

Edinburgh Research Explorer

The Stochastic Loss of Spikes in Spiking Neural P Systems:
Design and Implementation of Reliable Arithmetic Circuits

Citation for published version:
Xu, Z, Cavaliere, M, An, P, Vrudhula, S & Cao, Y 2014, 'The Stochastic Loss of Spikes in Spiking Neural P
Systems: Design and Implementation of Reliable Arithmetic Circuits' Fundamenta Informaticae, vol. 134, no.
1-2, pp. 183-200.

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Fundamenta Informaticae

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 05. Apr. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/43711843?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://www.research.ed.ac.uk/portal/en/publications/the-stochastic-loss-of-spikes-in-spiking-neural-p-systems-design-and-implementation-of-reliable-arithmetic-circuits(52712f99-b01b-4bf0-80f6-3f6b6597e1ae).html

The Stochastic Loss of Spikes in Spiking Neural P
Systems: Design and Implementation of Reliable
Arithmetic Circuits

Zihan Xu1, Matteo Cavaliere2, Pei An1, Sarma Vrudhula3, Yu Cao1

1 School of Electrical, Computer and Energy Engineering,
Arizona State University, USA

2 School of Informatics, University of Edinburgh, UK
3 School of Computing, Informatics and Decision Systems Engineering,

Arizona State University, USA

Summary. Spiking neural P systems (in short, SN P systems) have been introduced as
computing devices inspired by the structure and functioning of neural cells. The presence
of unreliable components in SN P systems can be considered in many different aspects.
In this paper we focus on two types of unreliability: the stochastic delays of the spiking
rules and the stochastic loss of spikes. We propose the implementation of elementary SN
P systems with DRAM-based CMOS circuits that are able to cope with these two forms
of unreliability in an efficient way. The constructed bio-inspired circuits can be used to
encode basic arithmetic modules.

1 Reliability and SN P Systems

Membrane computing (known also as P systems) is a model of computation in-
spired by the structure and the functioning of living cells, [8]. A P system is a
parallel computing device based on multiset rewriting in compartments where a
global clock is assumed and each rule of the system is executed in one time step.
Spiking neural P systems (in short, SN P systems) have been introduced as com-
puting devices inspired by the structure and functioning of neural cells (a friendly
introduction to this model of computation is given in [7] while a more complete
review is provided in the corresponding chapter of the handbook, [8]).

The main idea of an SN P system is to have several one-membrane cells (called
neurons) which can hold any number of spikes; each neuron fires (spikes) in spec-
ified conditions (after accumulating a specified number of spikes). In the basic

Corresponding author: Yu.Cao@asu.edu

354 Zihan Xu, Matteo Cavaliere, Pei An, Sarma Vrudhula, Yu Cao

definition of SN P systems, [7], the functioning of the system is synchronous: a
global clock is assumed and, in each time unit, each neuron that can use a rule
does it. The system is synchronized but the work of the system is sequential: only
(at most) one rule is used in each neuron. In the basic model, one of the neurons
is considered to be the output neuron and its spikes are also sent to the environ-
ment. A possibility is that steps when (at least) one spike is emitted by the output
neuron are marked with 1s, while the other steps are marked with 0s. The binary
sequence obtained in this manner is called the spike train of the system.

To a spike train one can associate various numbers, which can be considered
as computed by an SN P system. Synchronized SN P systems, with spiking rules
in the standard form (i.e., they produce only one spike) are universal, they can
characterize the family of Turing computable sets of natural numbers, [7].

In many computational results obtained in the area the synchronization be-
tween different processes plays an important role (see a discussion in the chapter
dedicated to the role of time in membrane systems, [8]). However implementing
synchronization is not always easy or even possible, often even similar processes
can take distinct and unpredictable times to be completed.

For these reasons, starting from the basic idea that different chemical reactions
may take different times to be executed (or to be started, when enabled) a timed
model of P system was introduced, [3], where to each rule of the system is asso-
ciated a time of execution. The goal was to understand how time could be used
to influence the result produced by the P system and, possibly, how to implement
powerful time-free systems where the output produced was independent of the tim-
ings associated to the rules. Time-free systems have been extensively studied in the
context of membrane systems and extended to spiking neural P systems, [2, 14],
including to the solution of hard computational problems, [13]. In all these works
the underlying basic issue is to understand how a computation can be encoded in
a system composed of unreliable components. However, the presence of unreliable
components in SN P systems can be considered in many different aspects (e.g.,
in the form of a stochastic delays of the spiking rules, as proposed in [2], or the
stochastic loss of spikes, that we introduce in this paper). Aside from challenging
theoretical problems, [3], the presence of unreliable components pose an important
constrains on the possible hardware implementations of SN P systems. Here we
focus on the reliability problems in the context of engineering of basic circuits,
inspired by the concepts and the functioning of SN P systems, using DRAM-based
CMOS circuits, designed in a way to cope with the random loss of spikes and the
stochastic application of rules.

2 Neurons and Arithmetic Circuits

2.1 Two Basic Types of Neurons

In this paper we do not use the complete definition of neurons as defined in the SN
P systems literature but we restrict our attention to very specific types of neurons

The Stochastic Loss of Spikes in Spiking Neural P Systems 355

that are the constituents of the presented hardware implementation. Moreover we
assume the reader familiar with the basic concepts of SN P systems, [7, 2], and
with the notions and terminology from the area of DRAM-based CMOS circuits.

Essentially, SN P systems computations are based on a combination of firing
rules and forgetting rules [7, 2]. Firing rules allow a neuron to emit and broadcast
spikes to other neurons. Inspired by this functioning, we consider the simple pos-
sibility to determine the applicability of a firing rule by checking the total number
of input spikes (spikes received) against a given threshold. To mimic a biological
neuron, when a neuron sends out spikes, becomes inactive for a specified period
of time, i.e., the refractory period, during which the neuron does not accept new
input and cannot fire. When the neuron is firing, there is also a delay associated
between the input and output spikes. In the general framework, [7, 2], a set of
firing rules, with different firing expression and numbers of output spikes, can be
associated to a neuron. If no firing rule can be applied, there is the possibility to
apply a forgetting rule, which removes a pre-defined number of spikes from the
neuron, without firing any output spikes. Figure 1 illustrates one example that
abstracts a biological neuron to a digital-like SN P neuron, as those that we con-
sider in this paper: a stands for the spike (the signal sent); λ means that there is
no output spike; and the natural numbers represent the number of spikes. Input
enters the neuron sequentially (each vertical bar corresponds to an entering spike).
At the end of either the firing or the forgetting operation, all input spikes have
been consumed.

A biological

neuron

An SN P neuron a → λ

a
2

→ a

Fig. 1. An example of an SN P neuron that fires a spike for every two input spikes; it
does not fire if there is only one input spike. Inputs (spikes) arrive sequentially with a
prescribed temporal order.

A general SN P neuron may contain several rules, [7]. In this paper, because
of the restrictions on the proposed hardware implementation, two basic types of
SN P neurons are introduced and used, shown in Figure 2: high-pass (HP) neuron
and low-pass (LP) neuron, defined with complementary spiking rules (we also call

356 Zihan Xu, Matteo Cavaliere, Pei An, Sarma Vrudhula, Yu Cao

them firing rules). They can receive an unlimited number of inputs and produce
only one output. The threshold in their firing rules is set to be 2. This means that
HP neurons fire when receive two or more than two input spikes, while LP neurons
fire when there is only one input spike. In this case, because of the specific type of
neurons, we prefer to use an explicit (threshold-like) syntax (instead of the usual
and more general regular expression, [7]).

HP neuron LP neuron

a →λ

a
≥2
→ a

a → a

a
≥2
→ λ

Fig. 2. The definition of two basic neurons. Notice the characteristic shape that identifies
each type, as we are using them in the successive constructions.

During the hardware implementation of an SN P system, the role of these
simple neurons is similar to that of a 2-input NAND gates in the Boolean logic:
they may not provide the most compact design but they are sufficient to be the
basis of more generic implementations. In fact, HP and LP neurons could be used
to build more complicated neurons in the following manner. A neuron with several
rules can be seen as operating in two consecutive steps: counting the input spikes
received and then deciding which rule to apply (we will call these two stages as
the counting and decision steps). In order to implement a more complex neuron
using HP and LP neurons, we can start by considering these two steps separately.
The counting operation sums up all the input spikes and the decision operation
selects the rule to be applied based on the number of input spikes. For example,
Figure 3 presents a simple counter using HP and LP neurons, which can count
up to 3 spikes. The idea of the proposed design is to convert the input spikes into
binary code, which also functions as a 1-bit adder. As shown in Figure 3, the 1-bit
adder has three inputs (In1, In2 and In3) and two outputs (O and E). Output
O (odd) will produce a spike if there are one or three input spikes; on the other
hand, output E (even) will produce a spike if there are two or more input spikes.
Hence E represents the most significant bit (MSB) while O represents the least
significant bit (LSB).

The 1-bit adder functions in the following way. If there is only one input spike,
neuron 3 will apply the forgetting rule and will not fire; thus neuron 5 will also
not fire; neurons 1 and 2 will pass the input spike to neuron 4 and neuron 4 will
emit a spike. If there are two input spikes, neuron 3 will execute the firing rule
emitting a spike that will be passed to E by neuron 5; neuron 4 will get two input

The Stochastic Loss of Spikes in Spiking Neural P Systems 357

1 2 3

4 5

In1 In2 In3

O E

E O

In1 In2 In3

Fig. 3. Schema and corresponding symbol of a 1-bit adder. This 1-bit adder has three
parallel inputs and converts the number of inputs into binary code.

spikes (one spike from In1 and one spike from In2 or In3) or no input spikes (two
input spikes from In2 and In3) and thus no spike will be emitted from O. If there
are three input spikes, neuron 3 will execute the firing rule emitting a spike which
will be passed to E by neuron 5; neuron 1 will pass the input spike to neuron
4 and neuron 2 will execute the forgetting rule, thus neuron 4 will see only one
spike and then fire a spike out. In conclusion, from the described dynamics, it is
possible to see that the E output works as the carryout and the O output works as
the sum. The presented 1-bit adder converts the number of input spikes (up to 3)
into binary representation. With an expanded adder, an arbitrary number of input
spikes can be converted into binary representation. Figure 4 presents a converter,
which can sum up to 12 input spikes. With similar circuits we can perform the
counting of the received input spikes in more complex neurons.

On the other hand, the decision steps (implemented by a “ruler” neuron) works
like a look up table. Different inputs a0a1 · · · an will activate different parts which
correspond to different rules (see Figure 5). These parts can be designed separately
and then combined together. For example, the circuit corresponding to the rule
a7 → a is shown in Figure 5. The deactivate signal comes from the output of the
rulers with a larger threshold. All the firing rulers are connected to an LP neuron
to assemble the final output. The forgetting ruler is similar to the firing ruler. The
only difference is that it is not connected to the output neuron.

Figure 6 presents an instance of a neuron that can be implemented by an
opportune combination of HP and LP neurons. We will briefly explain how such
complex neuron can be engineered. Since the firing rules in the target neuron have

358 Zihan Xu, Matteo Cavaliere, Pei An, Sarma Vrudhula, Yu Cao

����

��

��

E O O E E O O E

E O

E O

O E

O E O E

O E

O E

Fig. 4. Design of a multi-bit adder.

a3 a2 a1

deactivate

Fig. 5. Ruler design of rule a7 → a.

The Stochastic Loss of Spikes in Spiking Neural P Systems 359

a threshold of 6 spikes, the implementation needs a 6-spikes counter shown in
Figure 7.

�����

�� ��

�� ���

�� ��

�� ���

Fig. 6. Instance of a more complex neuron that can be implemented by a combination
of HP and LP neurons.

����� �����

�����

�����

����

��

���������

����

��

Fig. 7. Design (left) and symbol (right) of a 6-spike counter.

Figure 8 presents the design of the neuron. Each sub-part (in dashed rectangles)
corresponds to one rule in the target neuron. Notice that a2 does not lead to any
firing or forgetting rule and it is used only to generate a feedback to the neuron.

After combining the converter and the ruler described in Figure 7 and Figure 8,
the implemented neuron is shown in Figure 9. The presented design procedure can
be applied to any number of inputs and any combination of rules. In an informal
way this shows how the basic HP and LP neurons can be used to engineer more
complex neurons.

360 Zihan Xu, Matteo Cavaliere, Pei An, Sarma Vrudhula, Yu Cao

������

���������	

�����

���������	

������

����� �� �� �� ��� �� ����� ��
��

Fig. 8. Design (left) and symbol (right) of the ruler.

a2

a0

a1

out

feedback

converter ruler

Fig. 9. Connect converter and neuron to assemble a more complex neuron.

2.2 Design of Arithmetic Circuits

In a different context the spiking neuron model has been proved to be more appro-
priate to simulate the Boolean logic than other traditional neuron models, such as
threshold gates and sigma-pi units, [11].

In the area of SN P systems there have been several attempts to synthesize
arithmetic operations with SN P neurons [5, 15]. In this paper we provide an
hardware implementation for the basic HP and LP neurons and we sketch how
using these two basic types any arithmetic circuit could be designed. In particular,
we have designed an adder and a comparator as two relevant examples. The adder
is the core component of any arithmetic logic unit. In today’s digital computer,
most of the arithmetic functions, such as multiplication, subtraction, and division,
are constructed from a binary adder with the addition of other smaller circuits
(e.g., inverter or shifter). However, there are two fundamental differences in an SN

The Stochastic Loss of Spikes in Spiking Neural P Systems 361

P system from the traditional Boolean logic that must be considered when moving
to a hardware implementation: (1) Number representation: In SN P systems, the
input and output numbers are presented as natural numbers, instead of binary
numbers. The exact encoding mechanism can be either the time interval between
two spikes, or the number of continuous spikes, [15]. In this paper we use this last
option. (2) Logic construction: A neuron of an SN P system (in short, an SN P
neuron) follows different rules from Boolean logic gates and the network to realize
a given arithmetic function is, in general, not directly extendable. As the SN P
system design is still in its initial stage, the implemented SN P systems are not
general-purpose but fully customized to the specific arithmetic functions.

For instance, a 1-bit full adder is presented in Figure 10.(a). It computes the
sum of two natural numbers, with the maximum output value of 7. Note that the
minimum number of SN P neurons needed for such a design is 4. Four additional
neurons are adopted in order to improve the reliability of the adder, a strategy
that will be explained in Section 4. A feedback is applied to handle the Carry-out
(Cout) in the addition.

Figure 10.(b) shows the timing diagram of this adder. The delay from the
primary input to the final output corresponds to the number of levels in the SN P
system. In this specific design, there are three levels. Some neurons, such as the LP
neuron in the second level, are introduced only as a buffer, in order to synchronize
the operation across the different branches.

The other representative arithmetic circuit is the comparator that evaluates the
absolute difference between two numbers and compares the value versus a given
threshold. This function is widely used in many image-processing applications.

In a conventional digital design, the function of comparison is usually realized
by a number of Boolean logic gates, such as XOR. Figure 11 presents a new design
that is fully based on LP and HP neurons. For two input spiking trains, the com-
parator outputs 1 if the difference of two inputs is greater than or equal to 3. The
SN P design is based on three parts: Part 1: Subtraction between the two inputs.
Part 2: Comparison versus the threshold of 3. The threshold value determines the
number of levels in the comparison network. Thus, if a different threshold value
is needed, the chain of LP neurons in P2 can (should) be proportionally adjusted
while P1 and P3 remain the same. Part 3: Production of one or zero output spikes,
depending on the comparison result.

In the design of an SN P system comparator, the maximum length of input
spike trains is actually not limited since there is no feedback in the network (this
is different from the previously presented design of an SN P system adder).

3 Error Model: The Loss of Spikes

In this paper we address the problem of engineering reliable computation circuits,
based on SN P systems, using unreliable components. This is done by identifying
what is generally called the “error model” of interest. In this section, we propose

362 Zihan Xu, Matteo Cavaliere, Pei An, Sarma Vrudhula, Yu Cao

�

 Sum

 In1 In2

 Cout

�
In1

In2

Cout

Sum

Time 0 2 4 6 8 10

Fig. 10. Design of an SN P system working as 1-bit full adder and its time diagram.

a 1-bit error model to describe the error associated to a single SN P neuron.
According to definition of firing, a neuron can only fire one spike at each time
step. However, in a realistic scenario, it is reasonable to assume that an emitted
spike is lost or, more generally, a spike does not reach a neuron at the designed time
(for this reason, we call this problem as the “spike missing error”). For instance,
this problem can happen when the spike arrives at the destination only after the
neuron evaluates the inputs or the synapse fails to work.

For modeling and analysis feasibility, we evaluate the spike missing error con-
sidering the equivalent problem of shifting the threshold present in the HP and LP
neurons. The threshold shifting error consists in the fact that the threshold in the
firing rules shifts one more unit. The two types of problems are indeed equivalent,
see Figure 12.

There is, however, a specific case in which these two types of error are not
equivalent. In fact, when the number of input spikes is exactly one, the LP neuron
with threshold equal to two will behave differently in the considered types of errors.
The neuron with the threshold shifting error will fire while the neuron with spike
missing will not fire because does not receive any input. However, if we assume
that the spike missing problem is due to the fact that a single spike did not reach
the target neuron before the neuron evaluates the other input spikes, we can realize
that the spike missing error will never happen on the first spike and the situation

The Stochastic Loss of Spikes in Spiking Neural P Systems 363

�

Output

 In1 In2

�

� �

 P1

 P2 P3

P1: Subtraction

P2: Comparison

P3: Conversion

Fig. 11. Design of an SN P system comparator.

described cannot really occur (a neuron starts evaluating its input only after it
receives its first spike).

From the above description, one can conclude that the one spike missing error
is equivalent to a shift of the threshold by one in LP and HP neurons. Since the
threshold shift error is simpler to analyze and model, we consider this as basic
issue to study the reliability in SN P systems.

4 Reliability

4.1 Reliability Improvement of Single Neurons

In this section we analyze the reliability of single neurons and of arithmetic circuits
by considering the error model previously proposed. Moreover we propose a design

364 Zihan Xu, Matteo Cavaliere, Pei An, Sarma Vrudhula, Yu Cao

Fig. 12. Spike missing error and threshold shifting error for LP and HP neurons.

that can improve the reliability, which is more effective and efficient than the tra-
ditional Triple Modular Redundancy (TMR) (usually considered in the area). To
systematically improve the error tolerance of an SN P system, our approach starts
from enhancing the reliability of a single LP and HP neuron. For this purpose, a
general solution is to add more identical units and a majority vote unit, such that
the output will be correct if the majority of those multiple copies work correctly
and the majority vote unit is correct. Figure 13.(a) illustrates an example of TMR
for an LP neuron. Three copies of the LP neuron work in parallel; the HP neuron
serves as the majority vote unit in this case. Based on the proposed error model,
the TMR functions correctly when there is at most one erroneous neuron. If we
assume that each neuron has an error rate of x then the success rate of the TMR
circuit is (1− x)4 + 4x(1− x)3.

Although TMR is a general and widely used solution in many designs, a better
solution should recognize the specific properties of the considered system and error
model. Figure 13.(b) presents an alternative motif that is specifically designed for
the LP neuron and the 1-bit error model. It uses the same number of neurons as
TMR, but in a different topology. According to the considered error model, the
error can only happen to the two inputs case. If the neuron has one input spike or
three input spikes, the output is still correct. Thus avoiding two inputs cases is a
good choice to improve reliability. The motif proposed in Figure 13.(b) fails only
when HP neuron and the output LP neuron are erroneous. In this case the success
rate is 1−x2. Figure 14 shows the success rate of TMR and the proposed motif as

The Stochastic Loss of Spikes in Spiking Neural P Systems 365

� In1 In2

 Out

 In1 In2

 Out

Fig. 13. Two methods to improve the reliability of a 2-input LP neuron. (a) TMR (b)
Specific motif for an SN P system.

function of the error rate x. To achieve 95% success rate, the error rate that TMR
can tolerate is 9.76% while the motif can tolerate up to 22.4%. Therefore, the
proposed motif has much better reliability than TMR. In addition, the reliability
of the motif can be further enhanced by adding more HP neurons in parallel
with the one in Figure 13.(b). The success rate is presented in Figure 14 as well,
which shows the asymptotic behavior. This suggests that such solution provides
the flexibility to meet various reliability demands, at the cost of more neurons.

TMR

LP Motif

Number of
HPs in the motif:

1, 2, 3, 4, 5

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

S
u

c
c
e
s
s
 R

a
te

 o
f

th
e
 M

o
ti

f

Error Rate per Neuron

Fig. 14. The reliability of an LP neuron is significantly improved by the motif proposed
in Figure 13.(b)

366 Zihan Xu, Matteo Cavaliere, Pei An, Sarma Vrudhula, Yu Cao

4.2 Reliability of Arithmetic Circuits

The motif described in Figure 13.(b) has been already used in the adder and
comparator designs presented in Section 2 (Figure 10 and Figure 11). Figure 15
shows the reliability of the adder and comparator, versus the error rate of the
neuron. The comparator has a lower reliability than the adder, due to its specific
and more complex network structure.

0.0 0.5 1.0
0.0

0.5

1.0

C
irc

ui
t S

uc
ce

ss
 R

at
e

Error Rate per Neuron

Adder

Comparator

Fig. 15. Reliability of the SN P system adder and comparator.

Figure 16 presents a comparison between the SN P system adder and a CMOS-
based adder. At the 95% success rate of the adder function, the SN P system design
tolerates up to 17.2% error rate per neuron, as compared to 0.57% in the single
module implementation or 4.4% error rate per NAND gate in the case of TMR.

As previously discussed, a general strategy to increase the reliability of SN
P systems is to add more neurons. In this case it is important to evaluate the
hardware cost versus the reliability as shown in Figure 17. The figure presents the
error tolerance at 95% success rate of an adder in both cases, CMOS-based SN
P system design (Section 5) and Boolean design. In the SN P system design, the
tolerance of a single neuron error is rapidly enhanced by moderately addition of
neurons. Overall we can then conclude that SN P systems are more robust than
Boolean circuits and with lower area cost.

5 Implementation and Performance

Based on the designs presented in Section 2, this section investigates the effective
hardware implementation that may benefits IC design as early as possible. CMOS

The Stochastic Loss of Spikes in Spiking Neural P Systems 367

0.00 0.10 0.20 0.30

0.90

0.95

1.00

S
u

c
c

e
s
s

 R
a

te
 o

f
th

e
 A

d
d

e
r

Error Rate per Computation Unit

A

0.57%
B

4.4%
C

17.2%

A: NAND-based
B: NAND-based TMR
C: SN P-based

a
2
 a

Fig. 16. The reliability of the SN P system adder is much better than the CMOS based
adder.

102 103 104

0.0

0.2

0.4

0.6

0.8

1.0

To
le

ra
nc

e
of

 N
eu

ro
n

Er
ro

r R
at

e

Number of Transistors

SN P design

Boolean design

Fig. 17. The reliability of the SN P system is effectively improved with smaller area
overhead than the Boolean design.

368 Zihan Xu, Matteo Cavaliere, Pei An, Sarma Vrudhula, Yu Cao

is selected for its technological maturity, although other emerging devices may
offer a better potential [1, 12, 10]. 45nm PTM is used in all presented simulations,
[16].

5.1 DRAM-type Neuron Design

In1

In2

Out

C1

C2 C3

C4

�

Integrate Fire

�

�

In1

In2

Outn1
n2 n3

C1

C2 C3

C4

Fig. 18. CMOS-based neuron design, using DRAM-type structures.

Previous works in the neuromorphic field have proposed many analog and
digital versions of CMOS circuits that emulate the realistic, yet complicated neuron
behavior [6]. On the other side, this work targets the design of a simple circuit that
will capture the essential features of SN P systems. A simple design is essential
as it benefits the efficiency and the low power consumption. The exact designs
for LP and HP neurons are presented in Figure 18, using 11 and 10 transistors,
respectively. Their design is guided by the following two principles, one inspired
from the hardware consideration, and the other one from the neurophysiological
behavior of the neuron: (1) Memory-based computing: The operation of the neuron
is better described as a finite state machine, rather than a logic function [11]. Thus,
it is essential to have a memory to hold the current state and to decide the next
state. This is akin to a lookup-table based computing.

(2) Leaky Integrate-Fire model (LIF): The LIF model is a classical one used
to describe the biological process in a spiking neuron [9]. It contains three basic
steps: the neuron integrates the input spikes, determines the number of output
spikes, and leaks out the history. The presented neuron design follows these two
principles. It adopts a DRAM-type structure to realize memory-based computing.
Since the goal is to design arithmetic circuits, a long-term memory, such as Phase-
Change-Memory or magnetic memory, [12, 10], may not be necessary; the leaky
DRAM with short-term data storage serves well for our design purpose. As shown
in Figure 18, the design can be viewed as three components, reproducing the LIF
model: the first DRAM structure integrates all input spikes into a capacitor, on
which the voltage level represents the integrated results. During the evaluation
stage, the voltage is transferred to another smaller capacitor, which serves as the

The Stochastic Loss of Spikes in Spiking Neural P Systems 369

output register; this voltage is then compared with the threshold voltage of an
inverter to determine whether the firing or forgetting rule should be applied. Af-
ter the firing/forgetting, two NMOS transistors, gated by C1 and C4, are turned
on to reset those two capacitors; this operation emulates the leaky function. In
addition, as all nodes in the neuron are reset to the ground level at the end of
the operation cycle, the leakage power is minimized. Finally, a second inverter is
added to restore the spike quality and to buffer the connection with other neurons.
Figure 19 illustrates SPICE simulation results of a 2-input HP neuron. If there are
more input channels, only the number of pass-gates in the integrate stage needs
to the adjusted. The value of the capacitors is 10fF , which can be realized from
layout parasitic without pursuing explicit capacitors. Although four clock signals
are applied to control different stages of the operation, they can be generated from
a single clock source: for instance, C1 and C2 are delayed from C3, and C4 is the
inverted version. Currently the neuron operates at 0.5 ns per cycle. This is lim-
ited by the RC constant during charging the capacitors, as well as the partition
among various phases. The reset process does not limit the speed. Further opti-
mization is feasible to improve the operation. Since both input and output signals
are rail-to-rail voltage spikes, there is no issue to cascade neurons.

�
C1

1 2 3

Time (ns)

C2

C3

C4

In1

In2

n1

n2

n3

Out

Fig. 19. SPICE simulation of a 2-input HP neuron.

370 Zihan Xu, Matteo Cavaliere, Pei An, Sarma Vrudhula, Yu Cao

As presented earlier, by connecting these neuron circuits into appropriate SN
P systems, various functions can be realized. Figure 20 demonstrates SPICE sim-
ulations for the adder and the comparator, as described in Section 2. Different
circuits can experience different signal delays that are proportional to the lev-
els of the considered SN P system. The integrity of the spikes is, however, well
maintained through the operation.

�

0

1

0

1

0.0 2.0 4.0 6.0

0

1

Time (ns)

In1

In2

Adder Out

�

0

1

0

1

0.0 2.0 4.0 6.0 8.0

0

1

Time (ns)

In1

In2

Comparator Out

Fig. 20. The timing diagrams of SN P systems associated to arithmetic circuits.

5.2 Circuit Performance Benchmarks

As compared to other neuromorphic circuit design, [6], the proposed CMOS design
is simple, implying the benefit in power and density, as well as the vulnerability
under process variations. The pass-gate structure in the DRAM-type design may
exacerbate this problem. On the other, by reducing the design cost at the neuron
level with the price of reliability, the expectation is to better manage the global
system reliability through the use of SN P system, as discussed in the previous
sections. This section benchmarks major performance metrics, such as reliability,
switching energy and the leakage. It uses 45nm SPICE simulation with threshold
voltage (Vth) variations. Figure 21 samples the tolerance of (Vth) variance (σV th)
at single neuron and at circuit level. The circuits of LP and HP neurons have a
different tolerance to (Vth) variance due to their specific circuit structures. Fur-
thermore, if 95% success rate is used as criteria, it is observed that the tolerance
to (Vth) variance is improved from a single neuron to the SN P system, confirming
the reliability of the topology.

For time-free P system application, [2], it is important to evaluate the impact
of stochastic delays for the application of spiking rules, [2]. Figure 22 presents the
tolerance of stochastic delays (σtd) of the adder and of the comparator ([2]). For
95% success rate, the circuits can tolerate up to 0.5ns clock cycle. A tradeoff can
be made to improve the reliability versus signal delay by slowing down the clock
cycle. Table 23 summarizes the evaluation of the energy consumption of SN P
systems and of Boolean design based on the NAND gate. The switching energy

The Stochastic Loss of Spikes in Spiking Neural P Systems 371

0 10 20 30

0.7

0.8

0.9

1.0

Su
cc

es
s

R
at

e

Vth (mV)

LP Neuron
 15 mV

HP Neuron
 11 mV

0 10 20 30
0.80

0.85

0.90

0.95

1.00

Su
cc

es
s

R
at

e

Vth (mV)

 Adder
20.6 mV

Comparator
 18.6 mV

Fig. 21. SN P systems tolerate well (Vth) variations at single neuron and circuit levels.

0 20 40 60 80

0.7

0.8

0.9

1.0

Su
cc

es
s

R
at

e

td (ps)

 Adder
52.4 ps

Comparator
 42.7 ps

Fig. 22. SN P systems tolerate well stochastic delays.

372 Zihan Xu, Matteo Cavaliere, Pei An, Sarma Vrudhula, Yu Cao

is averaged over a set of input patterns that are shared between SN P systems
and Boolean designs. For a simple circuit, such as the adder, the SN P system
design costs more switching energy because its operation is more complicated. For
instance, the SN P system neuron has to be reset at the end of every cycle. This
condition is similar to that of a dynamic Boolean logic, which may cause more
energy consumption in the next cycle. However, as circuit complexity goes up, the
difference in switching energy goes down, partially because the size of an SN P
system increases more slowly than that of Boolean circuits. SN P systems have

Function Design Style
Switching Energy

(fJ)
Leakage Power

(µW)

Adder
Boolean 5.76 2.15

SN P 83.8 0.55

Comparator
Boolean 83.73 38.52

SN P 151.8 0.91

Fig. 23. The benchmark of energy and leakage.

much lower leakage power, benefiting from the fact that is reset at each cycle.
Overall, the design style of SN P systems may reflect different tradeoffs between
active and leakage power.

6 Discussion

This work represents the first step toward the IC design based on the principles
and concepts of SN P systems. The proposed design reveals promising features
such as the feasibility of large-scale integration, superior to the one obtained in
the conventional Boolean logic. In this paper we have shown the implementation of
simple SN P system neurons using DRAM-type CMOS circuits. We have provided
a quantitative analysis by using 45nm simulations that illustrate how the oper-
ation of a single SN P neuron and of an assembled SN P system shows superior
reliability at the circuit level and tolerate a larger amount of unreliability, than
the one obtained in the Boolean design. These results seems very promising and
we expect more future results on the hardware implementation of SN P systems,
on the design optimization of SN P neurons and on the integration with emerging
nanoelectronics.

References

1. Bernstein K., Cavin R.K., Porod W., Seabaugh A., Welser J. Device and Architec-
ture Outlook for Beyond CMOS Switches. Proc. IEEE, 98, 12, 2010.

The Stochastic Loss of Spikes in Spiking Neural P Systems 373

2. Cavaliere M., Mura I. Experiments on the Reliability of Stochastic Spiking Neural
P Systems. Natural Computing 7, 4, 2008.

3. Cavaliere M., Sburlan D. Time-independent P systems. In Membrane Computing.
International Workshop WMC5, Milano, Italy, 2004, LNCS 3365, Springer, 2005,
pp. 239–258.

4. Gerstner W.. Population Dynamics of Spiking Neurons: Fast Transients, Asyn-
chronous States, and Locking. Neural Computation, 12, 43, 2000.

5. Guitérrez-Naranjo M.A., Leporati A. First Steps towards a CPU made of Spiking
Neural P Systems. J. Comput. Commun. Control, 5, 3, 2009.

6. Indiveri G. et al. Neuromoprhic Silicon Neuron Circuits. Frontiers in Neuroscience,
5, 73, 2011.

7. Păun Gh. Spiking Neural P Systems: A Tutorial. Bulletin of the EATCS, 91 (Feb
2007).

8. Păun Gh., Rozenberg G., Salomaa A. Eds. The Oxford Handbook of Membrane
Computing. Oxford University Press, 2010.

9. Knight B.W. Dynamics of Encoding in a Population of Neurons. J. Gen. Physiol.,
59, 6, 1972.

10. Kuzum D., Jeyasingh R.G.D., Lee B., Wong H.-S.P. Nanoelectronic Programmable
Synapses based on Phase Change Materials for Brain-Inspired Computing. Nano
Lett, 12, 5, 2011.

11. Schmitt M. On Computing Boolean Functions by a Spiking Neuron. J. Annals of
Mathematics and Artificial Intelligence, 24, 1-4, 1998.

12. Sharad M., Augustine C., Panagopoulos G., Roy K. Spin-Based Neuron Model with
Domain-Wall Magnets as Synapse. Trans. Nanotechnology, 11, 4, 2012.

13. Song T., Maciás-Ramos L.F., Pan L., Peŕez-Jiménez M.J. Time-Free Solution to
SAT Problem Using P Systems with Active Membranes. Theoretical Computer Sci-
ence, 529, 2014.

14. Pan L., Zeng X., Zhang X. Time-Free Spiking Neural P Systems. Neural Computa-
tion, 23, 5, 2011.

15. Zeng X., Song T., Zhang X., Pan L. Performing four Basic Arithmetic Operations
with Spiking Neural P Systems. Trans. NanoBioscience, 11, 4, 2012.

16. Predictive Technology Model, available at http://ptm.asu.edu

