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Abstract

We study the question of identity testing for structured distributions. More precisely, given
samples from a structured distribution q over [n] and an explicit distribution p over [n], we wish
to distinguish whether q = p versus q is at least ε-far from p, in L1 distance. In this work,
we present a unified approach that yields new, simple testers, with sample complexity that is
information-theoretically optimal, for broad classes of structured distributions, including t-flat
distributions, t-modal distributions, log-concave distributions, monotone hazard rate (MHR)
distributions, and mixtures thereof.

1 Introduction

How many samples do we need to verify the identity of a distribution? This is arguably the single
most fundamental question in statistical hypothesis testing [NP33], with Pearson’s chi-squared
test [Pea00] (and variants thereof) still being the method of choice used in practice. This question
has also been extensively studied by the TCS community in the framework of property testing [RS96,
GGR98]: Given sample access to an unknown distribution q over a finite domain [n] := {1, . . . , n},
an explicit distribution p over [n], and a parameter ε > 0, we want to distinguish between the cases
that q and p are identical versus ε-far from each other in L1 norm (statistical distance). Previous
work on this problem focused on characterizing the sample size needed to test the identity of an
arbitrary distribution of a given support size. After more than a decade of study, this “worst-
case” regime is well-understood: there exists a computationally efficient estimator with sample
complexity O(

√
n/ε2) [VV14] and a matching information-theoretic lower bound [Pan08].

While it is certainly a significant improvement over naive approaches and is tight in general,
the bound of Θ(

√
n) is still impractical, if the support size n is very large. We emphasize that

the aforementioned sample complexity characterizes worst-case instances, and one might hope that
drastically better results can be obtained for most natural settings. In contrast to this setting, in
which we assume nothing about the structure of the unknown distribution q, in many cases we
know a priori that the distribution q in question has some “nice structure”. For example, we may
have some qualitative information about the density q, e.g., it may be a mixture of a small number
of log-concave distributions, or a multi-modal distribution with a bounded number of modes. The
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following question naturally arises: Can we exploit the underlying structure in order to perform the
desired statistical estimation task more efficiently?

One would optimistically hope for the answer to the above question to be “YES.” While this has
been confirmed in several cases for the problem of learning (see e.g., [DDS12a, DDS12b, DDO+13,
CDSS14]), relatively little work has been done for testing properties of structured distributions. In
this paper, we show that this is indeed the case for the aforementioned problem of identity testing
for a broad spectrum of natural and well-studied distribution classes. To describe our results in
more detail, we will need some terminology.

Let C be a class of distributions over [n]. The problem of identity testing for C is the following:
Given sample access to an unknown distribution q ∈ C, and an explicit distribution p ∈ C1, we
want to distinguish between the case that q = p versus ‖q − p‖1 ≥ ε. We emphasize that the
sample complexity of this testing problem depends on the underlying class C, and we believe it is
of fundamental interest to obtain efficient algorithms that are sample optimal for C. One approach
to solve this problem is to learn q up to L1 distance ε/2 and check that the hypothesis is ε/2-close
to p. Thus, the sample complexity of identity testing for C is bounded from above by the sample
complexity of learning (an arbitrary distribution in) C. It is natural to ask whether a better sample
size bound could be achieved for the identity testing problem, since this task is, in some sense, less
demanding than the task of learning.

In this work, we provide a comprehensive picture of the sample and computational complexities
of identity testing for a broad class of structured distributions. More specifically, we propose
a unified framework that yields new, simple, and provably optimal identity testers for various
structured classes C; see Table 1 for an indicative list of distribution classes to which our framework
applies. Our approach relies on a single unified algorithm that we design, which yields highly efficient
identity testers for many shape restricted classes of distributions.

As an interesting byproduct, we establish that, for various structured classes C, identity testing
for C is provably easier than learning. In particular, the sample bounds in the third column of
Table 1 from [CDSS14] also apply for learning the corresponding class C, and are known to be
information-theoretically optimal for the learning problem.

Our main result (see Theorem 1 and Proposition 2 in Section 2) can be phrased, roughly, as
follows: Let C be a class of univariate distributions such that any pair of distributions p, q ∈ C
have “essentially” at most k crossings, that is, points of the domain where q − p changes its sign.
Then, the identity problem for C can be solved with O(

√
k/ε2) samples. Moreover, this bound is

information-theoretically optimal.
By the term “essentially” we mean that a constant fraction of the contribution to ‖q − p‖1 is

due to a set of k crossings – the actual number of crossings can be arbitrary. For example, if C
is the class of t-piecewise constant distributions, it is clear that any two distributions in C have
O(t) crossings, which gives us the first line of Table 1. As a more interesting example, consider
the class C of log-concave distributions over [n]. While the number of crossings between p, q ∈ C
can be Ω(n), it can be shown (see Lemma 17 in [CDSS14]) that the essential number of crossings
is k = Õ(1/

√
ε), which gives us the third line of the table. More generally, we obtain asymptotic

improvements over the standard O(
√
n/ε2) bound for any class C such that the essential number

of crossings is k = o(n). This condition applies for any class C that can be well-approximated in
L1 distance by piecewise low-degree polynomials (see Corollary 3 for a precise statement).

1.1 Related and Prior Work

In this subsection we review the related literature and compare our results with previous work.

1It is no loss of generality to assume that p ∈ C; otherwise the tester can output “NO” without drawing samples.
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Class of Distributions over [n] Our upper bound Previous work

t-piecewise constant O(
√
t/ε2) O(t/ε2) [CDSS14]

t-piecewise degree-d polynomial O
(√

t(d+ 1)/ε2
)

O
(
t(d+ 1)/ε2

)
[CDSS14]

log-concave Õ(1/ε9/4) Õ(1/ε5/2) [CDSS14]

k-mixture of log-concave
√
k · Õ(1/ε9/4) Õ(k/ε5/2) [CDSS14]

t-modal O(
√
t log(n)/ε5/2) O

(√
t log(n)/ε3 + t2/ε4

)
[DDS+13]

k-mixture of t-modal O(
√
kt log(n)/ε5/2) O

(√
kt log(n)/ε3 + k2t2/ε4

)
[DDS+13]

monotone hazard rate (MHR) O(
√

log(n/ε)/ε5/2) O(log(n/ε)/ε3) [CDSS14]

k-mixture of MHR O(
√
k log(n/ε)/ε5/2) O(k log(n/ε)/ε3) [CDSS14]

Table 1: Algorithmic results for identity testing of various classes of probability distributions. The
second column indicates the sample complexity of our general algorithm applied to the class under
consideration. The third column indicates the sample complexity of the best previously known
algorithm for the same problem.

Distribution Property Testing The area of distribution property testing, initiated in the TCS
community by the work of Batu et al. [BFR+00, BFR+13], has developed into a very active research
area with intimate connections to information theory, learning and statistics. The paradigmatic
algorithmic problem in this area is the following: given sample access to an unknown distribution q
over an n-element set, we want to determine whether q has some property or is “far” (in statistical
distance or, equivalently, L1 norm) from any distribution having the property. The overarching goal
is to obtain a computationally efficient algorithm that uses as few samples as possible – certainly
asymptotically fewer than the support size n, and ideally much less than that. See [GR00, BFR+00,
BFF+01, Bat01, BDKR02, BKR04, Pan08, Val11, VV11, DDS+13, ADJ+11, LRR11, ILR12] for a
sample of works and [Rub12] for a survey.

One of the first problems studied in this line of work is that of “identity testing against a known
distribution”: Given samples from an unknown distribution q and an explicitly given distribution
p distinguish between the case that q = p versus the case that q is ε-far from p in L1 norm.
The problem of uniformity testing – the special case of identity testing when p is the uniform
distribution – was first considered by Goldreich and Ron [GR00] who, motivated by a connection
to testing expansion in graphs, obtained a uniformity tester using O(

√
n/ε4) samples. Subsequently,

Paninski gave the tight bound of Θ(
√
n/ε2) [Pan08] for this problem. Batu et al. [BFF+01] obtained

an identity testing algorithm against an arbitrary explicit distribution with sample complexity
Õ(
√
n/ε4). The tight bound of Θ(

√
n/ε2) for the general identity testing problem was given only

recently in [VV14].

Shape Restricted Statistical Estimation The area of inference under shape constraints – that
is, inference about a probability distribution under the constraint that its probability density func-
tion (pdf) satisfies certain qualitative properties – is a classical topic in statistics starting with the
pioneering work of Grenander [Gre56] on monotone distributions (see [BBBB72] for an early book
on the topic). Various structural restrictions have been studied in the statistics literature, start-
ing from monotonicity, unimodality, and concavity [Gre56, Bru58, Rao69, Weg70, HP76, Gro85,
Bir87a, Bir87b, Fou97, CT04, JW09], and more recently focusing on structural restrictions such as
log-concavity and k-monotonicity [BW07, DR09, BRW09, GW09, BW10, KM10].

Shape restricted inference is well-motivated in its own right, and has seen a recent surge of
research activity in the statistics community, in part due to the ubiquity of structured distributions
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in the natural sciences. Such structural constraints on the underlying distributions are sometimes
direct consequences of the studied application problem (see e.g., Hampel [Ham87], or Wang et
al. [WWW+05]), or they are a plausible explanation of the model under investigation (see e.g.,
[Reb05] and references therein for applications to economics and reliability theory). We also point
the reader to the recent survey [Wal09] highlighting the importance of log-concavity in statistical
inference. The hope is that, under such structural constraints, the quality of the resulting estimators
may dramatically improve, both in terms of sample size and in terms of computational efficiency.

We remark that the statistics literature on the topic has focused primarily on the problem of
density estimation or learning an unknown structured distribution. That is, given samples from a
distribution q promised to belong to some distribution class C, we would like to output a hypothesis
distribution that is a good approximation to q. In recent years, there has been a flurry of results in
the TCS community on learning structured distributions, with a focus on both sample complexity
and computational complexity, see [KMR+94, FOS05, BS10, KMV10, MV10, DDS12a, DDS12b,
CDSS13, DDO+13, CDSS14] for some representative works.

Comparison with Prior Work In recent work, Chan, Diakonikolas, Servedio, and Sun [CDSS14]
proposed a general approach to learn univariate probability distributions that are well approximated
by piecewise polynomials. [CDSS14] obtained a computationally efficient and sample near-optimal
algorithm to agnostically learn piecewise polynomial distributions, thus obtaining efficient estima-
tors for various classes of structured distributions. For many of the classes C considered in Table 1
the best previously known sample complexity for the identity testing problem for C is identified
with the sample complexity of the corresponding learning problem from [CDSS14]. We remark
that the results of this paper apply to all classes C considered in [CDSS14], and are in fact more
general as our condition (any p, q ∈ C have a bounded number of “essential” crossings) subsumes
the piecewise polynomial condition (see discussion before Corollary 3 in Section 2). At the technical
level, in contrast to the learning algorithm of [CDSS14], which relies on a combination of linear
programming and dynamic programming, our identity tester is simple and combinatorial.

In the context of property testing, Batu, Kumar, and Rubinfeld [BKR04] gave algorithms for
the problem of identity testing of unimodal distributions with sample complexity O(log3 n). More
recently, Daskalakis, Diakonikolas, Servedio, Valiant, and Valiant [DDS+13] generalized this result
to t-modal distributions obtaining an identity tester with sample complexity O(

√
t log(n)/ε3 +

t2/ε4). We remark that for the class of t-modal distributions our approach yields an identity tester
with sample complexity O(

√
t log(n)/ε5/2), matching the lower bound of [DDS+13]. Moreover, our

work yields sample optimal identity testing algorithms not only for t-modal distributions, but for
a broad spectrum of structured distributions via a unified approach.

It should be emphasized that the main ideas underlying this paper are very different from
those of [DDS+13]. The algorithm of [DDS+13] is based on the fact from [Bir87a] that any
t-modal distribution is ε-close in L1 norm to a piecewise constant distribution with k = O(t ·
log(n)/ε) intervals. Hence, if the location and the width of these k “flat” intervals were known in
advance, the problem would be easy: The algorithm could just test identity between the “reduced”
distributions supported on these k intervals, thus obtaining the optimal sample complexity of
O(
√
k/ε2) = O(

√
t log(n)/ε5/2). To circumvent the problem that this decomposition is not known

a priori, [DDS+13] start by drawing samples from the unknown distribution q to construct such
a decomposition. There are two caveats with this strategy: First, the number of samples used to
achieve this is Ω(t2) and the number of intervals of the constructed decomposition is significantly
larger than k, namely k′ = Ω(k/ε). As a consequence, the sample complexity of identity testing for
the reduced distributions on support k′ is Ω(

√
k′/ε2) = Ω(

√
t log(n)/ε3).

In conclusion, the approach of [DDS+13] involves constructing an adaptive interval decomposi-
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tion of the domain followed by a single application of an identity tester to the reduced distributions
over those intervals. At a high-level our novel approach works as follows: We consider several obliv-
ious interval decompositions of the domain (i.e., without drawing any samples from q) and apply
a “reduced” identity tester for each such decomposition. While it may seem surprising that such
an approach can be optimal, our algorithm and its analysis exploit a certain strong property of
uniformity testers, namely their performance guarantee with respect to the L2 norm. See Section 2
for a detailed explanation of our techniques.

Finally, we comment on the relation of this work to the recent paper [VV14]. In [VV14],
Valiant and Valiant study the sample complexity of the identity testing problem as a function of
the explicit distribution. In particular, [VV14] makes no assumptions about the structure of the
unknown distribution q, and characterizes the sample complexity of the identity testing problem as
a function of the known distribution p. The current work provides a unified framework to exploit
structural properties of the unknown distribution q, and yields sample optimal identity testers for
various shape restrictions. Hence, the results of this paper are orthogonal to the results of [VV14].

2 Our Results and Techniques

2.1 Basic Definitions

We start with some notation that will be used throughout this paper. We consider discrete
probability distributions over [n] := {1, . . . , n}, which are given by probability density functions
p : [n] → [0, 1] such that

∑n
i=1 pi = 1, where pi is the probability of element i in distribution p.

By abuse of notation, we will sometimes use p to denote the distribution with density function pi.
We emphasize that we view the domain [n] as an ordered set. Throughout this paper we will be
interested in structured distribution families that respect this ordering.

The L1 (resp. L2) norm of a distribution is identified with the L1 (resp. L2) norm of the

corresponding density function, i.e., ‖p‖1 =
∑n

i=1 |pi| and ‖p‖2 =
√∑n

i=1 p
2
i . The L1 (resp. L2)

distance between distributions p and q is defined as the L1 (resp. L2) norm of the vector of their
difference, i.e., ‖p − q‖1 =

∑n
i=1 |pi − qi| and ‖p − q‖2 =

√∑n
i=1(pi − qi)2. We will denote by Un

the uniform distribution over [n].

Interval partitions and Ak-distance Fix a partition of [n] into disjoint intervals I := (Ii)
`
i=1.

For such a collection I we will denote its cardinality by |I|, i.e., |I| = `. For an interval J ⊆ [n],
we denote by |J | its cardinality or length, i.e., if J = [a, b], with a ≤ b ∈ [n], then |J | = b− a+ 1.
The reduced distribution pIr corresponding to p and I is the distribution over [`] that assigns the
ith “point” the mass that p assigns to the interval Ii; i.e., for i ∈ [`], pIr (i) = p(Ii).

We now define a distance metric between distributions that will be crucial for this paper. Let
Jk be the collection of all partitions of [n] into k intervals, i.e., I ∈ Jk if and only if I = (Ii)

k
i=1 is

a partition of [n] into intervals I1, . . . , Ik. For p, q : [n] → [0, 1] and k ∈ Z+, 2 ≤ k ≤ n, we define
the Ak-distance between p and q by

‖p− q‖Ak

def
= max
I=(Ii)ki=1∈Jk

k∑
i=1

|p(Ii)− q(Ii)| = max
I∈Jk

‖pIr − qIr ‖1.

We remark that the Ak-distance between distributions2 is well-studied in probability theory and
statistics. Note that for any pair of distributions p, q : [n]→ [0, 1], and any k ∈ Z+ with 2 ≤ k ≤ n,

2We note that the definition of Ak-distance in this work is slightly different than [DL01, CDSS14], but is easily
seen to be essentially equivalent. In particular, [CDSS14] considers the quantity maxS∈Sk |p(S) − q(S)|, where Sk
is the collection of all unions of at most k intervals in [n]. It is a simple exercise to verify that ‖p − q‖Ak ≤
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we have that ‖p − q‖Ak
≤ ‖p − q‖1, and the two metrics are identical for k = n. Also note that

‖p − q‖A2 = 2 · dK(p, q), where dK is the Kolmogorov metric (i.e., the L∞ distance between the
CDF’s).

Discussion The well-known Vapnik-Chervonenkis (VC) inequality (see e.g., [DL01, p.31]) provides
the information-theoretically optimal sample size to learn an arbitrary distribution q over [n] in
this metric. In particular, it implies that m = Ω(k/ε2) iid draws from q suffice in order to learn q
within Ak-distance ε (with probability at least 9/10). This fact has recently proved useful in the
context of learning structured distributions: By exploiting this fact, Chan, Diakonikolas, Servedio,
and Sun [CDSS14] recently obtained computationally efficient and near-sample optimal algorithms
for learning various classes of structured distributions with respect to the L1 distance.

It is thus natural to ask the following question: What is the sample complexity of testing prop-
erties of distributions with respect to the Ak-distance? Can we use property testing algorithms in
this metric to obtain sample-optimal testing algorithms for interesting classes of structured distri-
butions with respect to the L1 distance? In this work we answer both questions in the affirmative
for the problem of identity testing.

2.2 Our Results

Our main result is an optimal algorithm for the identity testing problem under the Ak-distance
metric:

Theorem 1 (Main). Given ε > 0, an integer k with 2 ≤ k ≤ n, sample access to a distribution q
over [n], and an explicit distribution p over [n], there is a computationally efficient algorithm which
uses O(

√
k/ε2) samples from q, and with probability at least 2/3 distinguishes whether q = p versus

‖q − p‖Ak
≥ ε. Additionally, Ω(

√
k/ε2) samples are information-theoretically necessary.

The information-theoretic sample lower bound of Ω(
√
k/ε2) can be easily deduced from the

known lower bound of Ω(
√
n/ε2) for uniformity testing over [n] under the L1 norm [Pan08]. Indeed,

if the underlying distribution q over [n] is piecewise constant with k pieces, and p is the uniform
distribution over [n], we have ‖q − p‖Ak

= ‖q − p‖1. Hence, our Ak-uniformity testing problem in
this case is at least as hard as L1-uniformity testing over support of size k.

The proof of Theorem 1 proceeds in two stages: In the first stage, we reduce the Ak identity
testing problem toAk uniformity testing without incurring any loss in the sample complexity. In the
second stage, we use an optimal L2 uniformity tester as a black-box to obtain an O(

√
k/ε2) sample

algorithm for Ak uniformity testing. We remark that the L2 uniformity tester is not applied to the
distribution q directly, but to a sequence of reduced distributions qIr , for an appropriate collection
of interval partitions I. See Section 2.3 for a detailed intuitive explanation of the proof.

We remark that an application of Theorem 1 for k = n, yields a sample optimal L1 identity
tester (for an arbitrary distribution q), giving a new algorithm matching the recent tight upper
bound in [VV14]. Our new L1 identity tester is arguable simpler and more intuitive, as it only uses
an L2 uniformity tester in a black-box manner.

We show that Theorem 1 has a wide range of applications to the problem of L1 identity testing
for various classes of natural and well-studied structured distributions. At a high level, the main
message of this work is that the Ak distance can be used to characterize the sample complexity of
L1 identity testing for broad classes of structured distributions. The following simple proposition
underlies our approach:

2 ·maxS∈Sk |p(S)− q(S)|=‖p− q‖A2k+1 , which implies that the two definitions are equivalent up to constant factors
for the purpose of both upper and lower bounds.
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Proposition 2. For a distribution class C over [n] and ε > 0, let k = k(C, ε) be the smallest
integer such that for any f1, f2 ∈ C it holds that ‖f1− f2‖1 ≤ ‖f1− f2‖Ak

+ ε/2. Then there exists
an L1 identity testing algorithm for C using O(

√
k/ε2) samples.

The proof of the proposition is straightforward: Given sample access to q ∈ C and an explicit
description of p ∈ C, we apply the Ak-identity testing algorithm of Theorem 1 for the value of k
in the statement of the proposition, and error ε′ = ε/2. If q = p, the algorithm will output “YES”
with probability at least 2/3. If ‖q − p‖1 ≥ ε, then by the condition of Proposition 2 we have
that ‖q − p‖Ak

≥ ε′, and the algorithm will output “NO” with probability at least 2/3. Hence, as
long as the underlying distribution satisfies the condition of Proposition 2 for a value of k = o(n),
Theorem 1 yields an asymptotic improvement over the sample complexity of Θ(

√
n/ε2).

We remark that the value of k in the proposition is a natural complexity measure for the
difference between two probability density functions in the class C. It follows from the definition of
the Ak distance that this value corresponds to the number of “essential” crossings between f1 and
f2 – i.e., the number of crossings between the functions f1 and f2 that significantly affect their L1

distance. Intuitively, the number of essential crossings – as opposed to the domain size – is, in some
sense, the “right” parameter to characterize the sample complexity of L1 identity testing for C. As
we explain below, the upper bound implied by the above proposition is information-theoretically
optimal for a wide range of structured distribution classes C.

More specifically, our framework can be applied to all structured distribution classes C that can
be well-approximated in L1 distance by piecewise low-degree polynomials. We say that a distribution
p over [n] is t-piecewise degree-d if there exists a partition of [n] into t intervals such that p is a
(discrete) degree-d polynomial within each interval. Let Pt,d denote the class of all t-piecewise
degree-d distributions over [n]. We say that a distribution class C is ε-close in L1 to Pt,d if for any
f ∈ C there exists p ∈ Pt,d such that ‖f − p‖1 ≤ ε. It is easy to see that any pair of distributions
p, q ∈ Pt,d have at most 2t(d+1) crossings, which implies that ‖p−q‖Ak

= ‖p−q‖1, for k = 2t(d+1)
(see e.g., Proposition 6 in [CDSS14]). We therefore obtain the following:

Corollary 3. Let C be a distribution class over [n] and ε > 0. Consider parameters t = t(C, ε)
and d = d(C, ε) such that C is ε/4-close in L1 to Pt,d. Then there exists an L1 identity testing
algorithm for C using O(

√
t(d+ 1)/ε2) samples.

Note that any pair of values (t, d) satisfying the condition above suffices for the conclusion of the
corollary. Since our goal is to minimize the sample complexity, for a given class C, we would like to
apply the corollary for values t and d satisfying the above condition and are such that the product
t(d+ 1) is minimized. The appropriate choice of these values is crucial, and is based on properties
of the underlying distribution family. Observe that the sample bound of O(

√
t(d+ 1)/ε2) is tight

in general, as follows by selecting C = Pt,d. This can be deduced from the general lower bound of
Ω(
√
n/ε2) for uniformity testing, and the fact that for n = t(d+ 1), any distribution over support

[n] can be expressed as a t-piecewise degree-d distribution.
The concrete testing results of Table 1 are obtained from Corollary 3 by using known existential

approximation theorems [Bir87a, CDSS13, CDSS14] for the corresponding structured distribution
classes. In particular, we obtain efficient identity testers, in most cases with provably optimal sample
complexity, for all the structured distribution classes studied in [CDSS13, CDSS14] in the context
of learning. Perhaps surprisingly, our upper bounds are tight not only for the class of piecewise
polynomials, but also for the specific shape restricted classes of Table 1. The corresponding lower
bounds for specific classes are either known from previous work (as e.g., in the case of t-modal
distributions [DDS+13]) or can be obtained using standard constructions.

Finally, we remark that the results of this paper can be appropriately generalized to the setting
of testing the identity of continuous distributions over the real line. More specifically, Theorem 1
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also holds for probability distributions over R. (The only additional assumption required is that
the explicitly given continuous pdf p can be efficiently integrated up to any additive accuracy.) In
fact, the proof for the discrete setting extends almost verbatim to the continuous setting with minor
modifications. It is easy to see that both Proposition 2 and Corollary 3 hold for the continuous
setting as well.

2.3 Our Techniques

We now provide a detailed intuitive explanation of the ideas that lead to our main result, Theorem 1.
Given sample access to a distribution q and an explicit distribution p, we want to test whether
q = p versus ‖q − p‖Ak

≥ ε. By definition we have that ‖q − p‖Ak
= maxI ‖qIr − pIr ‖1. So, if

the “optimal” partition J ∗ = (J∗i )kj=1 maximizing this expression was known a priori, the problem

would be easy: Our algorithm could then consider the reduced distributions qJ
∗

r and pJ
∗

r , which
are supported on sets of size k, and call a standard L1-identity tester to decide whether qJ

∗
r = pJ

∗
r

versus ‖qJ ∗r − pJ
∗

r ‖1 ≥ ε. (Note that for any given partition I of [n] into intervals and any
distribution q, given sample access to q one can simulate sample access to the reduced distribution
qIr .) The difficulty, of course, is that the optimal k-partition is not fixed, as it depends on the
unknown distribution q, thus it is not available to the algorithm. Hence, a more refined approach
is necessary.

Our starting point is a new, simple reduction of the general problem of identity testing to its
special case of uniformity testing. The main idea of the reduction is to appropriately “stretch” the
domain size, using the explicit distribution p, in order to transform the identity testing problem
between q and p into a uniformity testing problem for a (different) distribution q′ (that depends on
q and p). To show correctness of this reduction we need to show that it preserves the Ak distance,
and that we can sample from q′ given samples from q.

We now proceed with the details. Since p is given explicitly in the input, we assume for
simplicity that each pi is a rational number, hence there exists some (potentially large) N ∈ Z+

such that pi = αi/N , where αi ∈ Z+ and
∑n

i=1 αi = N.3 Given sample access to q and an explicit
p over [n], we construct an instance of the uniformity testing problem as follows: Let p′ be the
uniform distribution over [N ] and let q′ be the distribution over [N ] obtained from q by subdividing
the probability mass of qi, i ∈ [n], equally among αi new consecutive points. It is clear that this
reduction preserves the Ak distance, i.e., ‖q − p‖Ak

= ‖q′ − p′‖Ak
. The only remaining task is to

show how to simulate sample access to q′, given samples from q. Given a sample i from q, our
sample for q′ is selected uniformly at random from the corresponding set of αi many new points.
Hence, we have reduced the problem of identity testing between q and p in Ak distance, to the
problem of uniformity testing of q′ in Ak distance. Note that this reduction is also computationally
efficient, as it only requires O(n) pre-computation to specify the new intervals.

For the rest of this section, we focus on the problem of Ak uniformity testing. For notational
convenience, we will use q to denote the unknown distribution and p to denote the uniform distri-
bution over [n]. The rough idea is to consider an appropriate collection of interval partitions of [n]
and call a standard L1-uniformity tester for each of these partitions. To make such an approach
work and give us a sample optimal algorithm for our Ak-uniformity testing problem we need to use
a subtle and strong property of uniformity testing, namely its performance guarantee under the L2

norm. We elaborate on this point below.

3We remark that this assumption is not necessary: For the case of irrational pi’s we can approximate them by
rational numbers p̃i up to sufficient accuracy and proceed with the approximate distribution p̃. This approximation
step does not preserve perfect completeness; however, we point out that our testers have some mild robustness in the
completeness case, which suffices for all the arguments to go through.

8



For any partition I of [n] into k intervals by definition we have that ‖qIr − pIr ‖1 ≤ ‖q − p‖Ak
.

Therefore, if q = p, we will also have qIr = pIr . The issue is that ‖qIr − pIr ‖1 can be much smaller
than ‖q − p‖Ak

; in fact, it is not difficult to construct examples where ‖q − p‖Ak
= Ω(1) and

‖qIr − pIr ‖1 = 0. In particular, it is possible for the points where q is larger than p, and where it
is smaller than p to cancel each other out within each interval in the partition, thus making the
partition useless for distinguishing q from p. In other words, if the partition I is not “good”, we
may not be able to detect any existing discrepancy. A simple, but suboptimal, way to circumvent
this issue is to consider a partition I ′ of [n] into k′ = Θ(k/ε) intervals of the same length. Note
that each such interval will have probability mass 1/k′ = Θ(ε/k) under the uniform distribution
p. If the constant in the big-Θ is appropriately selected, say k′ = 10k/ε, it is not hard to show
that ‖qI′r − pI

′
r ‖1 ≥ ‖q − p‖Ak

− ε/2; hence, we will necessarily detect a large discrepancy for
the reduced distribution. By applying the optimal L1 uniformity tester this approach will require
Ω(
√
k′/ε2) = Ω(

√
k/ε2.5) samples.

A key tool that is essential in our analysis is a strong property of uniformity testing. An
optimal L1 uniformity tester for q can distinguish between the uniform distribution and the case
that ‖q − p‖1 ≥ ε using O(

√
n/ε2) samples. However, a stronger guarantee is possible: With the

same sample size, we can distinguish the uniform distribution from the case that ‖q− p‖2 ≥ ε/
√
n.

We emphasize that such a strong L2 guarantee is specific to uniformity testing, and is provably not
possible for the general problem of identity testing. In previous work, Goldreich and Ron [GR00]
gave such an L2 guarantee for uniformity testing, but their algorithm uses O(

√
n/ε4) samples.

Paninski’s O(
√
n/ε2) uniformity tester works for the L1 norm, and it is not known whether it

achieves the desired L2 property. As one of our main tools we show the following L2 guarantee,
which is optimal as a function of n and ε:

Theorem 4. Given 0 < ε, δ < 1 and sample access to a distribution q over [n], there is an algorithm
Test-Uniformity-L2(q, n, ε, δ) which uses m = O

(
(
√
n/ε2) · log(1/δ)

)
samples from q, runs in time

linear in its sample size, and with probability at least 1 − δ distinguishes whether q = Un versus
‖p− q‖2 ≥ ε/

√
n.

To prove Theorem 4 we show that a variant of Pearson’s chi-squared test [Pea00] – which can
be viewed as a special case of the recent “chi-square type” testers in [CDVV14, VV14] – has the
desired L2 guarantee. While this tester has been (implicitly) studied in [CDVV14, VV14], and it
is known to be sample optimal with respect to the L1 norm, it has not been previously analyzed
for the L2 norm. The novelty of Theorem 4 lies in the tight analysis of the algorithm under the L2

distance, and is presented in Appendix A.
Armed with Theorem 4 we proceed as follows: We consider a set of j0 = O(log(1/ε)) different

partitions of the domain [n] into intervals. For 0 ≤ j < j0 the partition I(j) consists of `j
def
= |I(j)| =

k · 2j many intervals I
(j)
i , i ∈ [`j ], i.e., I(j) = (I

(j)
i )

`j
i=1. For a fixed value of j, all intervals in I(j)

have the same length, or equivalently, the same probability mass under the uniform distribution.

Then, for any fixed j ∈ [j0], we have p(I
(j)
i ) = 1/(k · 2j) for all i ∈ [`j ]. (Observe that, by our

aforementioned reduction to the uniform case, we may assume that the domain size n is a multiple
of k2j0 , and thus that it is possible to evenly divide into such intervals of the same length).

Note that if q = p, then for all 0 ≤ j < j0, it holds qI
(j)

r = pI
(j)

r . Recalling that all intervals in

I(j) have the same probability mass under p, it follows that pI
(j)

r = U`j , i.e., pI
(j)

r is the uniform

distribution over its support. So, if q = p, for any partition we have qI
(j)

r = U`j . Our main
structural result (Lemma 6) is a robust inverse lemma: If q is far from uniform in Ak distance

then, for at least one of the partitions I(j), the reduced distribution qI
(j)

r will be far from uniform
in L2 distance. The quantitative version of this statement is quite subtle. In particular, we start
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from the assumption of being ε-far in Ak distance and can only deduce “far” in L2 distance. This
is absolutely critical for us to be able to obtain the optimal sample complexity.

The key insight for the analysis comes from noting that the optimal partition separating q from
p in Ak distance cannot have too many parts. Thus, if the “highs” and “lows” cancel out over some
small intervals, they must be very large in order to compensate for the fact that they are relatively
narrow. Therefore, when p and q differ on a smaller scale, their L2 discrepancy will be greater, and
this compensates for the fact that the partition detecting this discrepancy will need to have more
intervals in it.

In Section 3 we present our sample optimal uniformity tester under the Ak distance, thereby
establishing Theorem 1.

3 Testing Uniformity under the Ak-norm

Algorithm Test-Uniformity-Ak(q, n, ε)
Input: sample access to a distribution q over [n], k ∈ Z+ with 2 ≤ k ≤ n, and ε > 0.
Output: “YES” if q = Un; “NO” if ‖q − Un‖Ak

≥ ε.

1. Draw a sample S of size m = O(
√
k/ε2) from q.

2. Fix j0 ∈ Z+ such that j0
def
= dlog2(1/ε)e+ O(1). Consider the collection {I(j)}j0−1j=0 of j0

partitions of [n] into intervals; the partition I(j) = (I
(j)
i )

`j
i=1 consists of `j = k · 2j many

intervals with p(I
(j)
i ) = 1/(k · 2j), where p

def
= Un.

3. For j = 0, 1, . . . , j0 − 1:

(a) Consider the reduced distributions qI
(j)

r and pI
(j)

r ≡ U`j . Use the sample S to

simulate samples to qI
(j)

r .

(b) Run Test-Uniformity-L2(q
I(j)
r , `j , εj , δj) for εj = C · ε · 23j/8 for C > 0 a sufficiently

small constant and δj = 2−j/6, i.e., test whether qI
(j)

r = U`j versus ‖qI(j)r −U`j‖2 >
γj

def
= εj/

√
`j .

4. If all the testers in Step 3(b) output “YES”, then output “YES”; otherwise output “NO”.

Proposition 5. The algorithm Test-Uniformity-Ak(q, n, ε), on input a sample of size m = O(
√
k/ε2)

drawn from a distribution q over [n], ε > 0 and an integer k with 2 ≤ k ≤ n, correctly distinguishes
the case that q = Un from the case that ‖q − Un‖Ak

≥ ε, with probability at least 2/3.

Proof. First, it is straightforward to verify the claimed sample complexity, as the algorithm only
draws samples in Step 1. Note that the algorithm uses the same set of samples S for all testers
in Step 3(b). By Theorem 4, the tester Test-Uniformity-L2(q

I(j)
r , `j , εj , δj), on input a set of mj =

O((
√
`j/ε

2
j ) · log(1/δj)) samples from qI

(j)

r distinguishes the case that qI
(j)

r = U`j from the case

that ‖qI(j)r −U`j‖2 ≥ γj
def
= εj/

√
`j with probability at least 1− δj . From our choice of parameters

it can be verified that maxj mj ≤ m = O(
√
k/ε2), hence we can use the same sample S as input

to these testers for all 0 ≤ j ≤ j0 − 1. In fact, it is easy to see that
∑j0−1

j=0 mj = O(m), which
implies that the overall algorithm runs in sample-linear time. Since each tester in Step 3(b) has
error probability δj , by a union bound over all j ∈ {0, . . . , j0 − 1}, the total error probability
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is at most
∑j0−1

j=0 δj ≤ (1/6) ·
∑∞

j=0 2−j = 1/3. Therefore, with probability at least 2/3 all the
testers in Step 3(b) succeed. We will henceforth condition on this “good” event, and establish the
completeness and soundness properties of the overall algorithm under this conditioning.

We start by establishing completeness. If q = p = Un, then for any partition I(j), 0 ≤ j ≤ j0−1,
we have that qI

(j)

r = pI
(j)

r = U`j . By our aforementioned conditioning, all testers in Step 3(b) will
output “YES”, hence the overall algorithm will also output “YES”, as desired.

We now proceed to establish the soundness of our algorithm. Assuming that ‖q − p‖Ak
≥ ε,

we want to show that the algorithm Test-Uniformity-Ak(q, n, ε) outputs “NO” with probability at
least 2/3. Towards this end, we prove the following structural lemma:

Lemma 6. There exists a constant C > 0 such that the following holds: If ‖q − p‖Ak
≥ ε, there

exists j ∈ Z+ with 0 ≤ j ≤ j0 − 1 such that ‖qI(j)r − U`j‖22 ≥ γ2j
def
= ε2j/`j = C2 · (ε2/k) · 2−j/4.

Given the lemma, the soundness property of our algorithm follows easily. Indeed, since all
testers Test-Uniformity-L2(q

I(j)
r , `j , εj , δj) of Step 3(b) are successful by our conditioning, Lemma 6

implies that at least one of them outputs “NO”, hence the overall algorithm will output “NO”.

The proof of Lemma 6 in its full generality is quite technical. For the sake of the intuition, in the
following subsection (Section 3.1) we provide a proof of the lemma for the important special case
that the unknown distribution q is promised to be k-flat, i.e., piecewise constant with k pieces.
This setting captures many of the core ideas and, at the same time, avoids some of the necessary
technical difficulties of the general case. Finally, in Section 3.2 we present our proof for the general
case.

3.1 Proof of Structural Lemma: k-flat Case

For this special case we will prove the lemma for C = 1/80. Since q is k-flat there exists a partition
I∗ = (I∗j )kj=1 of [n] into k intervals so that q is constant within each such interval. This in particular

implies that ‖q − p‖Ak
= ‖q − p‖1, where p

def
= Un. For J ∈ I∗ let us denote by qJ the value of q

within interval J , that is, for all j ∈ [k] and i ∈ I∗j we have qi = qI∗j . For notational convenience,
we sometimes use pJ to denote the value of p = Un within interval J . By assumption we have that
‖q − p‖1 =

∑k
j=1 |I∗j | · |qI∗j − 1/n| ≥ ε.

Throughout the proof, we work with intervals I∗j ∈ I∗ such that qI∗j < 1/n. We will henceforth

refer to such intervals as troughs and will denote by T ⊆ [k] the corresponding set of indices, i.e.,
T = {j ∈ [k] | qI∗j < 1/n}. For each trough J ∈ {I∗j }j∈T we define its depth as depth(J) =

(pJ − qJ)/pJ = n · (1/n − qJ) and its width as width(J) = p(J) = (1/n) · |J |. Note that the
width of J is identified with the probability mass that the uniform distribution assigns to it. The
discrepancy of a trough J is defined by Discr(J) = depth(J) · width(J) = |J | · (1/n− qJ) and
corresponds to the contribution of J to the L1 distance between q and p.

It follows from Scheffe’s identity that half of the contribution to ‖q − p‖1 comes from troughs,

namely ‖q− p‖T1
def
=
∑

j∈T Discr(I∗j ) = (1/2) · ‖q− p‖1 ≥ ε/2. An important observation is that we
may assume that all troughs have width at most 1/k at the cost of potentially doubling the total
number of intervals. Indeed, it is easy to see that we can artificially subdivide “wider” troughs so
that each new trough has width at most 1/k. This process comes at the expense of at most doubling
the number of troughs. Let us denote by {Ĩj}j∈T ′ this set of (new) troughs, where |T ′| ≤ 2k and

each Ĩj is a subset of some I∗i , i ∈ T . We will henceforth deal with the set of troughs {Ĩj}j∈T ′ each
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of width at most 1/k. By construction, it is clear that

‖q − p‖T ′1
def
=
∑
j∈T ′

Discr(Ĩj) = ‖q − p‖T1 ≥ ε/2. (1)

At this point we note that we can essentially ignore troughs J ∈ {Ĩj}j∈T ′ with small discrepancy.

Indeed, the total contribution of intervals J ∈ {Ĩj}j∈T ′ with Discr(J) ≤ ε/20k to the LHS of (1)
is at most |T ′| · (ε/20k) ≤ 2k · (ε/20k) = ε/10. Let T ∗ be the subset of T ′ corresponding to troughs
with discrepancy at least ε/20k, i.e., j ∈ T ∗ if and only if j ∈ T ′ and Discr(Ĩj) ≥ ε/20k. Then, we
have that

‖q − p‖T ∗1
def
=
∑
j∈T ∗

Discr(Ĩj) ≥ 2ε/5. (2)

Observe that for any interval J it holds Discr(J) ≤ width(J). Note that this part of the argument
depends critically on considering only troughs. Hence, for j ∈ T ∗ we have that

ε/(20k) ≤ width(Ĩj) ≤ 1/k. (3)

Thus far we have argued that a constant fraction of the contribution to ‖q − p‖1 comes from
troughs whose width satisfies (3). Our next crucial claim is that each such trough must have

a “large” overlap with one of the intervals I
(j)
i considered by our algorithm Test-Uniformity-Ak.

In particular, consider a trough J ∈ {Ĩj}j∈T ∗ . We claim that there exists j ∈ {0, . . . , j0 − 1}
and i ∈ [`j ] such that |I(j)i | ≥ |J |/4 and so that I

(j)
i ⊆ J . To see this we first pick a j so that

width(J)/2 > 2−j/k ≥ width(J)/4. Since the I
(j)
i have width less than half that of J , J must

intersect at least three of these intervals. Thus, any but the two outermost such intervals will be
entirely contained within J , and furthermore has width 2j/k ≥ width(J)/4.

Since the interval L ∈ I(j+1) is a “domain point” for the reduced distribution qI
(j+1)

r , the L1 error

between qI
(j+1)

r and U`j+1
incurred by this element is at least 1

4 ·Discr(J), and the corresponding

L2
2 error is at least 1

16 · (Discr(J))2 ≥ ε
320k ·Discr(J), where the inequality follows from the fact

that Discr(J) ≥ ε/(20k). Hence, we have that

‖qI(j+1)

r − U`j+1
‖22 ≥ ε/(320k) ·Discr(J). (4)

As shown above, for every trough J ∈ {Ĩj}j∈T ∗ there exists a level j ∈ {0, . . . , j0− 1} such that (4)
holds. Hence, summing (4) over all levels we obtain

j0−1∑
j=0

‖qI(j+1)

r − U`j+1
‖22 ≥ ε/(320k) ·

∑
j∈T ∗

Discr(Ĩj) ≥ ε2/(800k), (5)

where the second inequality follows from (2). Note that

j0−1∑
j=0

γ2j ≤
j0−1∑
j=0

ε2 · 23j/4

802 · k2j
=

ε2

6400k

j0−1∑
j=0

2−j/4 < ε2/(800k).

Therefore, by the above, we must have that ‖qI(j+1)

r − U`j+1
‖22 > γ2j for some 0 ≤ j ≤ j0 − 1. This

completes the proof of Lemma 6 for the special case of q being k-flat.
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3.2 Proof of Structural Lemma: General Case

To prove the general version of our structural result for the Ak distance, we will need to choose an
appropriate value for the universal constant C. We show that it is sufficient to take C ≤ 5 · 10−6.
(While we have not attempted to optimize constant factors, we believe that a more careful analysis
will lead to substantially better constants.)

A useful observation is that our Test-Uniformity-Ak algorithm only distinguishes which of the
intervals of I(j0−1) each of our samples lies in, and can therefore equivalently be thought of as a
uniformity tester for the reduced distribution qI

(j0−1)

r . In order to show that it suffices to consider
only this restricted sample set, we claim that

‖qI(j0−1)

r − U`j0−1
‖Ak
≥ ‖p− q‖Ak

− ε/2.

In particular, these Ak distances would be equal if the dividers of the optimal partition for q were
all on boundaries between intervals of I(j0−1). If this was not the case though, we could round
the endpoint of each trough inward to the nearest such boundary (note that we can assume that
the optimal partition has no two adjacent troughs). This increases the discrepancy of each trough
by at most 2k · 2−j0 , and thus for j0 − log2(1/ε) a sufficiently large universal constant, the total
discrepancy decreases by at most ε/2.

Thus, we have reduced ourselves to the case where n = 2j0−1 ·k and have argued that it suffices
to show that our algorithm works to distinguish Ak-distance in this setting with εj = 10−5 ·ε ·23j/8.

The analysis of the completeness and the soundness of the tester is identical to Proposition 5.
The only missing piece is the proof of Lemma 6, which we now restate for the sake of convenience:

Lemma 7. If ‖q − p‖Ak
≥ ε, there exists some j ∈ Z+ with 0 ≤ j ≤ j0 − 1 such that

‖qI(j)r − U`j‖
2
2 ≥ γ2j := ε2j/`j = 10−102−j/4ε2/k.

The analysis of the general case here is somewhat more complicated than the special case for q
being k-flat case that was presented in the previous section. This is because it is possible for one of
the intervals J in the optimal partition (i.e., the interval partition I∗ ∈ Jk maximizing ‖qIr − qIr ‖1
in the definition of the Ak distance) to have large overlap with an interval I that our algorithm
considers – that is, I ∈ ∪j0−1j=0 I(j) – without having q(I) and p(I) differ substantially. Note that
the unknown distribution q is not guaranteed to be constant within such an interval J , and in
particular the difference q − p does not necessarily preserve its sign within J .

To deal with this issue, we note that there are two possibilities for an interval J in the optimal

partition: Either one of the intervals I
(j)
i (considered by our algorithm) of size at least |J |/2 has

discrepancy comparable to J , or the distribution q differs from p even more substantially on one of

the intervals separating the endpoints of I
(j)
i from the endpoints of J . Therefore, either an interval

contained within this will detect a large L2 error, or we will need to again pass to a subinterval.
To make this intuition rigorous, we will need a mechanism for detecting where this recursion will
terminate. To handle this formally, we introduce the following definition:

Definition 8. For p = Un and q an arbitrary distribution over [n], we define the scale-sensitive-L2

distance between q and p to be

‖q − p‖2[k]
def
= max
I=(I1,...,Ir)∈W1/k

r∑
i=1

Discr2(Ii)

width1/8(Ii)

where W1/k is the collection of all interval partitions of [n] into intervals of width at most 1/k.
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The notion of the scale-sensitive-L2 distance will be a useful intermediate tool in our analysis.
The rough idea of the definition is that the optimal partition will be able to detect the correctly
sized intervals for our tester to notice. (It will act as an analogue of the partition into the intervals
where q is constant for the k-flat case.)

The first thing we need to show is that if q and p have large Ak distance then they also have
large scale-sensitive-L2 distance. Indeed, we have the following lemma:

Lemma 9. For p = Un and q an arbitrary distribution over [n], we have that

‖q − p‖2[k] ≥
‖q − p‖2Ak

(2k)7/8
.

Proof. Let ε = ‖q − p‖2Ak
. Consider the optimal I∗ in the definition of the Ak distance. As in our

analysis for the k-flat case, by further subdividing intervals of width more than 1/k into smaller
ones, we can obtain a new partition, I ′ = (I ′i)

s
i=1, of cardinality s ≤ 2k all of whose parts have

width at most 1/k. Furthermore, we have that
∑

i Discr(I ′i) ≥ ε. Using this partition to bound
from below ‖q − p‖2[k], by Cauchy-Schwarz we obtain that

‖q − p‖2[k] ≥
∑
i

Discr2(I ′i)

width(I ′i)
1/8

≥
(
∑

i Discr(I ′i))
2∑

i width(I ′i)
1/8

≥ ε2

2k(1/(2k))1/8

=
ε2

(2k)7/8
.

The second important fact about the scale-sensitive-L2 distance is that if it is large then one of
the partitions considered in our algorithm will produce a large L2 error.

Proposition 10. Let p = Un be the uniform distribution and q a distribution over [n]. Then we
have that

‖q − p‖2[k] ≤ 108
j0−1∑
j=0

2j ·k∑
i=1

Discr2(I
(j)
i )

width1/8(I
(j)
i )

. (6)

Proof. Let J ∈W1/k be the optimal partition used when computing the scale-sensitive-L2 distance

‖q− p‖[k]. In particular, it is a partition into intervals of width at most 1/k so that
∑

i
Discr2(Ji)

width(Ji)1/8

is maximized. To prove Equation Eq. (6), we prove a notably stronger claim. In particular, we will
prove that for each interval J` ∈ J

Discr2(J`)

width1/8(J`)
≤ 108

j0−1∑
j=0

∑
i:I

(j)
i ⊂J`

Discr2(I
(j)
i )

width1/8(I
(j)
i )

. (7)

Summing over ` would then yield ‖q − p‖2[k] on the left hand side and a strict subset of the terms

from Equation Eq. (6) on the right hand side. From here on, we will consider only a single interval
J`. For notational convenience, we will drop the subscript and merely call it J .
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First, note that if |J | ≤ 108, then this follows easily from considering just the sum over j = j0−1.
Then, if t = |J |, J is divided into t intervals of size one. The sum of the discrepancies of these
intervals equals the discrepancy of J , and thus, the sum of the squares of the discrepancies is at
least Discr2(J)/t. Furthermore, the widths of these subintervals are all smaller than the width of
J by a factor of t. Thus, in this case the sum of the right hand side of Equation Eq. (7) is at least
1/t7/8 ≥ 1

107
of the left hand side.

Otherwise, if |J | > 108, we can find a j so that width(J)/108 < 1/(2j · k) ≤ 2 ·width(J)/108.
We claim that in this case Equation Eq. (7) holds even if we restrict the sum on the right hand
side to this value of j. Note that J contains at most 108 intervals of I(j), and that it is covered by
these intervals plus two narrower intervals on the ends. Call these end-intervals R1 and R2. We
claim that Discr(Ri) ≤ Discr(J)/3. This is because otherwise it would be the case that

Discr2(Ri)

width1/8(Ri)
>

Discr2(J)

width1/8(J)
.

(This is because (1/3)2 · (2/108)−1/8 > 1.) This is a contradiction, since it would mean that
partitioning J into Ri and its complement would improve the sum defining ‖q − p‖[k], which was

assumed to be maximum. This in turn implies that the sum of the discrepancies of the I
(j)
i contained

in J must be at least Discr(J)/3, so the sum of their squares is at least Discr2(J)/(9 · 108). On
the other hand, each of these intervals is narrower than J by a factor of at least 108/2, thus the

appropriate sum of
Discr2(I

(j)
i )

width1/8(I
(j)
i )

is at least Discr2(J)

108width1/8(J)
. This completes the proof.

We are now ready to prove Lemma 7.

Proof. If ‖q − p‖Ak
≥ ε we have by Lemma 9 that

‖q − p‖2[k] ≥
ε2

(2k)7/8
.

By Proposition 10, this implies that

ε2

(2k)7/8
≤ 108

j0−1∑
j=0

2j ·k∑
i=1

Discr2(I
(j)
i )

width1/8(I
(j)
i )

= 108
j0−1∑
j=0

(2jk)1/8‖qI(j) − U`j‖
2
2.

Therefore,
j0−1∑
j=0

2j/8‖qI(j) − U`j‖
2
2 ≥ 5 · 10−9ε2/k. (8)

On the other hand, if ‖qI(j) − U`j‖22 were at most 10−102−j/4ε2/k for each j, then the sum above
would be at most

10−10ε2/k
∑
j

2−j/8 < 5 · 10−9ε2/k.

This would contradict Equation Eq. (8), thus proving that ‖qI(j) − U`j‖22 ≥ 10−102−j/4ε2/k for at
least one j, proving Lemma 7.
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4 Conclusions and Future Work

In this work we designed a computationally efficient algorithm for the problem of identity testing
against a known distribution, which yields sample optimal bounds for a wide range of natural and
important classes of structured distributions. A natural direction for future work is to generalize
our results to the problem of identity testing between two unknown structured distributions. What
is the optimal sample complexity in this more general setting? We emphasize that new ideas are
required for this problem, as the algorithm and analysis in this work crucially exploit the a priori
knowledge of the explicit distribution.
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[Bir87b] L. Birgé. On the risk of histograms for estimating decreasing densities. Annals of
Statistics, 15(3):1013–1022, 1987.

[BKR04] T. Batu, R. Kumar, and R. Rubinfeld. Sublinear algorithms for testing monotone and
unimodal distributions. In ACM Symposium on Theory of Computing, pages 381–390,
2004.

[Bru58] H. D. Brunk. On the estimation of parameters restricted by inequalities. The Annals
of Mathematical Statistics, 29(2):pp. 437–454, 1958.

[BRW09] F. Balabdaoui, K. Rufibach, and J. A. Wellner. Limit distribution theory for maximum
likelihood estimation of a log-concave density. The Annals of Statistics, 37(3):pp.
1299–1331, 2009.

16



[BS10] M. Belkin and K. Sinha. Polynomial learning of distribution families. In FOCS, pages
103–112, 2010.

[BW07] F. Balabdaoui and J. A. Wellner. Estimation of a k-monotone density: Limit distribu-
tion theory and the spline connection. The Annals of Statistics, 35(6):pp. 2536–2564,
2007.

[BW10] F. Balabdaoui and J. A. Wellner. Estimation of a k-monotone density: characteri-
zations, consistency and minimax lower bounds. Statistica Neerlandica, 64(1):45–70,
2010.

[CDSS13] S. Chan, I. Diakonikolas, R. Servedio, and X. Sun. Learning mixtures of structured
distributions over discrete domains. In SODA, pages 1380–1394, 2013.

[CDSS14] S. Chan, I. Diakonikolas, R. Servedio, and X. Sun. Efficient density estimation via
piecewise polynomial approximation. In STOC, pages 604–613, 2014.

[CDVV14] S. Chan, I. Diakonikolas, P. Valiant, and G. Valiant. Optimal algorithms for testing
closeness of discrete distributions. In SODA, pages 1193–1203, 2014.

[CT04] K.S. Chan and H. Tong. Testing for multimodality with dependent data. Biometrika,
91(1):113–123, 2004.

[DDO+13] C. Daskalakis, I. Diakonikolas, R. O’Donnell, R.A. Servedio, and L. Tan. Learning
Sums of Independent Integer Random Variables. In FOCS, pages 217–226, 2013.

[DDS12a] C. Daskalakis, I. Diakonikolas, and R.A. Servedio. Learning k-modal distributions via
testing. In SODA, pages 1371–1385, 2012.

[DDS12b] C. Daskalakis, I. Diakonikolas, and R.A. Servedio. Learning Poisson Binomial Distri-
butions. In STOC, pages 709–728, 2012.

[DDS+13] C. Daskalakis, I. Diakonikolas, R. Servedio, G. Valiant, and P. Valiant. Testing k-
modal distributions: Optimal algorithms via reductions. In SODA, pages 1833–1852,
2013.

[DL01] L. Devroye and G. Lugosi. Combinatorial methods in density estimation. Springer
Series in Statistics, Springer, 2001.

[DR09] L. D umbgen and K. Rufibach. Maximum likelihood estimation of a log-concave den-
sity and its distribution function: Basic properties and uniform consistency. Bernoulli,
15(1):40–68, 2009.

[FOS05] J. Feldman, R. O’Donnell, and R. Servedio. Learning mixtures of product distributions
over discrete domains. In Proc. 46th Symposium on Foundations of Computer Science
(FOCS), pages 501–510, 2005.

[Fou97] A.-L. Fougères. Estimation de densités unimodales. Canadian Journal of Statistics,
25:375–387, 1997.

[GGR98] O. Goldreich, S. Goldwasser, and D. Ron. Property testing and its connection to
learning and approximation. Journal of the ACM, 45:653–750, 1998.

17



[GR00] O. Goldreich and D. Ron. On testing expansion in bounded-degree graphs. Technical
Report TR00-020, Electronic Colloquium on Computational Complexity, 2000.

[Gre56] U. Grenander. On the theory of mortality measurement. Skand. Aktuarietidskr.,
39:125–153, 1956.

[Gro85] P. Groeneboom. Estimating a monotone density. In Proc. of the Berkeley Conference
in Honor of Jerzy Neyman and Jack Kiefer, pages 539–555, 1985.

[GW09] F. Gao and J. A. Wellner. On the rate of convergence of the maximum likelihood
estimator of a k-monotone density. Science in China Series A: Mathematics, 52:1525–
1538, 2009.

[Ham87] F. R. Hampel. Design, data & analysis. chapter Design, modelling, and analysis of
some biological data sets, pages 93–128. John Wiley & Sons, Inc., New York, NY,
USA, 1987.

[HP76] D. L. Hanson and G. Pledger. Consistency in concave regression. The Annals of
Statistics, 4(6):pp. 1038–1050, 1976.

[ILR12] P. Indyk, R. Levi, and R. Rubinfeld. Approximating and Testing k-Histogram Distri-
butions in Sub-linear Time. In PODS, pages 15–22, 2012.

[JW09] H. K. Jankowski and J. A. Wellner. Estimation of a discrete monotone density. Elec-
tronic Journal of Statistics, 3:1567–1605, 2009.

[KM10] R. Koenker and I. Mizera. Quasi-concave density estimation. Ann. Statist.,
38(5):2998–3027, 2010.

[KMR+94] M. Kearns, Y. Mansour, D. Ron, R. Rubinfeld, R. Schapire, and L. Sellie. On the
learnability of discrete distributions. In Proceedings of the 26th Symposium on Theory
of Computing, pages 273–282, 1994.

[KMV10] A. T. Kalai, A. Moitra, and G. Valiant. Efficiently learning mixtures of two Gaussians.
In STOC, pages 553–562, 2010.

[LRR11] R. Levi, D. Ron, and R. Rubinfeld. Testing properties of collections of distributions.
In ICS, pages 179–194, 2011.

[MV10] A. Moitra and G. Valiant. Settling the polynomial learnability of mixtures of Gaus-
sians. In FOCS, pages 93–102, 2010.

[NP33] J. Neyman and E. S. Pearson. On the problem of the most efficient tests of statistical
hypotheses. Philosophical Transactions of the Royal Society of London. Series A,
Containing Papers of a Mathematical or Physical Character, 231(694-706):289–337,
1933.

[Pan08] L. Paninski. A coincidence-based test for uniformity given very sparsely-sampled
discrete data. IEEE Transactions on Information Theory, 54:4750–4755, 2008.

[Pea00] K. Pearson. On the criterion that a given system of deviations from the probable in the
case of a correlated system of variables is such that it can be reasonably supposed to
have arisen from random sampling. Philosophical Magazine Series 5, 50(302):157–175,
1900.

18



[Rao69] B.L.S. Prakasa Rao. Estimation of a unimodal density. Sankhya Ser. A, 31:23–36,
1969.

[Reb05] L. Reboul. Estimation of a function under shape restrictions. Applications to relia-
bility. Ann. Statist., 33(3):1330–1356, 2005.

[RS96] R. Rubinfeld and M. Sudan. Robust characterizations of polynomials with applications
to program testing. SIAM J. on Comput., 25:252–271, 1996.

[Rub12] R. Rubinfeld. Taming big probability distributions. XRDS, 19(1):24–28, 2012.

[Val11] P. Valiant. Testing symmetric properties of distributions. SIAM J. Comput.,
40(6):1927–1968, 2011.

[VV11] G. Valiant and P. Valiant. Estimating the unseen: an n/ log(n)-sample estimator for
entropy and support size, shown optimal via new CLTs. In STOC, pages 685–694,
2011.

[VV14] G. Valiant and P. Valiant. An automatic inequality prover and instance optimal
identity testing. In FOCS, 2014.

[Wal09] G. Walther. Inference and modeling with log-concave distributions. Statistical Science,
24(3):319–327, 2009.

[Weg70] E.J. Wegman. Maximum likelihood estimation of a unimodal density. I. and II. Ann.
Math. Statist., 41:457–471, 2169–2174, 1970.

[WWW+05] X. Wang, M. Woodroofe, M. Walker, M. Mateo, and E. Olszewski. Estimating dark
matter distributions. The Astrophysical Journal, 626:145–158, 2005.

Appendix: Omitted Proofs

A A Useful Primitive: Testing Uniformity in L2 norm

In this section, we give an algorithm for uniformity testing with respect to the L2 distance,
thereby establishing Theorem 4. The algorithm Test-Uniformity-L2(q, n, ε) described below draws
O(
√
n/ε2) samples from a distribution q over [n] and distinguishes between the cases that q = Un

versus ‖q−Un‖2 > ε/
√
n with probability at least 2/3. Repeating the algorithm O(log(1/δ)) times

and taking the majority answer results in a confidence probability of 1 − δ, giving the desired
algorithm Test-Uniformity-L2(q, n, ε, δ) of Theorem 4.

Our estimator is a variant of Pearson’s chi-squared test [Pea00], and can be viewed as a special
case of the recent “chi-square type” testers in [CDVV14, VV14]. We remark that, as follows from
the Cauchy-Schwarz inequality, the same estimator distinguishes the uniform distribution from any
distribution q such that ‖q − Un‖1 > ε, i.e., algorithm Test-Uniformity-L2(q, n, ε) is an optimal
uniformity tester for the L1 norm. The L2 guarantee we prove here is new, is strictly stronger than
the aforementioned L1 guarantee, and is crucial for our purposes in Section 3.

For λ ≥ 0, we denote by Poi(λ) the Poisson distribution with parameter λ. In our algorithm
below, we employ the standard “Poissonization” approach: namely, we assume that, rather than
drawing m independent samples from a distribution, we first select m′ from Poi(m), and then
draw m′ samples. This Poissonization makes the number of times different elements occur in the
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sample independent, with the distribution of the number of occurrences of the i-th domain element
distributed as Poi(mqi), simplifying the analysis. As Poi(m) is tightly concentrated about m, we
can carry out this Poissonization trick without loss of generality at the expense of only sub-constant
factors in the sample complexity.

Algorithm Test-Uniformity-L2(q, n, ε)
Input: sample access to a distribution q over [n], and ε > 0.
Output: “YES” if q = Un; “NO” if ‖q − Un‖2 ≥ ε/

√
n.

1. Draw m′ ∼ Poi(m) iid samples from q.

2. Let Xi be the number of occurrences of the ith domain elements in the sample from q

3. Define Z =
∑n

i=1(Xi −m/n)2 −Xi.

4. If Z ≥ 4m/
√
n return “NO”; otherwise, return “YES”.

The following theorem characterizes the performance of the above estimator:

Theorem 11. For any distribution q over [n] the above algorithm distinguishes the case that q = Un

from the case that ||q−Un||2 ≥ ε/
√
n when given O(

√
n/ε2) samples from q with probability at least

2/3.

Proof. Define Zi = (Xi −m/n)2 −Xi. Since Xi is distributed as Poi(mqi), E[Zi] = m2∆2
i , where

∆i := 1/n − qi. By linearity of expectation we can write E[Z] =
∑n

i=1 E[Zi] = m2 ·
∑n

i=1 ∆2
i .

Similarly we can calculate

Var[Zi] = 2m2(∆i − 1/n)2 + 4m3(1/n−∆i)∆
2
i .

Since the Xi’s (and hence the Zi’s) are independent, it follows that Var[Z] =
∑n

i=1 Var[Zi].
We start by establishing completeness. Suppose q = Un. We will show that Pr[Z ≥ 4m/

√
n] ≤

1/3. Note that in this case ∆i = 0 for all i ∈ [n], hence E[Z] = 0 and Var[Z] = 2m2/n. Chebyshev’s
inequality implies that

Pr[Z ≥ 4m/
√
n] = Pr

[
Z ≥ (2

√
2)
√

Var[Z]
]
≤ (1/8) < 2/3

as desired.
We now proceed to prove soundness of the tester. Suppose that ‖q − Un‖2 ≥ ε√

n
. In this case

we will show that Pr[Z ≤ 4m/
√
n] ≤ 1/3. Note that Chebyshev’s inequality implies that

Pr
[
Z ≤ E[Z]− 2

√
Var[Z]

]
≤ 1/4.

It thus suffices to show that E[Z] ≥ 8m/
√
n and E[Z]2 ≥ 16Var[Z]. Establishing the former

inequality is easy. Indeed,

E[Z] = m2 · ‖q − Un‖22 ≥ m2 · (ε2/n) ≥ 8m/
√
n

for m ≥ 8
√
n/ε2.

Proving the latter inequality requires a more detailed analysis. We will show that for a suffi-
ciently large constant C > 0, if m ≥ C

√
n/ε2 we will have

Var[Z]� E[Z]2.
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Ignoring multiplicative constant factors, we equivalently need to show that

m2 ·

(
n∑

i=1

(
∆2

i − 2∆i/n
)

+ 1/n

)
+m3

n∑
i=1

(
∆2

i /n+ ∆3
i

)
� m4

(
n∑

i=1

∆2
i

)2

.

To prove the desired inequality, it suffices to bound from above the absolute value of each of the five
terms of the LHS separately. For the first term we need to show thatm2·

∑n
i=1 ∆2

i � m4·
(∑n

i=1 ∆2
i

)2
or equivalently

m� 1/‖q − Un‖2. (9)

Since ‖q−Un‖2 ≥ ε/
√
n, the RHS of (9) is bounded from above by

√
n/ε, hence (9) holds true for

our choice of m.
For the second term we want to show that

∑n
i=1 |∆i| � m2n ·

(∑n
i=1 ∆2

i

)2
. Recalling that∑n

i=1 |∆i| ≤
√
n ·
√∑n

i=1 ∆2
i , as follows from the Cauchy-Schwarz inequality, it suffices to show

that m2 � (1/
√
n) · 1/(

∑n
i=1 ∆2

i )
3/2 or equivalently

m� 1

n1/4
· 1

‖q − Un‖3/22

. (10)

Since ‖q − Un‖2 ≥ ε/
√
n, the RHS of (10) is bounded from above by

√
n/ε3/2, hence (10) is also

satisfied.
For the third term we want to argue that m2/n� m4 ·

(∑n
i=1 ∆2

i

)2
or

m� 1

n1/2
· 1

‖q − Un‖22
, (11)

which holds for our choice of m, since the RHS is bounded from above by
√
n/ε2.

Bounding the fourth term amounts to showing that (m3/n)
∑n

i=1 ∆2
i � m4

(∑n
i=1 ∆2

i

)2
which

can be rewritten as

m� 1

n
· 1

‖q − Un‖22
, (12)

and is satisfied since the RHS is at most 1/ε2.

Finally, for the fifth term we want to prove that m3 ·
∑n

i=1 |∆i|3 � m4 ·
(∑n

i=1 ∆2
i

)2
or that∑n

i=1 |∆i|3 � m·
(∑n

i=1 ∆2
i

)2
. From Jensen’s inequality it follows that

∑n
i=1 |∆i|3 ≤

(∑n
i=1 ∆i|2

)3/2
;

hence, it is sufficient to show that
(∑n

i=1 ∆i|2
)3/2 � m ·

(∑n
i=1 ∆2

i

)2
or

m� 1

‖q − Un‖2
. (13)

Since ‖q − Un‖2 ≥ ε/
√
n the above RHS is at most

√
n/ε and (13) is satisfied. This completes the

soundness proof and the proof of Theorem 11.
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