

Edinburgh Research Explorer

Approximations for Stochastic Graph Rewriting
Citation for published version:
Danos, V, Heindel, T, Honorato Zimmer, R & Stucki, S 2014, Approximations for Stochastic
Graph Rewriting. in S Merz & J Pang (eds), Formal Methods and Software Engineering: 16th International
Conference on Formal Engineering Methods, ICFEM 2014, Luxembourg, Luxembourg, November 3-5,
2014. Proceedings. Lecture Notes in Computer Science, vol. 8829, Springer International Publishing, pp. 1-
10. DOI: 10.1007/978-3-319-11737-9_1

Digital Object Identifier (DOI):
10.1007/978-3-319-11737-9_1

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Formal Methods and Software Engineering

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 05. Apr. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/43711862?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1007/978-3-319-11737-9_1
https://www.research.ed.ac.uk/portal/en/publications/approximations-for-stochastic-graphrewriting(1e308a03-b2f9-4460-b07e-9d4da6b8270e).html

Approximations for stochastic graph rewriting?

Vincent Danos1, Tobias Heindel1, Ricardo Honorato-Zimmer1, and
Sandro Stucki2

1 School of Informatics, University of Edinburgh, Edinburgh, United Kingdom
2 Programming Methods Laboratory, EPFL, Lausanne, Switzerland

In this note we present a method to compute approximate descriptions of
a class of stochastic systems. For the method to apply, the system must be
presented as a Markov chain on a state space consisting in graphs or graph-like
objects, and jumps must be described by transformations which follow a finite
set of local rules.

The method is a form of static analysis and uses a technique which is rem-
iniscent of theories of critical pairs in term rewriting systems. Its output is a
system of coupled ordinary differential equations (ODE) which tracks the evolu-
tion of the mean number of (typically small) subgraphs. In favourable cases, the
set of ODEs is an exact and finite description of these mean numbers. But even
when it is not, it often describes an approximation which can reveal interesting
properties of the original system.

The method was first conceived in relation to a special type of graphs, namely
the site graphs which form the basis of the Kappa language [3]. Recently, the
authors have taken again this method with the goal to extend it to a broader
class of objects. In this note, the goal is rather the opposite. We narrow down
the construction to consider only simple graphs and invertible rules, to not be
distracted by technicalities, and give a simple account. The exposition is mostly
informal.

An example Let us start with an example taken from Ref. [1] which illustrates the
type of systems we are interested in. One has a graph G whose nodes can be in
either of two states 0 (red) or 1 (blue). There are two possible rules to transform
G which we call flips and swaps. To apply either type of transformation, we first
need to locate in G a pair of neighboring nodes u, v with different states. For
flips, we just flip the internal state of u or v to match its neighbor’s state. For
swaps, we replace the edge connecting u and v with an edge connecting u or v to
another node w. In each case we obtain a new graph (on the same set of nodes).
The evolution of the system consists then in repeatedly applying flips and swaps.
Fig. 1 illustrates the basic transformation steps. Fig. 2 shows an example of a
graph which can be transformed by both types of rules.

If we say that colors represent opinions, then we can interpret the rules as the
nodes trying to not have neighbors of a different opinion. A node with a neighbor
of the opposite persuasion can change his (by a flip), or turn to another neighbor
(by a swap). Several variants of this “voter” models are studied. For instance

? This research was sponsored by the European Research Council (ERC) under the
grants 587327 “DOPPLER” and 320823 “RULE”.

w, the target node of the swap, can be chosen of the same color as u the node
doing the swapping, and/or can be picked within a prescribed distance of u.

10 00

10 10

**

Fig. 1. Flips and Swaps - we use colors to represent the internal states of nodes: red
for 0, blue for 1, and ∗ for the unknown state. The symmetric transformations are
not shown. In textual notation we write the flip as 0a, 1a ⇒ 0a, 0a (flip to zero), and
the swap as 0a, 1a, ∗ ⇒ 0a, 1, ∗a. We use common exponents to indicate edges between
nodes.

At any given point, several transformation rules might be applicable to a
graph, and each applicable rule can be applied in several different ways depending
on where the rule left hand side is matched in the current graph. A way in which
a rule can be applied is called an instance of that rule. If a graph is such that
no rules can be applied to it, we call it a normal form (or a frozen state). In
the example, normal forms are “fragmented” graphs with no edge connecting
two nodes of opposing colors. The graph of Fig. 2 can be frozen in just one
step. In the opinion interpretation, one is interested, among other things, in
understanding how likely it is that an opinion wins over the entire graph; that
is to say, how likely it is that one reaches a normal form which is monochrome.
For instance, in Fig. 2, it is still possible, by a long series of steps, to propagate
the red color to the entire graph. To address this type of question, one needs
to define the likelihood of a given instance to apply, and equip transformations
with a probabilistic structure.

Notations Before we turn to probabilities, we fix a few notations. This example,
as all the ones which we will treat in this note, has rules which preserve the un-
derlying set of nodes and can explore only finitely many colors (those mentioned
in the rules). Therefore the set of graphs reachable from a given initial graph is
finite. If we write N for the set of nodes of an initial graph G0, and GN for the
set of all graphs on N with reachable colors, then all graphs reachable from G0

will be in GN . In our voter example, the number of edges is also preserved and
this provides a further restriction on the set of reachable graphs.

2

Fig. 2. An almost frozen state: it is enough to swap the dotted edge to reach a normal
form where red and blue nodes no longer have any connexions; on the other hand, it
also possible to reach a frozen state which is entirely red.

Let us assume from now on that we are given a finite set of rules R and an
initial graph G0 with nodes in N . The objects which we transform are simple
graphs where nodes have colors (represented by integers). In other words, we
consider triples N , E, σ where N is a finite set of nodes, E a finite set of
undirected edges over N , and σ maps a subset of N to integers. Partially colored
graphs are only used in rules (eg the swap rule in Fig. 1).

We will use the following typographic conventions: we will write A, B, etc,
for (typically small) graphs (e.g. those which appear on the left hand sides of
rules in R) which may have nodes without colors, and x, y, etc, for arbitrary
graphs in GN to which rules are applied and which are fully colored.

A match f : A → x is a graph morphism from A to x which 1) preserves
internal states, and 2) is injective on nodes. We write c(f) for the codomain x of
f . The codomain of f is not to be confused with f ’s image, written f(A), which
in general is a strict subgraph of its codomain x.

Let us write [A;x] for the set of matches between A and x and, [A] for the
map on GN defined as [A](x) = |[A;x]|. This map [A] is counting the number of
instances of A in x. We call such maps graph observables. We write C for the
set of connected graph observables, B for set of all graph observables, and A
for the linear subspace spanned by B in the vector space `(GN) of real-valued
functions over GN .

Clearly:

C ⊆ B ⊆ A ⊆ `(GN)

We call A the algebra of graph observables, because it also has a commutative
algebra structure as we will see.

A rule is α is a pair of graphs αL, αR which are defined on the same set of
nodes. To apply such a rule to a graph x, we choose a match f ∈ [αL;x] (if any),

3

and replace the edges and states in the image subgraph f(αL) of αL as we find
them in αR.

An example of rule and rule application is given in Fig. 3.

Fig. 3. Example of a rule and rule application. Note that the rule left hand side does
not need to be connected. The white node stands for a node of unspecified color.

Thus, the difference between αL and αR, which are usually called the rule left
and right hand sides, represent the modifications subsequent to the application
of the rule. We write α(f) for the residue of the match after applying the rule
(which is the same map as f on nodes).

We write α† for the rule inverse to α.

Stochastic dynamics Now that we have the non-deterministic structure of the
evolution of G0 under R in place, we add the quantitative aspects. The set of
rules R can be used to generate a continuous-time Markov chain (CTMC) with
values in GN by assigning rates to rules in R. Thus, suppose given a rate map
k : R → R+ which associates to each rule a positive real number.

We define the transition rates of the associated CTMC on GN as follows. For
α in R, x, y in GN , we define a rate matrix Qα with coefficients:

qαxy = |{f ∈ [αL;x] | α(f) ∈ [αR; y]}|
qαxx =

∑
x 6=y −qαxy

The coefficient qαxy counts the number of instances of the rule α which transform
state x into state y.

The rate matrix Q of our system is then defined by combining the Qα:

Q =
∑
α∈R k(α) ·Qα

The rate matrix (also known as the infinitesimal generator of the CTMC) defines
a linear operator on the vector space `(GN). Specifically, if we write qxy for Q’s

4

coefficients, and pick f a function in `(GN), Q’s action on f is given by:

Q(f)(x) =
∑
y qxy(f(y)− f(x))

In words, Q(f)(x) is the mean rate of change of f at x.
Suppose now we write p(x) for the time-dependent probability to be at a

certain state x in GN . We can consider p as an element of `(GN). The rate
matrix Q governs the evolution of p via the master equation [4]:

d

dt
pT = pTQ (1)

where pT is the transpose of p. (The transpose comes from the convention that
qxy is the rate at which the chain jumps from x to y.)

For f a function in `(GN), the (time-dependent) mean (or expected value or
average) of f according to p is Ep(f) := pT f , and it follows directly from the
master equation that:

d

dt
Ep(f) = Ep(Q(f)) (2)

It easy to see that if we take as function f = δx the function which is 1 at x
and zero else, Ep(δx) is the same as p(x) and the equation we have just written
is the master equation (1) for p(x) (ie the projection of the master equation on
the x-coordinate).

Return to the example Suppose we pick as our f the function [0] which counts
the number of nodes in state 0. Clearly Qswap0

([0]) = Qswap1
([0]) = 0 as swaps

do not change colors.
For the flips from 0 to 1, we compute:

Qflip0
([0])(x) = −

∑
y 6=x qxy = [01]

where 01 is short for the pattern 0a, 1a, and [01] is the observable which counts
the number of edges between neighbors of opposite colors.

The symmetric flip is computed in the same way and by summing all contri-
butions we get the following instance of (2):

d
dtEp([0]) = −k01Ep([01]) + k10Ep([01]) = (k10 − k01)Ep([01])

with k01 and k10 the respective rates associated to flip0 (flip from 0 to 1), and
flip1 (the symmetric flip).

We can already notice a few things.
First, a formal remark: the equation obtained for the evolution of [0], which

is in our algebra A , introduces another function [01] also in A . In other words,
Q([0]) is a (linear) function of [01]. This is a general fact. For all αs, A is closed
under the linear map Qα. Therefore, the same holds of Q which is a linear
combination of Qαs. In fact, this is our main result! We will derive below a

5

concrete expression for Qα([F]) for any graph observable F , and any rule α.
This will establish the closure of A under Q, and give an effective way to write
(2) for all observables in A .

Second, a concrete remark: if the flip rules are symmetric (corresponding
to opinions which are equally persuasive), that is to say if k01 = k10, then
d
dtEp([0]) = 0. This does not mean that the final number of 0s will be the
same in all trajectories to normal form, just that, on average, this number will
be exactly what it was at the start. Thus, interesting information about the
dynamics can be found from ODEs such as the one we have derived above. So
seeking a general method to generate them, as we do here, is a worthy pursuit.

Last, another general remark: the new observable [01] is larger than [0] in
the sense that the underpinning graph is larger. This is also general. As we will
see, the new observables needed to express Q([F]) can be larger than F . The
idea is that one has to write an instance of equation (2) for them as well. Hence,
the process of deriving the ODE system for a graph observable of interest can
be seen as an expansion. Even if in our case the expansion is finite, as [F] = 0
as soon as F has more than N nodes, in practice, one needs to truncate the
expansion.

Gluings To derive an effective version of (2) in the general case, we need a
additional ingredient, namely minimal gluings. A gluing µ of two graphs A, B
is a pair of matches f : A→ x, g : B → x. We write π0(µ) = f , π1(µ) = g, and
c(µ) = x for the common codomain of f and g. Given µ, one can always obtain
a new gluing f1 : A → C, g1 : B → C with C the union of the images of f and
g, and f = j ◦ f1, g = j ◦ g1, where j is the inclusion of C in x. We call the pair
f1, g1 a minimal gluing of A and B.

There are finitely many minimal gluings of A and B up to isomorphism. We
write m(A,B) for this (finite) set of minimal gluings. In the worst case, there can
be exponentially many non-isomorphic minimal gluings, as each corresponds to
determining a shared subgraph of A and B in the gluing, namely the intersection
of the images of f and g. There is a largest minimal gluing, corresponding to no
sharing at all, which is the disjoint sum of A and B, written A+B.

A gluing decomposes through exactly one minimal gluing. Hence:

[A][B] =
∑
µ∈m(A,B)[µ]

It follows that A is closed under product, hence is a sub-algebra. Besides, we
can rewrite the above as:

[A+B] = [A][B]−
∑
µ∈m(A,B)\{A+B}[µ]

and one sees that non-connected observables can be expressed as polynomials
of connected ones. In other words, A is the polynomial closure of C the set of
connected observables. (The degree of the polynomial decomposition of [F] in C
is the number of connected components of F .)

6

Proving that A is closed We can now prove that A is closed under the action
of Q. As Q is a linear combination of Qαs, it is enough to prove closure under
Qα, and as B spans A , it is enough to examine the action of Qα on a graph
observable. So, let [F] be that observable, and x a graph in GN . By definition of
Qα we get:

(Qα[F])(x) =
∑
y q

α
xy([F](y)− [F](x))

=
∑
f∈[αL;x] |[F ; c(α(f))]| −

∑
f∈[αL;x] |[F ;x]|

where α(f) is the post-match corresponding to f after firing α at f , and c(α(f))
its codomain, that is the graph resulting from firing α.

We see that the action of Qα at x decomposes naturally in two terms, Qα =
Q+
α − Q−α , one which produces new instances of F and one which consumes

existing ones. The consumption part is easy to evaluate:

Q−α ([F]) =
∑
µ∈m(F,αL)[c(µ)]

Indeed the right hand side is equal to [F][αL] by definition of minimal gluings.
For the production term, we get a similar expression:

Q+
α ([F]) =

∑
µ∈m(F,αR)[c(α†(π0(µ))))]

Recall that π0(µ) is the first match in the gluing µ. We apply the inverse rule α†

to this post-match to obtain c(α†(π0(µ))). This counting is correct because there
is a bijection between post-matches from c(π0(µ)) to c(α(f)), and pre-matches
from c(α†(π0(µ))) to x.

Thus we obtain that B, and therefore evidently A its linear span, is closed
under the action of Qα, and therefore any linear combination of such.

Remarks Again there are few remarks worth making.

First, even if the graph observable F which we start form is connected, the
observables on the right hand side of Q±α ([F]) might not be. That is to say, the
linear span of C is not necessarily closed under Q. However, it is not difficult to
see that this will be the case if all rules in R have a connected left hand side.
Such rules sets form an interesting subclass of “solid-state” transformations.

The second remark is a caveat. For rules more general than the ones consid-
ered here, where one can create nodes, the bijection argument which we have
relied on to justify the production term fails. A more detailed analysis is needed.
But the ideas are essentially the same and the formula obtained only slightly
more complex.

Last, in the two terms which we have introduced above, Q±α ([F]), the sum-
mation extends to all minimal gluings of F on both sides of the rule; in practice,
we can restrict these sums to gluings where F undergoes an actual modification
due to the firing of α or α†. We call these gluings relevant. The contributions of
the irrelevant ones cancel out. In examples, we never consider those.

7

The general rate equation for graphs From the above, using the linearity of
expectations, we derive the explicit form of (2) which we seek. Specifically, for a
graph observable F in B, we get:

d
dtEp([F]) =∑

α∈R k(α)
(∑

µ∈m(F,αR)Ep([c(α†(π0(µ)))])−
∑
µ∈m(F,αL)Ep([c(µ)])

)
So far there is no approximation involved. The equation is exact. But as we

have seen in the example, it requires the knowledge of additional observables
which leads to writing more similar equations, possibly of increasing complexity.

Example continued To see concretely how more complex terms follow from the
expansion, we can return to the example and compute the equations associated
to [01] the number of opposing neighbors or the distance to normal form. As we
have seen earlier, the equation for Ep[0] generates [01] as a new observable (in
the non symmetric case at least). So it is the natural next step.

Below we neglect irrelevant gluings. We use abbreviation similar to the ones
used before, eg we write 101 instead of the correct 1a, 0a,b, 1b.

Q−flip0
([01]) = −[01]− [101]

Q+
flip0

([01]) = [001]

Q−flip1
([01]) = −[01]− [010]

Q+
flip1

([01]) = [011]

Q−swap0
([01]) = −[01]

Q+
swap0

([01]) = [01 + 1]

Q−swap1
([01]) = −[01]

Q+
swap1

([01]) = [01 + 0]

Hence if we write k0, k1 for the swap rates we can collect all the contributions
above and we obtain the following ODE:

d

dt
Ep([01]) = k01(Ep[001]− Ep[01]− Ep[101]) + k10(Ep[011]− Ep[01]− Ep[010])

+ k0(Ep[01 + 1]− Ep[01]) + k1(Ep[01 + 0]− Ep[01])

We can simplify this general expression by supposing that flips and swaps are
symmetric. If we set the following notations: k = k01 = k10, k′ = k0 = k1, and
arrange the terms below by size, we get:

d

dt
Ep([01]) = −2(k + k′)Ep[01] + k(Ep[001] + Ep[011]− Ep[101]− Ep[010])

+ k′(Ep[01 + 1] + Ep[01 + 0])

Non-connected observables [01+1], and [01+0] appear as anticipated, as well
as larger observables such as [001]. In Ref. [1] where this is example is developed,
the authors derive a similar ODE by hand. (There is a slight difference due to

8

the fact that their swap rules do not take into account the multiplicity of the
∗ node in the definition of an instance; but that is of no consequence for our
exposition.)

At this stage, we are facing the problem of either writing an ODE for all the
new terms which have appeared (which poses no conceptual problem but would
be extremely tedious to do by hand), or to truncate and express the new larger
observables as functions of simpler ones. Even if we were to go for the former
option, we would have to find a way of truncating the expansion at some point!
So let us follow the second option and see how this can be done.

To get rid of the non-connected observables, we can exploit the polynomial
decomposition above. This gives us [01+1] = [01][1]−[01] and hence Ep[01+1] =
Ep([01][1])−Ep[01]. Now, using an approximation, we can simplify the first term
as:

Ep([01][1]) ∼ Ep([01])Ep([1])

This type of approximation can be performed in general and consists in assuming
independence of observables. To get rid of the connected terms of the form [001],
we need another approximation principle. We can either set them brutally to
zero, or else, more subtly, apply what is known as a pair approximation which
in this case takes the form:

Ep([001])Ep([0]) ∼ Ep([00])Ep([01])

This second type of approximation is an assumption of conditional independence.
Neither comes with a general bound on the error they introduce. But in practice,
they often give interesting results.

Example concluded Using the same machinery, one can compute higher order
moments of (the distributions of) observables. Say we want to estimate the
variance of [0] the mean of which we have seen is a constant in the symmetric
case k = k01 = k10. In the extreme case where there are no swaps allowed
(k′ = 0), and assuming the initial graph G0 is connected, normal forms can only
be monochrome. This means that one opinion disappears (and it is easy to see
that the probability for an opinion to win this all-or-nothing competition is equal
to its initial fraction). So, intuitively, in this case [0] will have a high variation,
and in general, the lower the variance the more likely it is that the graph will
split in two separate colors with none of the colors completely winning.

To compute this variance, it is enough to evaluate Ep([0]2) as we know that
Ep([0]) is constant. We get

d
dtEp([0]2) = d

dtEp([0 + 0]) + d
dtEp([0]) = d

dtEp([0 + 0])

Using the connected decomposition and, again, our general equation (2), we get
after some calculations:

d
dtEp([0 + 0]) = −2k01Ep([0, 01]) + 4k10Ep([0, 01])

= 2(2k10 − k01)Ep([0 + 01])
= 2kEp([0 + 01])

9

This expression, differently to that for the mean Ep([0]) is not degenerate even
in the symmetric case. In fact, in the symmetric case, the calculation above tell
us that the right hand side is about 2kEp([0]) ·Ep([01]) and the variance will be
monotonically increasing as long as there are 01-edges remaining in the graph.

Conclusion There are many examples other than the one we have used here
where the type of deterministic approximations considered in this note have been
found useful. Examples abound in particular in the literature of the so-called
adaptive networks [2]. The ability to define and generate them in a systematic
way, as we have presented, is important on several counts. For one thing, the
derivation involves combinatorics and there is a limit to the size of an expansion
one can do by hand. With a proper implementation, one could go higher in
the order of expansion before introducing approximations, and thus obtaining
potentially more accurate approximations. For the same reason, the derivation
of these approximations is quite error-prone and a mechanical derivation can be
beneficial. Our careful and explicit construction carries over to several graph-
like structures with little modifications. One can play with the type of objects
(eg directed graphs, hypergraphs, simplicial sets), or the type of matches (eg
induced subgraphs) or even the type of rules (eg considering rules which create
and/or merge nodes). The general axiomatic approach leads to a more unified
picture. Finally, our method to generate the differential system associated to an
observable, and its subsequent expansion, could lead to interesting formalizations
of the approximation principles used to cut the expansion beyond the simple pair
approximation.

References

1. R. Durrett, J. P. Gleeson, A. L. Lloyd, P. J. Mucha, F. Shi, D. Sivakoff, J. E.
Socolar, and C. Varghese. Graph fission in an evolving voter model. Proceedings of
the National Academy of Sciences, 109(10):3682–3687, 2012.

2. J. P. Gleeson. High-accuracy approximation of binary-state dynamics on networks.
Physical Review Letters, 107(6):068701, 2011.

3. R. Harmer, V. Danos, J. Feret, J. Krivine, and W. Fontana. Intrinsic information
carriers in combinatorial dynamical systems. Chaos, 20(3), 2010.

4. J. R. Norris. Markov chains. Cambridge series in statistical and probabilistic math-
ematics. Cambridge University Press, 1998.

10

	 Approximations for stochastic graph rewriting

