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Theories as Categories 

Michael P. Fourman, Elec. Eng., Brunel University 
michael@ee.brunel.ac.uk 

and 
Steven Vickers, Dept. of Computing, Imperial College. 

This paper is not, and is not intended to be, original. Its purpose is to present a couple 

of examples from the folklore of topos theory, the theory of classifying topoi in 

particular. This theory and its applications developed initially without the benefit of 

widespread publication. Many ideas were spread among a relatively small group, 

largely by word of mouth. The result of this is that the literature does not provide an 

accessible introduction to the subject. Computer scientists studying the logic of 

computing have recently become interested in this area. They form our intended 

audience. In the space (and time) available we can only hope to provide a small 

selection of the many ideas missing from, or buried in, the literature. We attempt to give 

a perspective of the structure of the subject. Our viewpoint is, of necessity, 

idiosyncratic, and our treatment brief. We hope that missing technical details may be 

reconstructed from the literature. This may require some diligence. 

To apportion credit for the ideas presented here is difficult so long after the event. 

Lawvere and Joyal have a special position in this subject. Their intuitions have shaped 

it. Many others, who participated in the Peripatetic seminars in Europe, the New York 

Topos Theory Seminar (which also wandered) and the Category Theory meetings at 

Oberwolfach, contributed also. Their contributions are, in general, better reflected in 

their published works. 

Finally, to apportion blame; this paper derives from notes taken by SJV of a talk by 

MPF. Any misrepresentations are the responsibility of the latter. 
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Introduction 

Computer scientists have a far more flexible view of formalism and semantics than 

traditional logicians. What is regarded as a semantic domain at one moment may later 

be regarded as a formalism in need of semantics. A simple example of this 

phenomenon arises in the hierarchy of abstract machines which may be used to 

implement a high-level language. We aim, in this paper, to illustrate the use of category 

theory as a general setting for the study of theories and interpretations, which provides 

the kind of flexibility computer scientists are after. Unfortunately, the theory we present 

here does not seem to apply directly to computer science - for reasons we shall 

mention later. We hope it will provide an example, on which a theory of the logic of 

computation may later be modelled. 

The theory we use as an example is variously known as topos theory, categorical logic 

or sheaves and logic. What this theory provides is a unified view of models, 

interpretations of a theory in a semantic domain, 

model 

Theory " -  Semantic Domain 

interpretation 

and interpretations of one theory in another. 

The unification is achieved by considering both sides of this arrow to be categories, the 

interpretation being a functor preserving some structure. With this basic conception: 

that categories may be viewed as theories, and certain functors between them as 

interpretations, many categories of category may be viewed from a logical perspective. 

We illustrate the presentation of theories as categories using examples of two extreme 

cases, a propositional theory and an algebraic theory. 

For the benefit of those who have ventured into category theory already, we mention a 

few specific examples. Neophytes should first tackle the body of the paper, where 

explicit examples are presented in a more elementary way. 

The category, Lira, of (small) categories with finite limits, and functors which preserve 

these limits, is one example which embodies equational logic. Various equational 

theories are represented as categories with finite limits, relations between them are 
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expressed as limit preserving functors. One example we shall look at is the theory of 

Abelian groups, which is represented by the dual of the category of finitely presented 

Abelian groups. 

The category, Top°P,  of (Grothendieck) topoi and the inverse image Darts of 

geometric morphisms, is another which embodies geometric logic. Finally, Lot°P, the 

category of locales with inverse image maps, embodies geometric propositional logic. 

We use these as (extremal) examples. Different categories correspond to different 

theories or semantic domains. Differing logics (or fragments of logic) correspond to 

different categories of category. In the current form of the theory, topoi and geometric 

morphisms play a special rSle. This is partly because they provide a natural extension 

of the usual set-based semantics: we can consider models "in a topos". Models in Set, 

the category of sets and functions, provide classical semantics. Kripke models, 

Boolean-valued models, Heyting-valued models, permutation models and Beth 

models, can all be expressed as models in particular topoi. 

Perhaps more importantly, other fragments of logic are related to geometric logic by 

adjunctions. For example, the obvious forgetful functor 

Top °p ~ Lim 

has a left adjoint: Given a (small) category C with finite limits, the Yoneda embedding 

C ~ Set C°p 

provides us with a topos, setC°P, such that interpretations (limit preserving functors) 

of C in a topos E correspond naturally to interpretations of SetC°P in E (geometric 

morphisms from E to sC°P ). Similarly, the functor, 

Top °p ~ Loc°P 

which takes a topos to the locale of its subobjects of 1, has a left adjoint which 

associates to a locale ~ the topos, Sh( ~ ) of ~ -valued sets, or sheaves on 

[Fourman & Scott, 79]. 

In general, the topos which represents a theory in this way is called the classifying 
topos of the theory. It is the topos freely generated by the theory, in the sense that the 

passage 

theory category I | ,v  classifying topos 
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is left adjoint to the forgetful functor which treats a topos as a theory category. (This is 

what we mean here by free .) 

Models for the theory, i.e. functors of a particular sort from the theory to a semantic 

domain, correspond to geometric morphisms from the semantic domain to the 

classifying topos; morphisms between theories correspond to geometric morphisms (in 

the other direction) between the classifying topoi. In particular, if we view the 

classifying topos as a semantic domain in its own right, the identity (geometric) 

morphism on the classifying topos corresponds to a model of the theory, its generic 

model. 

The reader will probably already be aggrieved by the use of arrows in two conflicting 

directions: interpretations and models go one way, geometric morphisms the other. 

Historically this goes back to Grothendieck's dictum: a topos is a generalised space. 

This slogan should be taken literally, but not na'fvely: it means that we can apply 

intuitions from the category of topological spaces and continuous maps to the category 

Top, and hence to logic. It does not mean that any space is a topos, in the naTve sense 

of "is". Formally, what we have is an adjunction relating Top to the category, Esp, of 

topological spaces. This provides a formal basis for the two, logical and geometric, 

views of topoi. Two views are better than one, and one learns to live with the arrows. 

Propositional theories 

The propositional logic we consider has finite conjunctions ^, arbitrary disjunctions V, 

true T and false .L. We axiomatise a notion of entailment relation S I- ~, (S entails ~) 

where ~ is a proposition and S is a finite set of propositions, The logical laws governing 

these are expressed by the following proof rules: 
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reflexivity - 

monotonicity - 

transitivity - 
S 

s I -~  

S , ¥  I "  q) 

I- 

sl- , 

A - -  

si-  sl- , 

S l "  <P^¥ 

V -  
S, ~i I "  cp isl 

S , V ~  i !-- q) 

s FT ± 

Recall that on the left-hand side we have finite sets of formulae, so the occurrence 

there of a single formula, ¢, should be interpreted as { t~ }, and the commas signify set 

union. Double lines signify rules which may be invoked in either direction. 

This structure could also be presented algebraically by axiomatising the relation, 

J- ~, which is a preorder. Modulo equivalence (mutual entailment) the formulae form 

a distributive lattice, the locale of models of the theory. Locales are the Lindenbaum 

algebras of our propositional theories. 

We elaborate a little on this viewpoint as it exemplifies the general view of topoi as 

both theories and spaces. A locale is a complete lattice with finite infs distributive over 

arbitrary sups. The prime example is the lattice, O(X), of open sets of a topological 

space, X. For sober spaces, continuous maps X --) Y correspond to inverse image 

maps O(Y) -e O(X) which preserve finite infs and arbitrary sups (this may be taken as 

a definition of "sober"). Note the directions of the arrows! From the logical point of view 

these inverse image maps preserve the logical connectives of geometric propositional 

logic and correspond to interpretations of one theory in another. From the geometric 

point of view, the truth-value lattice is the locale of opens of the one-point space. 
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Models of a theory correspond to geometric morphisms from the one-point space to the 

corresponding locale. Thus points of the locale correspond to models of the theory. 

We give an example to show how such propositional theories can be non-trivial: 

Example - We take as elementary propositions, all symbols Pa,b where a and b are 

rational numbers with a < b. We choose a real number, r, and associate to it a 

truth-valuation on these propositions: 

[[Pa,b]] = { true if a < r < b 

{ false otherwise 

This is a classical formulation, constructively the lattice of truth values should be 

viewed as the power set of the one-point space, {*}. We then write 

[[Pa, b]] = { * [ a < r < b }. 

This initially confusing notation indicates that we map to the top element, T = {*} just in 

case r lies in the open interval (a,b). (This is just a special case of the familiar 

set-theoretic notation { x I P(x) } .) The lattice of truth values is also known as the 

Sierpinski locale. 

We now write down some sequents which are valid under this interpretation. To keep 

the valuation uppermost in our mind, we write the truth condition r E (a,b) in place of 

the corresponding proposition, Pa,b. The validity of the sequent can then be observed 

directly, without a mental translation from the proposition to its truth condition. 

r E (a, b) [- r E (a', b') 

r e ( a , b ) A r E ( c , d ) ] -  r e ( m , n )  

re  ( a , b ) A r e  (c,d) [- 1 

T [- V { r E ( a , b ) [ a < b e Q }  

r e ( a , b )  [- r e ( a , d ) v r E  (c,b) 

re  (a,b) l- 

i fa '<  a<  b<  b' 

if m = max (a,c), n = min (b,d) 

i f b < c  

i f a < c < d < b  

V { r E  (a', b') I a<  a' < b' < b}  

Furthermore, every truth valuation making these sequents valid arises, in this way, from 
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a unique Dedekind real, r (exercise). Note, now, that in the Lindenbaum algebra of this 

theory, the basic propositions form a basis (the conjunction of two basic propositions is 

either a basic proposition or false). If we assume the completeness theorem, we can 

deduce that the Lindenbaum algebra is the lattice of open sets of the reals. Viewed as 

a locale, it is just the space of real numbers. The points of this space, the models of the 

theory, are just real numbers. However, we also see that the topology of the reals is 

intrinsic in the axiomatisation we have given. 

To give another view of this example, consider the poset of finite non-trivial rational 

open intervals, ordered by inclusion (I ~ J if 1 is contained in J). A truth valuation is a 

map from this poset to the Sierpinski locale. Now we characterise algebraically the 

truth valuations satisfying our axioms. The first axiom states that thie truth valuation 

should be order-preserving: 

oif I< Jthen f l<_ fJ  

Order-preserving valuations satisfying the next three axioms may be characterised by 

the further requirements that: 

• if f I = T and f J = T then for some K K < !, K <_ J and fK = T 

• for some I, f I = T 

We say a map with these properties is flat (see below). (Note that, in particular that f 

preserves those finite meets which exist.) 

To charac~erise the maps arising from reals among all flat maps, we have to introduce 

the idea of covering - a family of overlapping intervals covers its union. More precisely, 

a family F = {(a i, bi) } of rational open intervals covers (c, d) iff in the real line we have 

(c,d) = U i (a i, bi). We can then characterise the maps we want as those which preserve 

covers, in the sense that if F covers K and [[ K ]] = T then for some J e F, we have 

[[ J ]] = T. Of course, we'd rather not talk about the real line until we've defined it, so 

we want more elementary ways of defining covers. 

Firstly, we introduce an abstract notion of covering. A relation F covers K. between 

intervals, K, and families, F, of subintervals of K is a Grothendieck topology iff: 

{ K } covers K 

If F covers K and J is a subinterval of K, then F ,I. J = { I n J 1 I ~ F } covers J. 
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If F covers K, and G is such that G $ I covers I, for each I e F then G covers K. 

If F is a family of subintervals of K and { I I I ~ J for some J e F } covers K then so 

does F. 

Clearly, the notion of covering by overlapping intervals introduced above gives an 

example of a Grothendieck topology. It may be characterised as the least Grothendieck 

topology (fewest covers) on the poset of rational open intervals such that: 

{ (a, d), (c, b) } covers (a, b) whenever a -< c < d _< b 

{ (a', b') I a < a' < b' < b } covers (a, b). 

These conditions correspond to our last two axioms. (The axioms for a Grothendieck 

topology find their logical reflection in the choice of the underlying logic.) 

The reals are now the flat, cover-preserving maps. 

(Of course, there are many other possible Grothendieck topologies, for example, if we 

omit the last condition, we get the notion of finite cover.) 

We can recover the opens of the locale from this presentationas follows. A crible is a 

downwards closed family of rational open intervals, (a,b) e K and a <_ a' < b' < b 

implies (a', b') e K. A crible K is closedfor a given topology iff whenever K $ I covers I, 

then I e K. The closed cribles for the topology we have given correspond to the opens 

of the real line. 

Note that if we want only to consider covering cribles, we can omit the final clause from 

our definition of Grothendieck topology. It says only that a family covers providing the 

crible it generates does. 

To summarise briefly, we have presented a variety of views of a particular propositional 

theory. The logical, or syntactic, view gives rise to a Lindenbaum algebra which may 

be viewed geometrically as a locale. Models of the theory are points of this locale. The 

syntactic view has a more algebraic, but still recognisable presentation as a 

Grothendieck topology on a poset. 

As we remarked earlier, we can reflect this discussion in the category Top by taking 

sheaves on the locale. It is also possible to construct the category of sheaves directly 

from the poset equipped with its Grothendieck topology. 
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Algebraic Theories 

We consider Abelian groups as an example. From a categorical viewpoint, an Abelian 

group is an object A in Set, equipped with primitive operations represented as 

morphisms: 

+: A 2 -->A 

-: A--> A 

e: 1--> A 

Such that certain diagrams commute. For example, to stipulate that e is a left identity, 

we ask that the diagram 

A 
e x A  

A x A  

A 

should commute. (Here, e is the composition of • with the unique morphism from A to 

1.) In order to express this requirement, we need to use the product structure on our 

semantic domain, but it is clear how to interpret this definition in any category with finite 

products. 

Lawvere showed how to view this more abstractly. The primitive operations, together 

with the morphisms that exist by virtue of the product structure, generate a subcategory 

of the semantic domain whose objects are the finite powers of A, and whose 

morphisms can be regarded as derived operations on A (or, rather, tupies of derived 

operations). Let T be the category with formal products of a generating object as 

objects, and tuples of formal derived operations as morphisms. (Formal derived 

operations may be regarded as terms modulo provable equivalence.) This category is 

identified as the algebraic theory, and models of the theory correspond to finite-product 

preserving functors to the semantic domain. 

It is instructive to identify T concretely. We write n for the formal product of n copies of 

the generating object. Morphisms from n to m will be m-tuples of derived operations in 
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n variables. A formal derived operation in n variables can be represented as an 

element of the free Abelian group on n generators, Z n. Furthermore, an m-tuple of 

elements of a group, G, can be represented as a homomorphism from the free group 

7 m --) G. Thus the morphisms from n to m are given by group homomorphisms Z m ---) 

Z n. In this way, we identify T °p as the category FFAb of finitely generated, free 

Abelian groups. The functor to Set corresponding to a particular group, G, is given by 

n ,v Hom [ Z nG] 

Thus an algebraic theory is viewed as a category with finite products. Models of the 

theory are finite-product preserving functors to the semantic domain. 

For technical reasons, it is convenient to take a slightly different view. Instead of just 

taking formal finite products in the construction of the theory, we take formal finite limits. 

Models are then represented as finite-limit preserving functors to a semantic domain 

with finite limits. The category of formal finite limits can be represented concretely as 

opposite of the category, FPAb, of finitely presented Abelian groups. We can then 

appeal to the theorem mentioned earlier, that, if C has finite limits, finite-limit 

preserving functors from (3 to a topos E can be represented by geometric morphisms 

E --) SetC°P. Once the variances have been sorted out, this shows that models of 

our theory, Abelian groups, have been represented by geometric morphisms to the 

presheaf category Set FPAb. How does this look if we view topoi as generalised 

spaces? Since the topos Set corresponds to the one-point space, the points 

(morphisms from the one-point space) of our classifying topos are Abelian groups. 

Thus we regard this topos geometrically as the "space of abelian groups". 

We may, of course, view FPAbOP formally (syntactically) rather than concretely. We 

outline this construction of a syntactic category which is the analogue for predicate 

logic of the propositional Lindenbaum algebra. We take, as objects, presentations (by 

generators and relations) and, as morphisms, tuples of terms. Just as a judicious 

choice of notation helped us to see the validity of the axioms for a real, so here we 

write a presentation with generators x 1 ..... x n and relations r 1 ..... r m as 

{ Xl ..... Xn I rl ..... r m }. This is really the notation for the set to which the presentation 

will be sent by a model, where the x i then range over the underlying set of the model. A 
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morphism { x 1 ..... Xn I rl ..... rm } ~ { Yl ..... Yp I Sl ..... Sq } is then given by a p-tuple 

~1 ..... ~p of terms in x I ..... x nsuchthat 

rl ..... rml-Sl  ..... Sq[~ i /y i ]  

If the x i satisfy the relations rj ,  then the Ck satisfy the relations s I . Again, we have to 

quotient by an equivalence relation; provable equivalence under the assumption of the 

r i . The corresponding homomorphism in FPAb is the one taking the generators, y, to 

the interpretations of the terms ~. The condition given guarantees that there is such a 

homomorphism. The category thus constructed will be equivalent to the concretely 

given version, FPAb°P.  

Taking stock, we have again given multiple views, formal and concrete, of a theory and 

shown how it may be represented as a topos. 

Geometric theories 

The notion that combines propositional and algebraic theories is that of geometric 

theory. Geometric logic is many-sorted predicate logic with equality, =, finite 

conjunction, ^,T, arbitrary disjunction, V, 1, and existential quantification 3. The rules 

governing = and 3 are non-standard in that they cater for terms which are possibly 

undefined (see Scott [79], Fourman and Scott [79]), the rest are just as for propositional 

logic. 

Firstly, we assume that our primitive relations and operations are strict. 

R(x) ! "  x = x 

f(x) = f(x) ~ = x 

("x -- x" is interpreted as "x exists"). 

Then we give the axioms for substitution, equality and existence: 

sl-  
s[~/x] l -  e[a/x] 
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S I "  ~ [ ¢ / X ]  

s, ~ = o  i -  ~ [ ~ / x ]  

S,x=x,  ~ I "  (p 

S, 3 x.¥ i "  (p 

(where x is not free in (p) 

Given a geometric theory, we construct a category C, the syntactic category of the 

theory. Its objects are formulae, q)(x), (which might, more suggestively be written 

{ x I (P }), which are strict, in the sense that (t) (x) 1" xi = xi. The bold faced variables 

here signify the list of free variables of the formula. A morphism from ~(x) to ~(y) is an 

equivalence class [e(x, y)] where e is "provably a function from $ to ~", i.e. 

e(x, y) I- $(x) ^ ~/(y) 

~(x) I- 3 y. e(x, y) 

e(x, y) ^ e(x, y') I- y = y' 

The equivalence is defined by [e] = [TI] iff e and 11 are provably equivalent, i.e. 

e(x, y) ]- rl(x, y) and "q(x, y) [- e(x, y) 

In the case of propositional theories, we introduced a notion of covering to capture 

disjunctive axioms. We do the same here. (Existential quantification is another form of 

disjunction.) The definition of a Grothendieck topology generalises directly to 

categories: 

A crible of an object, X, is a set, K, of morphisms with codomain X, such that, if 

f: Y - )  X ~ K, and g: Z ---) Y, then f o g ~ K. A Grothendieck topology is specified 

by saying which cribles of X cover X, subject to the restrictions: 

{ f I f : Y ~  X } covers X 

If K covers X and f: Y --) X, then f*K covers Y 
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If K covers X and J is a crible of X such that f*J covers Y, for each f: Y ~ X e K, 

then J covers X. 

(Where f*K = { g I f 0 g e K }.) 

A category equipped with a Grothendieck topology is called a site. Sites are defined to 

allow us to construct sheaves on them. The category of sheaves on a site is a 

Grothendieck topos. Cribles are so-called because crible is French for an agricultural 

variety of sieve, a riddle, which is used to separate the germ from the stalks. 

A functor between sites preserves covers iff the crible generated by the image of a 

covering crible is a covering crible. A Grothendieck topos has a canonical topology, 

generated by covering families of epimorphisms. The fundamental theorem of sheaf 

theory says that cover preserving functors, from a site C with finite limits, to a 

Grothendieck topos, E, correspond to geometric morphisms from E to the category of 

sheaves, Sh(C). 

We make C into a site by defining { [ei(x i, y)]: {~i(xi)} ~ {v(y)} } to cover {~(y)} if the 

family { [ei(x i, y)] } is "provably epimorphic", i.e. 

~(Y) I" vi 3 xi.ei(x i, y) 

This category has finite limits, and the models of the theory are the finite-limit and cover 

preserving functors to Set. In this case it is the construction of taking sheaves on a site 

which provides the left adjoint we need to reflect the theory in Top. The category of 

sheaves is thus a topos classifying models of the theory, as before. 

Notions of truth. 

One aspect of topos theory is difficult to convey in an introductory discursion. It is easy 

to show that topoi other than Set ~ID be used as alternative semantic domains. It is 

more difficult to show why this might be profitable. Alternative semantics can have, at 

least, two distinct uses. The first is purely technical; alternative semantics can provide 

metamathematical results, the most celebrated example being Cohen's forcing. The 

second is, in part, philosophical; examples are Kripke's possible world semantics for 
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modal logic, and Beth's models for intuitionism. Topoi have been used to provide an 

extension of Beth's semantics which explicates Brouwer's conception of choice 

sequence (Fourman [82]). Work of Hyland [82] promises an explication of the logic of 

continuous functionats. A characteristic of these approaches is that a semantic domain 

is defined and then its intrinsic logic is studied. One approach to the development of a 

logic of computation should be to look for the appropriate semantic domain, and then 

study its intrinsic logic. Unfortunately, it appears that our examples can only be taken 

as parables in this endeavour: it is not straightforward to reconcile categories of 

domains, replete with fixed-points and solutions to domain equations, with the theory of 

topoi. 

We conclude with a tabulation of the different views which may be taken of various 

notions: 

Looical Cateaorical Geometric 

Theory T Classifying topos E T Space of models T 

Trivial theory Set One-point space * 

Model of T Set --~ E T Point of T 

Interpretation Geometric morphism°P Continuous map°P 
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