra given by un-
interpreted function symbols and first-order axioms. The
reasoning performed by VCC thus holds for all models of
the axioms, in particular for the intended inductive model.
The following shows the first-order axioms corresponding
to the algebra above.

The VCC spec() syntax indicates that all symbols declared
within are ghost objects. In particular, it allows the use of
the mathint type of mathematical integers (in Z).



A first-order model of cryptographic terms
spec (

typedef math in t bytes ;
typedef math in t term ;

ispure math in t tag term ( term ) ;

/ / Const ruc tors ( declared as un in te rp re ted fu n c t i o n s )
ispure term L i t e r a l ( bytes bs ) ;
ispure term Pa i r ( term t1 , term t2 ) ;
ispure term Hmac( term k , term m) ;

/ / Theorems
theorem ( L i t e r a l I n j e c t i v e ,

f o r a l l ( bytes bs1 , bs2 ; L i t e r a l ( bs1 ) == L i t e r a l ( bs2 )
==> bs1 == bs2 ) ) ;

theorem ( P a i r I n j e c t i v e ,
f o r a l l ( term a1 , a2 , b1 , b2 ; Pa i r ( a1 , b1 ) == Pa i r ( a2 , b2 )

==> a1 == a2 && b1 == b2 ) ) ;
theorem ( Hmac Inject ive ,

f o r a l l ( term k1 ,m1, k2 ,m2; Hmac( k1 ,m1) == Hmac( k2 ,m2)
==> k1 == k2 && m1 == m2) ) ;

theorem ( L i t e r a l D i s j o i n t ,
f o r a l l ( bytes bs ; tag term ( L i t e r a l ( bs ) ) == 0) ) ;

theorem ( P a i r D i s j o i n t ,
f o r a l l ( term t1 , t2 ; tag term ( Pa i r ( t1 , t2 ) ) == 1) ) ;

theorem ( Hmac Disjoint ,
f o r a l l ( term k ,m; tag term (Hmac( k ,m) ) == 2) ) ;

)

We use the bytes type to manipulate whole byte arrays
as values, and assume a bijection between finite byte arrays
and mathematical integers. (One such bijection interprets a
byte array as an integer, pairs that with its length to account
for leading zeroes, and injects the pair into Z.) We will
designate the injection from byte arrays to type bytes as:
Encode(unsigned char∗, unsigned long).

The ispure keyword is used to specify that a given function
is to be interpreted as a total function whose return value
depends only on the value of its arguments and memory
locations listed in its reads() clauses. Only pure functions
can be used in function contracts and assertions, and purity
needs to be explicitly specified even for spec functions, as
they may update ghost state.

We use axioms to state properties of the declared function
symbols that cannot easily be expressed using pre and
postconditions (injectivity and disjointness, in this case).1

Those axioms are separately proved in Coq to hold about
the intended, inductive model of cryptography. The theorem
notation is a simple macro that generates a VCC axiom;
its first argument, ignored by VCC, is the name of the
corresponding Coq theorem.

B. Events and Log

Much as in prior work [12], we use a global log of events
to express the wanted correspondence properties. Events
themselves are defined using a protocol-specific algebra (see
below).

The hashkey usage and some top-level events are specific
to the RPC protocol, but some constructors are of general use

1Injectivity could, in general, be expressed as a postcondition, but VCC
imposes syntactic restrictions on the postconditions of pure functions to
ensure that they are total and computable.

and are needed for most protocols. The top-level of events
always includes a New event, logging the intended usage
of freshly generated bytestrings. In particular, the Attack-
erGuess models that the corresponding term represents a
bytestring known to the attacker, because it was provided
as a starting parameter, or because it represents a fixed
bytestring appearing in the protocol specification (e.g. a tag,
or a fixed format string).

Algebra of events for RPC
hu ::= hashkey usage

KeyAB a b
us ::= usage

AttackerGuess
HashKey hu

ev ::= event
New t us | Bad a | Request a b t | Response a b t1 t2

As with the cryptographic terms, a first-order approxi-
mation of this algebra is given to VCC using uninterpreted
functions and axioms. The log itself, intended as the set of
events that have occurred so far, is defined next as a structure
containing one set for each kind of event. We use boolean
maps to model sets. The VCC notation is similar to that of
arrays, e.g., bool B[mathint] declares B to be a boolean-valued
total function on the integers.
Encoding of the log in VCC (RPCdefs.h)
#define s tab le ( F ) old ( F ) ==> F

spec (
typedef struct log s {

v o l a t i l e bool New[ term ] [ usage ] ;
v o l a t i l e bool Bad [ term ] ;
v o l a t i l e bool Request [ term ] [ term ] [ term ] ;
v o l a t i l e bool Response [ term ] [ term ] [ term ] [ term ] ;

/ / Misc . cond i t i ons
invar iant ( f o r a l l ( term t ; usage u1 , u2 ;

New[ t ] [ u1 ] && New[ t ] [ u2 ] ==> u1 == u2 ) )
invar iant ( f o r a l l ( term t ; usage u ;

New[ t ] [ u ] ==> exists ( bytes b ; t == L i t e r a l ( b ) ) ) )

/ / S t a b i l i t y
invar iant ( f o r a l l ( term t ; usage u ; s tab le (New[ t ] [ u ] ) ) )
invar iant ( f o r a l l ( term t ; s tab le (Bad [ t ] ) ) )
invar iant ( f o r a l l ( term a , b , s ;

s tab le ( Request [ a ] [ b ] [ s ] ) ) )
invar iant ( f o r a l l ( term a , b , s , t ;

s tab le ( Response [ a ] [ b ] [ s ] [ t ] ) ) )
} Log ; )

spec ( Log log ; )

#define v a l i d l o g\
f o r a l l ( term T ; usage U1,U2;\

log .New[ T ] [ U1 ] && log .New[ T ] [ U2 ] ==> U1 == U2) &&\
f o r a l l ( term T ; usage U;\

log .New[ T ] [ U] ==> exists ( bytes B ; T == L i t e r a l (B) ) )

#define s tab le log\
f o r a l l ( term T ; usage U; s tab le ( log .New[ T ] [ U ] ) ) &&\
f o r a l l ( term T ; s tab le ( log . Bad [ T ] ) ) &&\
f o r a l l ( term A,B,S ; s tab le ( log . Request [A ] [ B ] [ S ] ) ) &&\
f o r a l l ( term A,B,S, T ; s tab le ( log . Response [A ] [ B ] [ S ] [ T ] ) )

Logical formulas have type bool, e.g., the expression
Request[a][b][ t ] can be used as an assertion saying that this
event has occurred. We use two-state invariants to express



that the log can only grow (see the “Stability” group of
invariants in the code displayed above). We use a one-
state invariant to express that bytestrings, and in particular
keys, should only be given one usage. Other protocol-
specific one-state invariants could be added. We call them
“Miscellaneous conditions”, and will say that a log is good,
or valid, when its miscellaneous conditions hold. We also
introduce macros valid log and stable log, which expand to
both invariant blocks, to simplify the expression of certain
properties; valid log is used in the inversion principle for the
Pub() predicate.

C. Inductive Predicates for Cryptography

We use inductive predicates to express the correct usage of
cryptographic primitives, as specified by a given protocol. In
particular, we define a predicate Pub() that holds on all terms
that can be published without compromising the protocol’s
goals. We also define a Bytes() predicate that holds on byte
arrays an honest protocol participant is allowed to build. We
ensure by definition that Bytes() holds for all terms on which
Pub() holds. Both of these predicates, and all intermediate
predicates used in their definition, are actually functions of
the log. We write L ` P to say P holds in log L. The
following shows an excerpt of the inductive rules defining
the Pub() predicate.
Some inductive predicates for cryptography
(MACSays KeyAB Request)
New k (HashKey (KeyAB a b)) ∈ L

Request req a b ∈ L
m = Pair (Literal TagRequest) req

L ` MACSays k m

(MACSays KeyAB Response)
New k (HashKey (KeyAB a b)) ∈ L

Response req resp a b ∈ L
m = Pair (Literal TagResponse) (Pair req resp)

L ` MACSays k m

(Pub AttackerGuess)
New (Literal b) AttackerGuess ∈ L

L ` Pub (Literal b)

(Pub Hmac)
L ` MACSays k m
L ` Bytes k
L ` Pub m

L ` Pub (Hmac k m)

(Pub Hmac Pub)
L ` Pub k L ` Pub m

L ` Pub (Hmac k m)

In order to simplify the notations in VCC, we do not
make the log an explicit argument in the predicates’ VCC
declaration. Instead, we express that the functions intended
to model the predicates depend on the state, by marking
them with the reads(set universe()) contract, stating that the
value returned by the function may depend on the set of
pointers that contains all addresses in the state. This makes
the program state an implicit parameter to the function; later

we use axioms to frame the function’s dependency on the
state more precisely. We can then use axioms to give the
intended meaning of these symbols. In particular, we prove
in Coq that our predicate symbols are monotonic functions
of the log and import this fact as an axiom in VCC (see
the theorem Pub Monotonic below). To that end we give the
following definitions. The notation in state(S, e) denotes the
value of expression e in the state S.
Log stability between explicit states
#define s s tab le (S1 , S2 , F )\

i n s t a t e (S1 , F ) ==> i n s t a t e (S2 , F )

#define s s tab le log (S1 , S2)\
f o r a l l ( term T ; usage U;\

s s tab le (S1 , S2 , log .New[ T ] [ U ] ) ) &&\
f o r a l l ( term T;\

s s tab le (S1 , S2 , log . Bad [ T ] ) ) &&\
f o r a l l ( term A,B,S;\

s s tab le (S1 , S2 , log . Request [A ] [ B ] [ S ] ) ) &&\
f o r a l l ( term A,B,S, T;\

s s tab le (S1 , S2 , log . Response [A ] [ B ] [ S ] [ T ] ) )

Here are the VCC axioms for the Pub() predicate and some
example theorems.
VCC axiomatic definition for Pub() (excerpt)
spec ( ispure bool Pub ( term t )

reads ( se t un iverse ( ) ) ; )

theorem ( Pub Monotonic ,
f o r a l l ( s t a t e t s1 , s2 ; term x ;

s s tab le log ( s1 , s2 ) ==> s s tab le ( s1 , s2 , Pub ( x ) ) ) ) ;

rule ( Pub AttackerGuess ,
f o r a l l ( bytes b ;

log .New[ L i t e r a l ( b ) ] [ AttackerGuess ( ) ] ==>
Pub ( L i t e r a l ( b ) ) ) ) ;

Inversion theorems (excerpt)
theorem ( KeyAB WeakSecrecy ,

f o r a l l ( term k , a , b ;
v a l i d l o g &&
log .New[ k ] [ HmacKey(KeyAB( a , b ) ) ] &&
Pub ( k ) ==>

log . Bad [ a ] | | log . Bad [ b ] ) ) ;

theorem (MACSays RPC,
f o r a l l ( term a , b ,m, k ;

v a l i d l o g && log .New[ k ] [ HmacKey(KeyAB( a , b ) ) ] &&
MACSays( k ,m) ==>

( exists ( term s ; Requested (m, s ) &&
log . Request [ a ] [ b ] [ s ] ) | |

exists ( term s , t ; Responded (m, s , t ) &&
log . Response [ a ] [ b ] [ s ] [ t ] ) ) ) ) ;

theorem (Pub MACSays Pub ,
f o r a l l ( term k ,m; Pub (Hmac( k ,m) ) ==>

MACSays( k ,m) | | Pub ( k ) ) ) ;

The axioms introduced using rule correspond to the in-
ductive definition rules shown earlier. Again, the axioms
introduced using theorem correspond to results that are
proved to hold in the model inductively defined in Coq.
Similar axioms are used to define Bytes() and MACSays(), as
well as theorems similar to those used in F7 [12].

IV. REPRESENTATION TABLE AND HYBRID WRAPPERS

A. The Representation Table
Symbolic models of cryptography generally assume that

two distinct symbolic terms yield two distinct byte strings,



and that fresh literals cannot be guessed by an attacker. The
intent is to use such a model with cryptographic operations
that, in the computational model, have a negligible proba-
bility of collision. Verification in the symbolic model is a
way of ruling out a well-defined class of attacks, which in
practice do not depend on collisions or lucky guesses.

Prior work on cryptographic software in F#, for example
[10], [9], relies on type abstraction to verify protocol code
when running with purely symbolic libraries, which satisfy
these assumptions, instead of concrete libraries, which do
not. In the absence of type abstraction in C, we must verify
protocol code when running with concrete cryptographic
algorithms on byte strings. Our aim remains to verify against
an attacker in the symbolic model. To do so, we instrument
the program with specification code that maintains a rep-
resentation table, which tracks the correspondence between
concrete byte strings and symbolic terms. We intercept all
calls to cryptographic functions with ghost code to update
the representation table. We say a collision occurs when
the table associates a single byte string with two distinct
symbolic terms.

For example, suppose x and y
are two distinct bytestrings that
have the same HMAC, h, under
a key k. After the first call to
hmac() the table looks like this:

Bytestring Term
k Literal k
x Literal x
y Literal y
h Hmac k x

When computing the second HMAC, our instrumented
hmac() function tries to insert the freshly computed h and
the corresponding term Hmac k y in the table, but detects
that h is already associated with a distinct term Hmac k x.

We make the absence of such collisions an explicit
hypothesis in our specification by assuming, via an assume
statement in the ghost code updating the table, that a
collision has not occurred. This removes from consideration
any computation following a collision, as is made precise
in Section V. We treat the event of the attacker guessing
a non-public value in a similar way; we assume it does
not happen, using an assume statement. In this way we
prove symbolic security properties of the C code. A separate
argument may be made that such collisions only happen with
low probability.

Like the log, the representation table, given next, is a
structure containing maps.
The representation table in VCC
spec (

typedef vcc ( c la imab le ) struct tab le s {
v o l a t i l e bool DefinedB [ bytes ] ;
v o l a t i l e term B2T [ bytes ] ;

v o l a t i l e bool DefinedT [ term ] ;
v o l a t i l e bytes T2B [ term ] ;

/ / B i j e c t i v i t y
invar iant ( f o r a l l ( bytes b ;

DefinedB [ b ] ==> T2B [ B2T [ b ] ] == b ) )
invar iant ( f o r a l l ( term t ;

DefinedT [ t ] ==> B2T [ T2B [ t ] ] == t ) )

invar iant ( f o r a l l ( bytes b ;
DefinedB [ b ] ==> DefinedT [ B2T [ b ] ] ) )

invar iant ( f o r a l l ( term t ;
DefinedT [ t ] ==> DefinedB [ T2B [ t ] ] ) )

/ / S t a b i l i t y
invar iant ( f o r a l l ( bytes b ;

s tab le ( DefinedB [ b ] ) ) )
invar iant ( f o r a l l ( bytes b ;

old ( DefinedB [ b ] ) ==> unchanged (B2T [ b ] ) ) )
invar iant ( f o r a l l ( term t ;

s tab le ( DefinedT [ t ] ) ) )
invar iant ( f o r a l l ( term t ;

old ( DefinedT [ t ] ) ==> unchanged (T2B [ t ] ) ) )

/ / V a l i d i t y
invar iant ( f o r a l l ( bytes b ;

DefinedT [ L i t e r a l ( b ) ] ==> T2B [ L i t e r a l ( b ) ] == b ) )
invar iant ( f o r a l l ( term t ;

DefinedT [ t ] ==> Bytes ( t ) ) )

/ / Ownership
invar iant ( keeps(& log ) )

} Rep ; )

spec (Rep tab le ; )

We use two maps to store the bijection between bytes,
which are byte string values (not pointers), and terms (e.g.,
the byte string b corresponds to the algebraic term B2T[b]).
Two-state invariants express that the table can only grow.
There is an ownership invariant: the representation table
always owns the log. This means that whenever &rep is
closed, &log has to be closed itself, so the invariants for
the representation table can depend on values in the log in
accord with the VCC ownership methodology.

B. The Hybrid Wrappers
We want to ensure that all cryptographic operations are

used in ways that preserve the representation table invariants.
We provide hybrid wrappers around the concrete library
functions; wrappers are not only verified to maintain the
table’s invariants but also serve to give symbolic contracts
to a cryptographic interface working with concrete bytes.

For simplicity in this paper, the hybrid wrappers ma-
nipulate a structure type bytes c containing all information
pertaining to a byte array.
A type for byte strings
typedef struct {

unsigned char ∗p t r ;
unsigned long l en ;

spec ( bytes encoding ; )
invar iant ( keeps ( as array ( p t r , len ) ) )
invar iant ( encoding == Encode ( p t r , len ) )

} bytes c ;

In particular, we keep not only a pointer to the concrete
byte array considered and its length, but we also add a
ghost field of type bytes, representing—as a mathematical
integer—the byte string value contained by the len bytes
at memory location ptr. For the invariants of bytes c to be
admissible, we also make sure, using the keeps keyword, that
the heap-allocated byte array of length len pointed to by ptr
is always owned by the structure, ensuring in particular that
it is never modified while the structure is kept closed.



As an example, here is the contract of our hybrid wrapper
for the hmac sha1() cryptographic function.
Hybrid interface for hmacsha1()
i n t hmacsha1 ( bytes c ∗k , bytes c ∗b , bytes c ∗ res

cla imp ( c ) )
/ / S t a b i l i t y o f log and tab le

always ( c , c losed (& tab le ) &&
c s tab le log && c s tab le tab le )

ensures ( s tab le log && s tab le tab l e )
/ / P rope r t i es o f i npu t byte s t r i n g s

maintains ( wrapped ( k ) )
maintains ( wrapped ( b ) )

/ / P rope r t i es o f out parameter
writes ( span ( res ) )
ensures ( unchanged (emb( res ) ) )
ensures ( ! resul t ==> wrapped dom ( res ) )

/ / Cryptographic con t rac t
requires ( t ab l e . DefinedB [ k−>encoding ] )
requires ( t ab l e . DefinedB [ b−>encoding ] )
ensures ( ! resul t ==> t ab l e . DefinedB [ res−>encoding ] )

/ / Cryptographic p r o p e r t i e s on inpu t terms
requires (

MACSays( t ab l e . B2T [ k−>encoding ] , t ab l e . B2T [ b−>encoding ] )
| | (Pub ( t ab l e . B2T [ k−>encoding ] ) &&

Pub ( t ab l e . B2T [ b−>encoding ] ) ) )
/ / Cryptographic p r o p e r t i e s on output term

ensures ( ! resul t ==>
t ab l e . B2T [ res−>encoding ] ==

Hmac( t ab l e . B2T [ k−>encoding ] , t ab l e . B2T [ b−>encoding ] ) ) ;

For log and table stability, as well as concurrent access,
there is a ghost parameter containing a claim c (represented
by the claimp macro). The function’s contract says, using the
always(c ,...) construction, that the claim parameter should
ensure that the table object is closed, and that both table and
log have only grown since the claim was created (which is
expressed using the c stable variant of the s stable macro).
Additionally, the function should ensure that the log and
table only grow during its execution. The next lines of
the contract concern memory-safety, e.g., the arguments
used to pass values in are wrapped both at call-site and
at return-site (maintains(F) expands to requires(F) ensures(F)),
and the third argument is used as an output parameter, to
return the function’s result. The latter is specified by stating
that the function is allowed to write the set of memory
locations contained within the span of the out-parameter.
Additionally, we also specify that the embedding (emb) of
the out-parameter is left unchanged by a call to the function,
meaning that the pointer refers to the same typed memory
location. It is then specified that a call to this function may
write all fields of the structure passed in the res argument,
and that this memory update has to wrap the structure when
the function call is successful.

The first three lines under “Cryptographic contract” deal
only with the table, stating that the input byte strings should
appear in the table, and that, upon successful return from
the function, the output byte string appears in the table.
Then comes an important cryptographic precondition: that
either MACSays() holds on the terms associated with the
input byte strings (modelling an honest participant’s calling
conditions), or they are both in Pub() (modelling a call by
the attacker or a compromised principal). The postcondition
states that, upon successful return, the output byte string is

associated with the term obtained by applying the Hmac
constructor to the terms associated with the input byte
strings.

An honest client, when calling a function with this con-
tract, needs to establish the first disjunct of the precondition:
that MACSays() holds on the terms associated with the input
byte arrays. For this, to hold, the term associated with the
key k must be given, in the log, a certain usage HashKey hu
for some hashkey usage hu, and the term associated with
the message to authenticate b must be formatted correctly, as
specified by the corresponding inference rule (here (MAC-
Says KeyAB Request) or (MACSays KeyAB Response)).

A typical hybrid wrapper implementation first performs
the concrete operation on byte strings (e.g., by calling a
cryptographic library) before performing updates on the
ghost state to ensure the cryptographic postconditions, whilst
maintaining the log and table invariants. To do so, it first
computes the expected cryptographic term by looking up,
in the table, the terms associated with the input byte strings
and applying the suitable constructor. Once both the concrete
byte string and the corresponding terms are computed, the
implementation can check for collisions, and in case there
are none, update the table (and the log) as expected. In case
a collision happens, an assume statement expresses that our
symbolic cryptography assumptions have been violated.

A hybrid wrapper for hmacsha1()

i n t hmacsha1 ( bytes c ∗k , bytes c ∗b , bytes c ∗ res
cla imp ( c ) )

{ spec ( term tb , tk , th ; )
spec ( bool c o l l i s i o n = fa lse ; )

res−>l en = 20;
res−>p t r = mal loc ( res−>l en ) ;
i f ( res−>p t r == NULL)

return 1;
sha1 hmac ( k−>p t r , unchecked ( ( i n t ) k−>l en ) , b−>p t r ,

unchecked ( ( i n t ) b−>l en ) , res−>p t r ) ;

spec (
res−>encoding = Encode ( res−>p t r , res−>len ) ;
wrap ( as array ( res−>p t r , res−>len ) ) ;
wrap ( res ) ; )

spec (
atomic ( c , &tab l e )
{

tb = tab le . B2T [ b−>encoding ] ;
t k = tab l e . B2T [ k−>encoding ] ;
th = Hmac( tk , tb ) ; / / Compute the symbol ic term

i f ( ( t ab l e . DefinedB [ res−>encoding ] &&
tab le . B2T [ res−>encoding ] != th ) | |

( t ab l e . DefinedT [ th ] &&
tab le . T2B [ th ] != res−>encoding ) )

c o l l i s i o n = true ;
else
{

t ab l e . DefinedT [ th ] = true ;
t ab l e . T2B [ th ] = res−>encoding ;
t ab l e . DefinedB [ res−>encoding ] = true ;
t ab l e . B2T [ res−>encoding ] = th ;

}
})

assume ( ! c o l l i s i o n ) ; / / Our symbol ic c ryp to assumption
return 0; }

Our implementation of an HMAC SHA1 wrapper, shown



above, uses the PolarSSL project’s sha1 hmac() func-
tion ([39]).

The unchecked keyword is used to let VCC ignore the
potential arithmetic overflow due to the type casts.

Since the table is shared and its fields marked volatile, all
reads and writes from and to it need to occur in an atomic
block guarded by a claim c ensuring, among other things,
that the global table object is closed.

We also provide a function toString converting an ordinary
string pointer to a bytes c, the input type for functions
like hmacsha1. It logs a New event with usage AttackerGuess
and assumes the guessed literal does not collide with any
other term already in the table. We also provide a function
bytescmp, that compares two bytes c objects.

That completes the groundwork needed to specify and
verify the RPC protocol code (RPCprot.c). The following
shows a slightly simplified version of the annotated code
for the client role, where the Request event is logged by the
atomic assignment and the final correspondence is asserted
as a disjunction of events taking into account the potential
compromise of one of the principals involved. Each of the
function calls is verified to happen in a state where the
function’s precondition holds. In particular, the call to the
channel write() function yields a proof obligation that Pub()
holds on the term corresponding to the second argument.
The return statements are for various kinds of failure.
Annotated RPC client code
void c l i e n t ( bytes c ∗a l i ce , bytes c ∗bob , bytes c ∗kab ,

bytes c ∗req , channel∗ chan claimp ( c ) )
maintains ( wrapped ( a l i c e ) && wrapped ( bob ) &&

wrapped ( kab ) && wrapped ( req ) )
always ( c , c losed (& tab le ) && c s tab le log && c s tab le tab le )
writes ( c )
requires ( t ab l e . DefinedB [ a l i ce−>encoding ] &&

tab le . DefinedB [ bob−>encoding ] &&
tab le . DefinedB [ kab−>encoding ] &&
tab le . DefinedB [ req−>encoding ] )

requires (Pub ( t ab l e . B2T [ a l i ce−>encoding ] ) &&
Pub ( t ab l e . B2T [ bob−>encoding ] ) &&
Pub ( t ab l e . B2T [ req−>encoding ] ) &&
Bytes ( t ab l e . B2T [ kab−>encoding ] ) )

requires ( t ab l e . B2T [ kab−>encoding ] == L i t e r a l ( kab−>encoding
) )

requires (
log .New[ t ab l e . B2T [ kab−>encoding ] ]

[ HmacKey(KeyAB( tab l e . B2T [ a l i ce−>encoding ] ,
t ab l e . B2T [ bob−>encoding ] ) ) ] ) ;

{
spec ( c la im t tmp ; )
bytes c ∗toMAC1 , ∗mac1 , ∗msg1 ;
bytes c ∗msg2 , ∗resp , ∗toMAC2 , ∗mac2 ;
/ / Event
spec ( atomic ( c ,& tab le ,& log ) {

log . Request [ t ab l e . B2T [ a−>encoding ] ]
[ t ab l e . B2T [ b−>encoding ] ]
[ t ab l e . B2T [ req−>encoding ] ] = true ;} )

/ / Bu i l d and send request message
i f ( ( toMAC1 = mal loc ( sizeof (∗ toMAC1) ) ) == NULL) return ;
i f ( request ( req , toMAC1 spec ( c ) ) ) return ;

i f ( ( mac1 = mal loc ( sizeof (∗mac1) ) ) == NULL) return ;
i f ( hmacsha1 ( kab , toMAC1 , mac1 spec ( c ) ) ) return ;

i f ( ( msg1 = mal loc ( sizeof (∗msg1) ) ) == NULL) return ;
i f ( p a i r ( req , mac1 , msg1 spec ( c ) ) ) return ;

i f ( channel wr i te ( chan , msg1 spec ( c ) ) ) return ;

/ / Receive and check response message
i f ( ( msg2 = mal loc ( sizeof (∗msg2) ) ) == NULL) return ;
i f ( channel read ( chan , msg2 spec ( c ) ) ) return ;

i f ( ( resp = mal loc ( sizeof (∗ resp ) ) ) == NULL) return ;
i f ( ( mac2 = mal loc ( sizeof (∗mac2) ) ) == NULL) return ;
i f ( des t r uc t (msg2 , resp , mac2 spec ( c ) ) ) return ;

i f ( ( toMAC2 = mal loc ( sizeof (∗ toMAC2) ) ) == NULL) return ;
i f ( response ( req , resp , toMAC2 spec ( c ) ) ) return ;

i f ( ! hmacsha1Verify ( kab , toMAC2 , mac2 spec ( c ) ) ) return ;

/ / Correspondence asse r t i on
assert ( log . Response [ t ab l e . B2T [ a l i ce−>encoding ] ]

[ t ab l e . B2T [ bob−>encoding ] ]
[ t ab l e . B2T [ req−>encoding ] ]
[ t ab l e . B2T [ resp−>encoding ] ]

| | log . Bad [ t ab l e . B2T [ a−>encoding ] ]
| | log . Bad [ t ab l e . B2T [ b−>encoding ] ] ) ;

}

To prove that the correspondence assertion holds, VCC
will use the postconditions of hmacsha1Verify() stating that a
zero return value implies that the third argument is indeed a
valid hmac, the fact that the byte array toMAC2 is known
to have a correct response format as it is the result of
a succesful call to the response() function, and the fact
that Pub() holds on the response message, as it was read
from the network. Using these facts, VCC can use the
inversion theorems shown in Section III-C and prove the
correspondence assertion.

V. ASSUMPTIONS CONCERNING THE C VERIFIER

Several research papers [18], [19] document the VCC
system but there is no formal model of its semantics of
programs and specifications aside from the VCG itself. To be
able to formulate a precise specification of the program prop-
erties (in particular security properties) verified by VCC,
we sketch a conventional operational semantics, in terms of
which we specify what we assume about the verifier. The
model sketched here has been formalized as part of our Coq
development. The model idealizes from low level features of
C, using instead a simple Java-like heap model (following
[19]), but please keep in mind that VCC reasons soundly
about the gory details of low level C code.

An execution environment consists of a self-contained
collection of type and function declarations. For a given
execution environment, a runtime configuration takes the
form (h, ts, qs) where h is the heap, ts is the thread
pool, and qs is a map from channel names to message
queues. A thread state consists of a command (its current
continuation) and a local store (i.e., a mapping of locals
and parameters to their current values); a thread pool is
a finite list of thread states. Thus threads share the heap
and the message queues (which hold messages sent but not
yet received). A run is a series of configurations that are
successors in the transition relation. The transition relation
allows nondeterministic selection of any thread that is not
blocked waiting to receive on an empty channel. A single



step (transition) may be an assignment, the test of a branch
condition, creation of a new thread, etc. Nondeterministic
scheduling models all interleavings including ones that may
be preferred by an attacker.

A state predicate is a predicate on a heap together with a
store. The store is used for function parameters and results,
which are thread local. The precondition of a function
contract is a state predicate; its postcondition is a two-
state predicate that refers to the initial and final state of
the function’s invocation. An invariant is a predicate on a
pointer together with a pair of heaps, as described earlier.

The only unusual feature of the semantics is our treatment
of assumptions, which are usually only given an axiomatic
semantics. If there is any thread poised to execute the
command assume p, and the condition p does not hold in
the current configuration, then there is no transition—we
say there is an assumption failure. If all current assumptions
hold, then some thread takes a step. Thus some runs end with
a “stuck” configuration from which there are no successors.
The only other stuck configurations are those where every
thread is blocked waiting on an empty channel. Execution
of assume p takes a single step with no effect on state.
Execution of assert p also has no effect on the state—nor
does it have an enabling condition. An assertion is effectively
a labelled skip, in terms of which we formulate correctness.

Definition 1 (safe command): An assertion failure is a
run in which there is a configuration where some thread’s
active command is assert p for some p that does not hold
in that configuration, or some object’s invariant fails to
hold, and there is no assumption failure at that point. A
configuration is safe if none of its runs are assertion failures.
A command c is safe under precondition p if for states
satisfying p, the configuration with that initial state and the
single thread c is a safe configuration.

Given our treatment of assumptions, safety means that
there is no assertion failure unless and until there is an
assumption failure.

VCC works in a procedure-modular way: it verifies that
each function implementation satisfies its contract, under the
assumption of specified contracts for all functions directly
called in the body.

Definition 2 (verifiable): We write api.h ` p.c  q.h to
mean there exists p′.c that instruments p.c with additional
ghost code (but no assumptions, and no other changes),
and q′.h that may extend q.h with contracts for additional
functions (but not alter those in q.h) and type invariants, such
that VCC successfully verifies the implementation of each
function f in p′.c against the contract for f in q′.h, under
hypotheses api.h and q′.h; moreover admissibility holds for
all the type invariants.

We use names ending in .c or .h for code or interface
texts, as mnemonic for usual file names, but these may be
catenations of multiple files.

An immediate consequence of Definition 2 is the follow-

ing, where the + operator stands for catenation.
Lemma 1 (VCC Modularity): If p.h ` q.c  q.h and

p.h+ q.h ` r.c r.h then p.h ` q.c+ r.c q.h+ r.h.
The VCC methodology supports verification conditions

for sound modular reasoning, but it is not easy to give a
VCG-independent semantics for the verifiability judgement
p.h ` q.c q.h. Fortunately, for our purposes it is enough
to consider soundness for complete programs. A complete
program is verified as ∅ ` m.c main.h.
main.h

void main ( )
requires ( program entry point ( ) )
writes ( se t un iverse ( ) ) ;

The program entry point() precondition means that all
global objects exist and are owned by the current thread
at the beginning of this function, as it is the first function
that is called when the process is started.

Assumption 1 (VCC Soundness): If ∅ ` m.c  main.h
then the body of function main in m.c is safe for the
precondition in main.h.

VCC checks that ghost state is used in ways that are sound
for reasoning about actual observations; i.e., it has no influ-
ence on non-ghost state except for introducing additional
steps that do not change non-ghost state. We formalize this
in the long version of the paper.

VI. ATTACK PROGRAMS

An attacker in the symbolic model can intercept messages
on unprotected communication links (such as the Internet)
and send messages constructed from parts of intercepted
messages, as specified by a term algebra. We model the set
of all possible attacks, each attack being represented by an
attack program (or just “attack”). In this section we sketch
the formal definition of attack program, relative to a suitable
interface, and give an example. Attack programs are what
enable us, in Section VII, to use an ordinary program verifier
to reason about active attackers.

An attack program is a straight-line C program that
compiles against an attacker interface. Such an interface pro-
vides some “opaque” type declarations together with some
function signatures; these include message send/receive,
standard cryptographic operations, and protocol-specific ac-
tions like creating sessions and initiating roles.
Attacker interfaces
T ::= type

bool | unsigned char∗ | X∗
µ ::= entry in an interface

typedef X; type declaration
T f(T1 x1, . . . , Tn xn) function prototype (n ≥ 0)
void f(T1 x1, . . . , Tn xn) procedure prototype (n ≥ 0)

I ::= µ1 . . . µn interface (n ≥ 0)

For an annotated interface p.h, we let erase(p.h) be the
attacker interface obtained by deleting annotations and the
bodies of type declarations. Recall the software stack shown



in Section I-C; the file RPCshim.h provides a network attacker
interface including generic cryptography and network oper-
ations as well as protocol specific functions.

An attacker interface: erase(RPCshim.h)
typedef bytespub ;

bytespub∗ at t toBytespub ( unsigned char∗ p t r ,
unsigned long l en ) ;

bytespub∗ a t t p a i r ( bytespub∗ b1 , bytespub∗ b2 ) ;
bytespub∗ a t t f s t ( bytespub∗ b ) ;
bytespub∗ at t snd ( bytespub∗ b ) ;

bytespub∗ att hmacsha1 ( bytespub∗ k , bytespub∗ b ) ;
bool att hmacsha1Ver i fy ( bytespub∗ k ,

bytespub∗ b ,
bytespub∗ m) ;

void a t t channe l wr i t e ( channel∗ chan , bytespub∗ b ) ;
bytespub∗ at t channel read ( channel∗ chan ) ;

typedef session ;

session∗ a t t se tup ( bytespub∗ c l , bytespub∗ se ) ;

void a t t r u n c l i e n t ( session∗ s , bytespub∗ request ) ;
void a t t run serve r ( session∗ s ) ;

bytespub∗ at t compromise c l ien t ( session∗s ) ;
bytespub∗ att compromise server ( session∗s ) ;

channel∗ a t t ge tChanne l c l i en t ( session∗ s ) ;
channel∗ at t getChannel server ( session∗ s ) ;

Type bytespub is critical: its invariant constrains its values
to be concrete byte arrays that correspond to terms that
satisfy the Pub() predicate. Verifying the implementation of
this attacker interface therefore provides a proof that Pub()
is closed under attacker actions. The function contracts in
RPCshim.h and code in RPCshim.c are similar to the hybrid
wrappers in Section IV-B but oriented to Pub data. They
are more complicated, due to memory safety annotations
dealing with thread fork and messaging, though that is
mostly protocol-independent. An example contract appears
in Section VII.

Attack program for given interface I
An attack program for a given interface I has the form:
void main ( ) { D C }
where D is a sequence of local variable declarations
and C a sequence of commands, such that:
1) Each of the declarations in D has the form T x;, where T is
either bool, unsigned char∗, or T∗ where T is declared in I.
2) Each command in the sequence C is either (a) a function call
assignment with variables as arguments, x = f (y ...) ;
(b) a procedure call with variables as arguments f (y ...) ;
or (c) an assignment x = s; where s is a string literal.
3) A variable is assigned at most once and every variable
mentioned is declared in D.
4) For each function or procedure call, each argument variable is
assigned earlier in the sequence of commands.
5) In each call to a function or procedure f , there is a declaration
of f in I and each argument variable in the call has declared type
identical to that of the corresponding parameter of f .
6) In a function call assignment x = f (y ...) ; , the declared type of
x is the result type of f . In a string assignment x = s; the declared
type of x is char∗.

Owing to item 2, an attack program does not directly
assign any object field, nor any global variable. Nor does it
directly invoke any operations except functions and proce-
dures in I (item 5).
An attack program for RPCshim.h (from RPCattack 0.c)
void main ( )
{ unsigned char ∗a ,∗b ,∗ r ;

bytespub ∗a l i ce ,∗bob ,∗ arg ,∗ req ,∗ resp ;
channel ∗c l ien tC ,∗ serverC ;
session ∗s ;

a = ” A l i ce ” ; a l i c e = at t toBytespub ( a , 5 ) ;
b = ”Bob ” ; bob = at t toBytespub ( b , 3 ) ;
r = ” Request ” ; arg = at t toBytespub ( r , 7 ) ;
s = a t t se tup ( a l i ce , bob ) ;
c l i e n t C = a t t ge tChanne l c l i en t ( s ) ;
serverC = at t getChannel server ( s ) ;
a t t run serve r ( s ) ;
a t t r u n c l i e n t ( s , arg ) ;
req = at t channel read ( c l i e n t C ) ;
a t t channe l wr i t e ( serverC , req ) ;
resp = at t channel read ( serverC ) ;
a t t channe l wr i t e ( c l i en tC , resp ) ;}

VII. AN EXAMPLE SECURITY THEOREM

An attack program for the RPC protocol is a program
that relies only on RPCshim.h. To form an executable, it
needs to be combined with System which we define to
be the catenation crypto.c + RPChybrids.c + RPCprot.c. Here
crypto.c is the library of cryptographic algorithms (and we
let it subsume OS libraries, e.g., for memory allocation and
sockets), which is used in RPChybrids.c and RPCprot.c.

Before providing the formal results, we informally de-
scribe a key property on which soundness of our approach
rests. Consider any attack program M.c and any run of
the program System + RPCshim.c + M.c. It is an invariant that
at every step of the run, the representation table holds
every term that has arisen by cryptographic computation or
by invocation of the toBytesPub function which an attack
must use to convert guessed bytestrings to type bytespub as
needed to invoke the other functions of RPCshim. This is
not an invariant that we state in the program annotations;
its only role is to justify our use of assumptions. The only
assumptions used are in RPCshim.c and RPChybrids.c where
collisions are detected. In light of the key invariant, this
means that in any run that reaches an assumption failure,
the sequence of terms computed includes a hash collision or
an attacker guess of a term that is not public according to
the symbolic model of cryptography.

The contracts in RPCshim.h all follow a similar pattern;
we give one for reference in the following proof.

Example contract from RPCshim.h

bytespub∗ att hmacsha1 ( bytespub∗ k , bytespub∗ b claimp ( c ) )
maintains ( wrapped ( k ) )
maintains ( wrapped ( b ) )
writes ( k , b )
always ( c , c losed (& tab le )&&c s tab le log&&c s tab le tab le )
writes ( c )
ensures ( wrapped ( resul t ) ) ;



Attack programs were defined in order to show that
their behaviours are among those of interfering threads
encompassed by the verification conditions VCC imposes on
protocol code. This is formalized by way of the following.

Lemma 2: If M.c is an attack program for
erase(RPCshim.h), then RPCshim.h ` M.c main.h.

Proof: (Sketch) According to Definition 2 we have to
show admissibility of the type invariants in RPCshim.h, which
we have checked using VCC. It remains to prove verifiability
of the attack program against main.h. A general argument is
needed since there are infinitely many attacks. (Here we
idealize: VCC’s resources can be taxed in many ways, e.g.,
M.c could declare a vast number of variables.)

Because the contract in main.h does not impose a postcon-
dition and its write specification is vacuous, we just need
to show that invariants are established and maintained. Let
M.c be void main(){D C}. In accord with Definition 2 we will
show verifiability of code C′ which augments the statements
of C with two sorts of instrumentation. The first is simply
to prefix C with ghost code that initializes the representation
table and log. This code is defined as macro init () , shown
in the code sample below, where maps are defined using
VCC’s lambda notation, and the constants tagRequest and
tagResponse are separately defined to be the integer encoding
of the 1-byte-long strings ”1” and ”2”, respectively.
The init () macro
#define i n i t ( . . . ) \

spec (\
/∗ Log ∗ /\
log .New = lambda ( term t ;

lambda ( usage u ; fa lse ) ) ;\
log . Request = lambda ( term a ;

lambda ( term b ;
lambda ( term s ; fa lse ) ) ) ;\

log . Response = lambda ( term a ;
lambda ( term b ;

lambda ( term s ;
lambda ( term t ; fa lse ) ) ) ) ;\

wrap(& log ) ;\
/∗ Representat ion tab l e . I t i n i t i a l l y conta ins

tagRequest and tagResponse . ∗ /\
t ab l e . DefinedB =

lambda ( bytes b ; b == tagRequest
| | b == tagResponse ) ;\

t ab l e . B2T [ tagRequest ] = L i t e r a l ( tagRequest ) ;\
t ab l e . B2T [ tagResponse ] = L i t e r a l ( tagResponse ) ;\
t ab l e . DefinedT =

lambda ( term t ; t == L i t e r a l ( tagRequest )
| | t == L i t e r a l ( tagResponse ) ) ;\

t ab l e . T2B [ L i t e r a l ( tagRequest ) ] = tagRequest ;\
t ab l e . T2B [ L i t e r a l ( tagResponse ) ] = tagResponse ;\
wrap(& tab l e ) ;\
c = cla im (& tab le , c losed (& tab le ) &&

c s tab le log && c s tab le tab le ) ; )

We verified a sample attack using init () , which serves
to prove that init () establishes the log and table invariants,
as the invariants are proved to hold when the objects are
wrapped. Furthermore, init () creates a claim c on the table
(which owns the log) that says they remain wrapped and
stable. Owing to the contracts in RPCshim.h, this claim
will be maintained, which ensures from that point on that
the log and table can never be opened so their invariants

are maintained even in the presence of interference from
interleaved threads. Thus the second sort of instrumentation
in C′ passes the claim c as ghost parameter to each function
and procedure call in C, in accord with their contracts in
RPCshim.h. We also add an assertion before each function
and procedure call. (Though in fact these assertions are not
needed for VCC to verify the example attack.) Let us say
“pointer variable” for the variables declared in D with pointer
type. Preceding each procedure call f(y) and function call
x = f(y) in C′ we can assert a conjunction of the form
wrapped(x0)&& . . . &&wrapped(xj) where x0, . . . , xj are the
pointer variables that have been assigned up to this point.
(We gloss over memory safety assertions needed for strings.)
By induction on the length of C, we argue that each of
these assertions holds, and moreover the type invariants are
maintained. An assignment, say x = f(y, z, w);, satisfies the
preconditions of f owing to the added claim, the requirement
that y, z, w were previously assigned, and the assertion that
y, z, w are all wrapped. By inspection of the contracts for
each f in RPCshim.h (e.g., att hmacsha1() given above), that
is all that is needed. The postcondition of f ensures that
results are wrapped, so in particular x is wrapped at the
next assertion (and the claim maintained).

Running VCC on RPCattack 0.c not only served to check
the init () code used in the proof but also as a sanity check
on this Lemma.

Theorem 1: Assume ∅ ` crypto.c  crypto.h. For any
attack program M.c against the interface erase(RPCshim.h),
the program System + RPCshim.c +M.c is safe.

Proof: We have verified with VCC that:
crypto.h ` (RPChybrids.c+RPCprot.c+RPCshim.c) RPCshim.h
By assumption ∅ ` crypto.c crypto.h and Lemma 1 we get
` (crypto.c+RPChybrids.c+RPCprot.c+RPCshim.c) RPCshim.h
i.e., we have ∅ ` (System + RPCshim.c)  RPCshim.h by
definition of System. By Lemma 2, since M.c is an attack
program for erase(RPCshim.h), we get RPCshim.h ` M.c 
main.h and thus by Lemma 1 we get: ∅ ` (System +
RPCshim.c + M.c)  main.h. So by Assumption 1 the
program System + RPCshim.c +M.c is safe.

Informal corollary: For all applications A verified against
RPCprot.h and the rest of the API (excluding RPCshim.h),
A+RPCprot.c+RPChybrids.c+crypto.c is safe in the presence
of any active network attacker (under the symbolic model
of cryptography). The software stack shown in Section I-C
is executable but its real purpose is to show security for a
different software stack, without RPCshim.c and RPCattack 0.c
but with additional application code that is verified to be
memory safe and conform to the protocol API RPCprot.h.

VIII. SUMMARY OF EMPIRICAL RESULTS

In this section, we summarize our experimental results on
implementations of RPC and the variant of the Otway-Rees
protocol presented by Abadi and Needham [1].



A. Results

We prove authentication properties of the implementations
using non-injective correspondences, expressed as assertions
on a log of events, by relying on weak secrecy properties,
which we prove formally as invariants of the log. The
attacker controls the network, can instantiate an unbounded
number of principals, and can run unbounded instances of
each protocol role —but can never cause a correspondence
assertion to fail and can never break the secrecy invariants,
unless the Dolev-Yao assumption (no collisions or lucky
guesses) has already been violated In particular, we prove
the following properties about our sample protocol imple-
mentations.

1) RPC: Our implementation of RPC does not let the
server reply to unwanted requests, and does not let the client
accept a reply that is not related to a previously sent request.
Moreover, their shared key remains secret unless either the
client or the server is compromised by the attacker.

2) Otway-Rees: The initiator and responder only accept
replies from the trusted server that contain a freshly gener-
ated key for their specific usage, and this key remains secret
unless either the initiator or the responder is compromised.

As both a side-effect and a requirement to use a general
purpose verifier, we also prove memory safety properties
of our implementations. This can significantly slow ver-
ification, especially in parts of the code that handle the
building of messages by catenation, and is a large part of
the annotation burden.

B. Performance

The following table shows verification times, as well
as lines of code (LoC) and lines of annotation (LoA)
estimations for various implementation files. Times are given
as over-approximations of the verification time in minutes
(on a mid-end laptop). The number of lines of annotation
includes the function contracts, but not earlier definitions.
For example, when verifying a function in hybrids.c, all
definitions from symcrypt.h can be used but are not counted
towards the total. The shim and sample attack programs are
verified, as part of the proof of the Theorem, but they are
not part of the protocol verification and so are omitted here.

File/Function LoC LoA Time (mins)
symcrypt.h - 50 ≤ 1
table .h - 50 ≤ 1
RPCdefs.h - 250 ≤ 1
ORdefs.h - 250 ≤ 1

hybrids.c 150 300 ≤ 5
destruct () 20 40 ≤ 5
hmacsha1() 20 20 ≤ 1

RPCprot.c 130 80 ≤ 15
client () 40 20 ≤ 5
server() 40 10 ≤ 10

ORprot.c 300 100 ∼ 100
initiator () 40 15 ≤ 5

responder() 100 100 ∼ 60
server() 40 15 ∼ 30

These two case studies confirm previous observations
on the annotation burden that comes with general purpose
verifiers (and VCC in particular), in “order of one line of
annotation per line of code” [19], which was also similar in
the F7 implementation of the RPC protocol [12], where the
trusted libraries correspond to our hybrid wrappers. For the
RPC protocol, our verification times are a lot higher than
those of F7 (which were all under 30 seconds), because
VCC verifies the program’s memory safety simultaneously,
whereas F7 relies on F#’s underlying type system and
memory structure to do so.

In order to focus on verifying security properties, we sim-
plified several aspects of the implementation that were not
relevant to symbolic security and usually require extensive
annotations: details of network operations are ignored by the
verifier (in particular, each principal is only given one single
channel to the attacker), and memory is not freed after use.

IX. RELATED WORK ON PROTOCOL CODE

We discussed the closely related tools Csur and ASPIER
for C and some tools for F# in Section I. We discuss other
work on verifying executable code of security protocols.

Pistachio [41] verifies compliance of a C code with a
rule-based specification of the communication steps of a
protocol. It proves conformance rather than specific security
properties. DYC [33] is a C API for symbolic cryptographic
protocol messages which can be used to generate executable
protocol implementations, and also to generate constraints
which can be fed to a constraint solver to search for attacks.
Code is checked by model-checking a finite state space
rather than being fully verified.

In this paper, we present how a high-level security model
can be expressed as part of a C program. Conversely, one
can extract a high-level model of the implemented protocol.
Symbolic execution of C code is a promising technique for
this purpose. Corin and Manzano [21] extend the KLEE
symbolic execution engine to represent the outcome of
cryptographic algorithms symbolically, but do not consider
protocol code. Other recent work [2] extracts verifiable
ProVerif models by symbolic execution of C protocol code,
on code similar to that of this paper.

There are approaches for verifying implementations of
security protocols in other languages. Jürjens [34] describes
a specialist tool to transform a Java program’s control-flow
graph to a Dolev-Yao formalization in FOL which is verified
for security properties with automated theorem provers such
as SPASS. O’Shea [40] translates Java implementations
into formal models to the LySa process calculus so as
to perform a security verification. The VerifiCard project
uses the ESC/Java2 static verifier to check conformance of
JavaCard applications to protocol models (e.g., [31]).

Work on RCF, the concurrent lambda calculus underpin-
ning F7, is directly related. [5] provides conditions under



which symbolic security of programs in RCF using cryp-
tographic idealizations implies computational security using
cryptographic algorithms. [4] enhances RCF with union and
intersection types for the verification of the source code of
cryptographic-protocol implementations in F#.

X. CONCLUSION

We describe a method for guiding a general-purpose C
verifier to prove both memory safety and authentication
and weak secrecy properties of security protocols and their
implementations. Still, our use of VCC leaves clear room
for improvement in terms of reducing verification times
and numbers of user-supplied annotations. Our strategy of
building on a general-purpose C verifier aims to benefit
from economies of scale, and in particular to benefit from
future improvements in C verification in general. This paper
establishes a workable method and a baseline. We encourage
verification specialists to take up the challenge.

We plan, for example, to investigate whether we can im-
prove performance by adopting cryptographic invariants in
the style of TAPS [17]. Our use of separately-proved secrecy
invariants resembles the first-order approach followed in
TAPS. We are aware of unpublished work by Cohen on
adapting this approach to use with VCC. The TAPS style
relies less on axioms, which may or may not place more
strain on the first-order prover.

Some of our security annotations can be re-used. In
particular, the hybrid wrappers and their contracts need only
be written once per cryptographic library, and can be used to
verify multiple protocol implementations, as we have done
for RPC and Otway-Rees. The representation table is also
entirely re-usable. Moreover, we believe that some of the
annotations (for example, the log and inductive predicate
definitions) may be automatically generated from a high-
level description of the protocol.

In future work we intend to adapt our foundations to
obtain provably computationally sound results with VCC.
We have designed our contracts to correspond to crypto-
graphic assumptions; for example, encryptions give only
confidentiality and MACs give only integrity. The table
structure and hybrid wrappers introduced in Section IV
resemble some standard methods for computational sound-
ness, such as the the dual interpretation of the interface in
BPW [6], or the hybrid wrappers used in [27]. We may also
try more direct methods to obtain computational security
results, for example by using the idealized interface from
[27] and assuming a computationally sound implementation
(or linking the C code against the F# implementation), or
by extending the verifier with probabilistic semantics for C,
similar to the probabilistic semantics given to the PWHILE
language in CertiCrypt [8].

Verification of symbolic security properties remains rel-
evant, even without a computational soundness result, as
recent attacks on prominent protocols and implementations

could have been found by symbolic protocol verification.
Moreover, some standard features of security protocols (such
as sending encrypted keys over the network) are hard to
prove secure in the computational model, but may be studied
in symbolic models.

For highest assurance, the underlying libraries (crypto.c)
would be verified, as would any application code using the
protocol library. Moreover, the C verifier would be proved
sound with respect to a semantics for which the compiler is
proved to be correct (as in the Verified Software Toolchain
[3] built on the C semantics of CompCert [35]).

Acknowledgements: Discussions with Misha Aizatulin,
Karthik Bhargavan, Josh Berdine, Ernie Cohen, Cédric Four-
net, Bashar Nuseibeh, and Thomas Santen were useful.
Mark Hillebrand and Michał Moskal helped with VCC
methodology, and Stephan Tobies helped with understanding
VCC internals. Naumann acknowledges partial support from
Microsoft and NSF awards CRI-0708330, CCF-0915611.

REFERENCES

[1] M. Abadi and R. M. Needham, “Prudent engineering practice
for cryptographic protocols,” IEEE Trans. Software Eng.,
vol. 22, no. 1, pp. 6–15, 1996.

[2] M. Aizatulin, A. D. Gordon, and J. Jürjens, “Extracting
and verifying cryptographic models from C protocol
code by symbolic execution,” 2011, unpublished draft.
[Online]. Available: http://users.mct.open.ac.uk/ma4962/files/
paper-full.pdf

[3] A. W. Appel, “Verified software toolchain,” in ESOP, ser.
LNCS, vol. 6602, 2011, pp. 1–17.

[4] M. Backes, C. Hriţcu, and M. Maffei, “Union and intersection
types for secure protocol implementations,” in TOSCA, 2011.

[5] M. Backes, M. Maffei, and D. Unruh, “Computationally
sound verification of source code,” in ACM CCS, 2010, pp.
387–398.

[6] M. Backes, B. Pfitzmann, and M. Waidner, “A composable
cryptographic library with nested operations,” in ACM CCS,
2003, pp. 220–230.

[7] M. Barnett, B.-Y. E. Chang, R. DeLine, B. Jacobs, and
K. R. M. Leino, “Boogie: A modular reusable verifier for
object-oriented programs,” in FMCO, ser. LNCS, vol. 4111,
2005, pp. 364–387.

[8] G. Barthe, B. Grégoire, and S. Z. Béguelin, “Formal certifi-
cation of code-based cryptographic proofs,” in POPL, 2009,
pp. 90–101.

[9] J. Bengtson, K. Bhargavan, C. Fournet, A. D. Gordon, and
S. Maffeis, “Refinement types for secure implementations,”
ACM TOPLAS, vol. 33, no. 2, p. 8, 2011.

[10] K. Bhargavan, C. Fournet, A. D. Gordon, and S. Tse, “Verified
interoperable implementations of security protocols,” ACM
TOPLAS, vol. 31, pp. 5:1–5:61, December 2008.

http://users.mct.open.ac.uk/ma4962/files/paper-full.pdf
http://users.mct.open.ac.uk/ma4962/files/paper-full.pdf


[11] K. Bhargavan, C. Fournet, R. Corin, and E. Zalinescu, “Cryp-
tographically verified implementations for tls,” in ACM CCS,
2008, pp. 459–468.

[12] K. Bhargavan, C. Fournet, and A. D. Gordon, “Modular
verification of security protocol code by typing,” in POPL,
2010, pp. 445–456.

[13] B. Blanchet, “An efficient cryptographic protocol verifier
based on prolog rules,” in CSFW, 2001, pp. 82–96.

[14] ——, “A computationally sound mechanized prover for secu-
rity protocols,” in IEEE Symposium on Security and Privacy,
2006, pp. 140–154.

[15] I. Cervesato, A. D. Jaggard, A. Scedrov, J.-K. Tsay, and
C. Walstad, “Breaking and fixing public-key Kerberos,” in
ASIAN, ser. LNCS, vol. 4435, 2006, pp. 167–181.

[16] S. Chaki and A. Datta, “ASPIER: an automated framework
for verifying security protocol implementations,” CyLab,
Carnegie Mellon University, Technical CMU-CyLab-08-012,
2008.

[17] E. Cohen, “First-order verification of cryptographic proto-
cols,” Journal of Computer Security, vol. 11, no. 2, pp. 189–
216, 2003.

[18] E. Cohen, M. Dahlweid, M. A. Hillebrand, D. Leinenbach,
M. Moskal, T. Santen, W. Schulte, and S. Tobies, “VCC: A
practical system for verifying concurrent C,” in TPHOLs, ser.
LNCS, vol. 5674, 2009, pp. 23–42.

[19] E. Cohen, M. Moskal, W. Schulte, and S. Tobies, “Local
verification of global invariants in concurrent programs,” in
CAV, ser. LNCS, vol. 6174, 2010, pp. 480–494.

[20] E. Cohen and B. Schirmer, “From total store order to sequen-
tial consistency: A practical reduction theorem,” in Interactive
Theorem Proving, ser. LNCS, vol. 6172, 2010, pp. 403–418.

[21] R. Corin and F. A. Manzano, “Efficient symbolic execution
for analysing cryptographic protocol implementations,” in
ESSoS, ser. LNCS, vol. 6542, 2011, pp. 58–72.

[22] L. Correnson, P. Cuoq, A. Puccetti, and J. Signoles,
Frama-C User Manual. [Online]. Available: http://frama-c.
com/download/frama-c-user-manual.pdf

[23] L. M. de Moura and N. Bjørner, “Z3: An efficient SMT
solver,” in TACAS, ser. LNCS, vol. 4963, 2008, pp. 337–340.

[24] D. Dolev and A. C.-C. Yao, “On the security of public
key protocols,” IEEE Transactions on Information Theory,
vol. 29, no. 2, pp. 198–207, 1983.

[25] F. Dupressoir, A. Gordon, and J. Jürjens, “Verifying authen-
tication properties of C security protocol code using general
verifiers,” in Workshop on Analysis of Security APIs (ASA-4
- FLOC 2010), 2010, presentations only.

[26] F. Dupressoir, A. Gordon, J. Jürjens, and D. Naumann,
“Guiding a general-purpose C verifier to prove cryptographic
protocols,” Tech. Rep. MSR–TR–2011–50, 2011.

[27] C. Fournet, “Cryptographic soundness for program verifica-
tion by typing,” 2011, unpublished draft.

[28] “Crypto-verifying protocol implementations in ML,” project
website at http://msr-inria.inria.fr/projects/sec/fs2cv/.

[29] A. D. Gordon, “Provable implementations of security proto-
cols,” in 21th IEEE Symposium on Logic in Computer Science
(LICS 2006), 2006, pp. 345–346.

[30] J. Goubault-Larrecq and F. Parrennes, “Cryptographic proto-
col analysis on real c code,” in VMCAI, ser. LNCS, vol. 3385,
2005, pp. 363–379.

[31] E. Hubbers, M. Oostdijk, and E. Poll, “Implementing a
formally verifiable security protocol in Java Card,” in Security
in Pervasive Computing, ser. LNCS, vol. 2802, 2004, pp. 213–
226.

[32] B. Jacobs and F. Piessens, “The VeriFast program verifier,”
Katholieke Universiteit Leuven, Report CS 520, Aug. 2008.

[33] A. S. A. Jeffrey and R. Ley-Wild, “Dynamic model check-
ing of C cryptographic protocol implementations,” in FCS-
ARSPA, 2006.

[34] J. Jürjens, “Security analysis of crypto-based java programs
using automated theorem provers,” in ASE, 2006, pp. 167–
176.

[35] X. Leroy, “Formal certification of a compiler back-end or:
programming a compiler with a proof assistant,” in POPL,
2006, pp. 42–54.

[36] S. J. Murdoch, S. Drimer, R. J. Anderson, and M. Bond,
“Chip and PIN is broken,” in IEEE Symposium on Security
and Privacy, 2010, pp. 433–446.

[37] R. M. Needham and M. D. Schroeder, “Using encryption
for authentication in large networks of computers,” Commun.
ACM, vol. 21, no. 12, pp. 993–999, 1978.

[38] oCERT, “oCERT advisory #2008-16 multiple OpenSSL
signature verification API misuse,” 2009. [Online]. Available:
http://www.ocert.org/advisories/ocert-2008-016.html

[39] Offspark, “Polarssl,” 2008. [Online]. Available: http://
polarssl.org

[40] N. O’Shea, “Using Elyjah to analyse Java implementations
of cryptographic protocols,” in FCS-ARSPA-WITS, 2008, pp.
211–223.

[41] O. Udrea, C. Lumezanu, and J. S. Foster, “Rule-based static
analysis of network protocol implementations,” USENIX Se-
curity Symposium, pp. 193–208, 2006.

http://frama-c.com/download/frama-c-user-manual.pdf
http://frama-c.com/download/frama-c-user-manual.pdf
http://msr-inria.inria.fr/projects/sec/fs2cv/
http://www.ocert.org/advisories/ocert-2008-016.html
http://polarssl.org
http://polarssl.org

	Introduction
	Outline of our Techniques
	Language-independent definitional theory
	Theory imported as first-order axioms
	A ghost table relates bytestrings and symbolic terms
	Protocol roles described as ordinary C code
	Attacker model expressed using C interface
	Security theorems obtained by running a general-purpose verifier

	Contributions of the Paper
	Structure of the Paper

	Background on the VCC Verifier
	Symbolic Cryptography in VCC
	Term Algebra
	Events and Log
	Inductive Predicates for Cryptography

	Representation Table and Hybrid Wrappers
	The Representation Table
	The Hybrid Wrappers

	Assumptions Concerning the C Verifier
	Attack Programs
	An Example Security Theorem
	Summary of Empirical Results
	Results
	RPC
	Otway-Rees

	Performance

	Related Work on Protocol Code
	Conclusion
	References

