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The Performance of SCI Memory Hierarchies�Roberto A Hexsely & Nigel P TophamzTechnical Report CSR-30-94Department of Computer ScienceEdinburgh UniversityFebruary 1994AbstractThis paper presents a simulation-based performance evaluation of a shared-memory mul-tiprocessor using the Scalable Coherent Interface (IEEE 1596). The machines are assembledwith one to 16 processors connected in a ring. The multiprocessor's memory hierarchy con-sists of split primary caches, coherent secondary caches and memory. For a workload of twoparallel loops and three thread-based programs, secondary cache latency has the strongestimpact on performance. For programs with high miss ratios, 16-node rings exhibit high net-work congestion whereas 4- and 8-node rings perform better. With these same programs,doubling the processor speed yields between 20 and 70% speed gains with higher gains onthe smaller rings.1 IntroductionThe Scalable Coherent Interface (SCI) is an IEEE standard for high performance interconnectssupporting a physically distributed logically shared memory [18]. SCI consists of physical in-terfaces, a logical communication protocol, and a distributed cache coherence protocol. The�rst silicon implementation of the protocols by Dolphin Technology, Norway, has been com-pleted recently and some companies are already made public that SCI is part of forthcomingsystems [15].This paper presents the results of simulation experiments on a shared-memory multiprocessorbased on SCI. The experiments investigate the two main components of SCI: the distributedcache coherence protocol and the packet based communication protocol. The impact of coherentcache size and latency, and processor clock speed on performance is assessed. The 90/10 localityrule states that \a program spends about 90% of its run time in 10% of its code"[16]. For alarge number of parallel programs, the 10% are parallel loops that, for instance, solve a systemof linear equations. Thus, the workload selected for the simulations consists of two programsbased on parallel loops { Gaussian elimination and all-to-all minimum cost paths { and threethread based programs from Stanford's SPLASH suite [27], namely Cholesky, MP3D and Water.The paper is organised as follows. Section 2 examines related work on both SCI and othershared-memory multiprocessors. Section 3 describes the simulator. Section 4 describes theworkload and the simulation results are presented and discussed. Finally, conclusions are drawnin Section 5. The Appendix gives a brief introduction to SCI.�To appear in Proceedings of the 8th International Workshop on Support for Large-Scale Shared MemoryArchitectures, Canc�un, April 1994.yrh@dcs.ed.ac.ukznpt@dcs.ed.ac.uk 1



2 Related WorkThe quest for scalable cache coherent shared-memory multiprocessors has produced several cachecoherence protocols and machine architectures [17]. To date, the KSR1 [9] is the only commer-cially available ring-based shared-memory multiprocessor. It is built as a hierarchy of rings andcache coherence is maintained by a snooping write-invalidate protocol. An important feature ofthe KSR1 is its memory hierarchy, composed only of primary and secondary caches, in what iscalled a Cache Only Memory Hierarchy (COMA). The KSR1 can scale up to 1088 processors ina two-level hierarchy of rings. The ring:0 can accommodate 32 processors; the ring:1 supportsup to 34 ring:0's. The remote access latency on a 32-node ring is under 7�s and, to reduce itse�ects, the KSR1 supports the software mechanisms prefetch and poststore.Barroso and Dubois, in [5], present the design and simulation results for a slotted ring multipro-cessor. They investigate two cache coherence protocols, one based on snooping and the other ona full-map directory. Their results indicate that the snooping protocol yields better performance.The maximumnumber of nodes that can be assembled on a slotted ring is limited to between 32and 64. The directory based protocol yields miss latencies between 280 and 320ns on an 8-nodering, and between 310 and 380ns on an 16-node ring, for MP3D, Water and Cholesky [27].Stanford's DASH is another example of a cache coherent shared memory multiprocessor [21, 22].It consists of clusters of processors interconnected by a wormhole routed 2-D mesh. The memorycoherence is maintained by a distributed invalidation directory-based protocol. The DASH, likeSCI-based machines, is called a Cache Coherent Non-Uniform Memory Access Machine (CC-NUMA) because of the di�erence in access times for local and remote references.The cache coherence protocol in SCI is a directory-based write-invalidate protocol. The directoryimplemented with doubly linked lists and allows for scaling up to 64K nodes. Communicationis via unidirectional links and the basic topology is the ring. Higher dimensionality networksare implemented by having more than one SCI interface on each node. Scalability to 64K nodescomes at the price of added complexity in the communication and coherence protocols. Forinstance, a write to a shared datum needs a larger number of network messages for its completionthan needed by the same operation in DASH [21]. Johnson, in [20], proposes additions to thecache coherence protocol to alleviate this problem. Additional links can be used in the linkedlists, thus turning them into trees, and signi�cantly improving the performance of invalidationswhen there is global sharing. Aboulenein et.al, in [1], examine SCI's hardware synchronisationprimitive Queue On Lock Bit (QOLB). Its e�ciency comes from it �tting in neatly with thelinked-lists: waiting processes are naturally enqueued when they join the lock's sharing-list.Data transport in SCI is based on pipelining data onto the network links. Scott and Goodman,in [25], investigate the performance of pipelined k-ary n-cube networks. In such a network,multiple bits may be traversing the same wire simultaneously. This makes the network's cycletime independent of wire length. When compared to synchronous networks (see [10, 2]), thepipelined networks yield lower latency and higher bandwidth, especially for high dimensionalnetworks. The optimal dimensionality of pipelined networks is higher than that of synchronousnetworks and they should be grown by increasing the dimensionality while keeping the radixunchanged.Scott et.al, in [24], and Scott in [26], present an analytical model of the SCI logical communicationprotocol. The model is based on M/G/1 queues and the ring is modeled as an open system.Their results indicate that the 
ow control mechanism is e�ective in preventing starvation and inreducing the e�ects of a hot transmitter on the ring. This mechanism is not as e�ective for non-uniform routing distributions. The maximum ring throughput is reduced by up to 30%, largerrings being more adversely a�ected. Read-request/read-response data-only ring throughput,for 64 byte data blocks, is around 800Mbytes/s (600Mbytes/s) on a 16 (4) node ring, fairlydistributed among the nodes. They show that an SCI ring compares favourably to a bus.2



3 The SimulatorThe multiprocessor consists of processing elements (PE's) interconnected in a ring by SCI links.Each PE contains a processor, a split primary cache, a coherent secondary cache, memory andan SCI interface. The CPU is a 32-bit scalar Harvard processor that performs an instructionfetch and possibly a data read/write access on every clock cycle. The processor clock frequencyis a simulation parameter and the values investigated are 100 and 200MHz. The size of theinstruction cache (i-cache) and data cache (d-cache) is 8 Kbytes each, both being direct mapped.The data cache is write-through with no allocation of block on write misses. The secondarycache is direct mapped and, for private data references it is copy-back with no block allocation.The secondary cache size is a simulation parameter. Sizes investigated are 64, 128, 256 and,512 Kbytes. Memory is simulated as if implemented with DRAMs. On all three levels of thememory hierarchy, cache and memory lines (blocks) are 64 bytes wide.The internal buses are 64 bits wide, except the processor-primary caches which are 32 bits wide.The access latency for the secondary caches is 3 processor cycles. Loading a line from thesecondary cache into the primary caches or SCI controller costs 3 processor cycles plus 2ns per64 bit word (16ns). Loading a line from/to memory costs 120ns of access latency plus 10 ns per64 bit word (80ns). Thus, a cache-to-memory read-line transaction costs 246ns for a 100MHzprocessor. To that, the network latency must be added if one of the ends of the transaction,cache or memory, is at another node.The memory model is sequential consistency [12]. The memory hierarchy satis�es the multilevelinclusion property [3]. So, the SCI coherency protocol actions a�ect only the secondary caches,thus called coherent caches. Coherency between primary and secondary caches is maintained bythe cache controller. In order to simplify the simulator, it is assumed that on data accesses theconcurrent instruction fetch hits in the primary cache and, accesses to local data and instructionsdo not cause any tra�c on the ring. It is also assumed that page faults have zero cost. Allocationof pages to nodes is naive: the �rst node that references a given page becomes its home memory.References to pages mapped to memory on other nodes are called remote references.Simulation Methodology The simulator consists of an approximate model of the SCI linkinterfaces and of a detailed model of the distributed cache coherence protocol. The model of thering interfaces is similar to those in [25, 24, 23] but rather than using statistical analysis, tra�crelated values are measured and directly in
uence the behaviour of the simulated system. Themodel of the cache coherence protocol mimics the \typical set protocol" as de�ned in [18].The address sequences used to drive the simulator are generated by instrumenting the programs(described in Section 4) with Symbolic Parallel Abstract Execution (SPAE) [13]. SPAE isbased on the GNU gcc compiler and allows for tracing parallel programs at any desired levelof detail. The resolution of the simulator is at instruction/data reference level. The cost ofeach memory reference is computed from the state of the system { level of network tra�cand coherence actions performed { and those values are used to schedule the execution of thesimulated processes/processors. Thus, the global interleaving of memory references is simulatedwith better accuracy than is possible with the method proposed in [23], at a higher computationalcost however. Typically, a simulation run takes from 2 to 30 cpu hours on a lightly loadedSparcstation2, depending on the data set size.Model of the Ring Interface For the description that follows, please refer to Figure 1. Thenetwork clock cycle is 2ns (500MHz) and the physical links are 16 bits wide, in accordance withthe SCI standard. The delay faced by a packet waiting to be transmitted (Twait ) depends onthe number and size of packets passing through the node. Likewise, the delay faced by packetsat the bypass bu�er (Tpass ) depends on the frequency and size of packets inserted by the node.Wire propagation delay (Twire ) is 2ns. The time to parse an incoming packet (Tstrip ) and, thetime to gate an outgoing symbol onto the output link (Tout ) are also 2ns each. Thus, the delay3
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TpassFigure 1: SCI ring interface.involved in sending a packet from NodeA to NodeB and waiting for its echo can be computed byLAB . To simplify the expressions, we omitted the modulus operations on summation indexes.LAB;type = TwaitA + Tout + 2 size(type)+ B�1Xi=A+1(Twire +Tstrip + Tpass i +Tout )+ Twire + Tstrip +TpassB + Tout+ A�1Xi=B+1(Twire + Tstrip +Tpass i + Tout )+ Twire + TstripWhere type can be one of Pcmd8 , Pcmd16, Pdata , PdataX , Pecho and, their sizes are 8, 16, 40,48 and 4 symbols, respectively (1 symbol = 2 bytes). An idle symbol must precede each packetthus making the sizes 9, 17, 41, 49 and 5 in the throughput calculations. The term 2 size(type)is the time, in nanoseconds, needed to insert a packet into the ring. The peak bandwidth of alink or bu�er is the maximumnumber of symbols that can pass through it per time unit. In theabsence of tra�c, peak bandwidth of the output or bypass bu�er is 500 Msymbols/s (1Gbyte/s).The average packet size through a link or bu�er is (Pavg = Pp fpsize(p) =Pp fp) wherep 2 fPcmd8, Pcmd16, Pdata, PdataX, Pecho g and fp is the frequency of packet type p. Thethroughput S of a bu�er is the number of symbols that pass through it per unit of time:(Sbu�er = Pp fpsize(p)): The utilisation of a link or bu�er is given by the throughput di-vided by the bandwidth available, times the average packet size. Thus, Twait is given byTwait = Pavg tx Stx =(BWmax � Spass )and, Tpass is Tpass = Pavg pass Spass =(BWmax � Stx )where Spass and Stx are the throughputs of the bypass and output bu�ers respectively,(BWmax � Spass ) is the bandwidth available at the output bu�er, and (BWmax � Stx ) isthe bandwidth available at the bypass bu�er.In the equation for the latency above, by making Tpass and Twait zero, the resulting equationyields the static latency of the ring, that is, it depends solely on propagation delays and is, innanoseconds, (6N + size (p)) for N processors and packet p. Conversely, the dynamic compon-ent of the latency is obtained by considering only Tpass and Twait . The dynamic latency is4



estimated from the measured tra�c. Bu�er utilisation and average packet size are measured at10�s intervals. Values from interval i are used to compute latencies during interval i+ 1.The ring interface model assumes in�nite input queues and does not account for the retrans-mission of packets dropped at their destinations. Since the memory is sequentially consistent,processors stall on remote references. However, cache or memory controllers may attempt totransmit response packets to complete outstanding transactions. The e�ect of more than onesource of packets on a node is easily minimised by implementing at least two active bu�ers [24].The model also ignores intranode contention, that is, the processor of a hot spot node does notsee any contention for the internal buses and its local cache or memory.The accuracy of this method lies between that of detailed simulation of the SCI communicationprotocol, where the simulator keeps track of every symbol travelling on the ring [8, 7, 24] and,that of trace postprocessing [23] or statistical analysis, where the network simulator is driven byrandom access patterns [6].4 Simulation ResultsThe results of the experiments are presented in this section. First, the workload is presented andthe behaviour of the programs discussed. Then, the following are examined in turn: in
uence ofcoherent cache size and latency, bandwidth and round-trip delay and, generation scalability.Workload Input data was scaled up with ring size to keep the number of references to shareddata per processor roughly constant. The simulations cause a minimum of 106 references toshared data. See Table 1 for the data-set sizes and Table 2 for the reference counts of eachprogram. In all cases, tracing starts after initialisation.Ring size 1 2 4 8 16chol() �xed size inputge() (rows) 136 171 216 272 343mp3d() (molecules) 3000 4500 6750 10125 15187paths() (vertices) 70 88 111 140 176water() (molecules) 54 78 113 163 237Table 1: Input data-set sizes.Figure 2 shows the shared data hit ratio of all the programs for cache sizes of 64 and 256Kbytes. Figure 3 shows the fraction of the execution time due to network latency, as computedby Equation 1. In those �gures, `Ch' stands for Cholesky, `Ge' for Gaussian elimination, `Mp'for MP3D, `P' for all-to-all paths and `W' for Water. A program is said to be processor boundif the largest proportion of the execution time is spent performing instructions. Conversely, aprogram is memory bound when the largest fraction of the time is spent on data references.
5



Ring size 1 2 4 8 16Cholesky { chol()shared refs 106 (% wr) 10.3 (18) 12.7 (23) 8.9 (22) 5.9 (20) 2.2 (14)private refs 106 (% wr) 31.0 (27) 8.4 (26) 3.3 (21) 1.3 (14) 1.9 (21)instructions 106 71.7 37.0 23.0 14.4 8.9Gaussian elimination { ge()shared refs 106 (% wr) 2.6 (33) 2.6 (33) 2.6 (33) 2.5 (33) 2.5 (33)private refs 106 (% wr) 12.9 (6.9) 12.8 (6.9) 12.8 (6.8) 12.7 (6.8) 12.7 (6.8)instructions 106 33.7 33.2 33.4 33.2 33.2MP3D { mp3d()shared refs 106 (% wr) 5.4 (39) 6.7 (24) 5.4 (22) 4.9 (18) 6.5 (10)private refs 106 (% wr) 12.1 (17) 9.0 (18) 6.8 (18) 5.1 (18) 3.7 (18)instructions 106 32.7 29.5 23.0 18.8 19.7All-to-all minimum cost paths { paths()shared refs 106 (% wr) 1.0 (0.8) 1.0 (0.6) 1.0 (0.5) 1.0 (0.3) 1.0 (0.3)private refs 106 (% wr) 5.6 (6.3) 5.5 (6.3) 5.5 (6.3) 5.5 (6.3) 5.5 (6.3)instructions 106 15.1 14.9 14.9 14.9 14.7Water { water()shared refs 106 (% wr) 1.4 (16) 1.6 (14) 2.0 (12) 2.8 (8) 5.5 (4)private refs 106 (% wr) 14.3 (18) 14.2 (19) 15.2 (19) 15.3 (19) 15.1 (19)instructions 106 28.4 28.5 30.1 32.6 37.6Table 2: Per processor reference counts for the workload. 64K caches, 100 MHz.chol() performs parallel Cholesky factorisation of a sparse matrix using supernodal elimina-tion [27]. The scheduling of parallel work is done by a task queue and granularity of work islarge. Cache size is one of the parameters used by the scheduler to allocate work to processors.The input data used is bcsstk14. For all ring sizes, chol() spends over 50% of the time executinginstructions and, for ring sizes 2-8, over 20% of the time accessing shared data at the local cacheand memory. For the 16-node ring, that falls to about 10%. Shared data hit ratios are alwaysabove 90%. So, for all ring sizes investigated, chol() is processor bound.
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the form (x = cx) followed by a rank�1 update of the matrix (A = A+ dxy) where x and y arevectors, c and d are scalars. At the k-th stage, matrix A has dimension (n� k)� (n � k + 1).Input data set size grows as 1:26� nodes . ge() spends over 67% of the time executing instruc-tions, and 15% on shared data references. For all ring sizes (1-16), secondary cache hit ratiosare above 97%. Thus, ge() is processor bound.
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uid 
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is based on barriers and granularity of work is large. The data set is scaled as 1:45 � nodes .The system of molecules is simulated for 4 time steps. water() spends over 50% of the timeperforming instructions and over 25% referencing private data. Even though shared data hitratios aren't very high, less than 15% of the time is spent on shared data references. Thus,water() is processor bound.Sharing-list length is de�ned as the number of copies that have to be purged when a line isupdated. Because of the serialisation imposed by the coherence protocol, the cost of purginggrows linearly with the length of the sharing-list. The sharing-list length re
ects the level ofinterference between processors on each other's computation. paths() has an average sharing-list length that grows as P=2, for P processors. The other four programs have sharing-listlengths of one or less for ring sizes 2-8 and under 1:2 for 16-node rings. Sharing-list length isfairly independent of cache size.Cache size and latency. Coherent cache size and latency can have a serious impact onperformance. The e�ect of cache size is examined next. Figure 4 displays the execution timeas a function of ring and cache size for chol() and ge(). For chol(), on a 4-node ring,the 128Kbytes cache is about 50% slower than the two larger sizes. The di�erence is not aspronounced for the other ring sizes. The 64Kbytes cache being faster than the 128Kbytes is dueto an optimisation in chol(), by which the supernodes are chosen to �t the coherent caches.For ge(), the di�erences in run time are below 4% and this agrees with the rather small changesin shared data hit ratio with cache size.
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weight the cost increase against the speed gains. The plots in Figures 4 and 6 provide evidenceagainst the use of 64Kbytes secondary caches. The more conservative cache latency of 3 cycleswas adhered to for the experiments.Nodes 4 8change: c size c latency m latency c size c latency m latency128 512 2 cy 4 cy 80 160 128 512 2 cy 4 cy 80 160chol() 1.15 1.01 0.88 1.14 0.98 1.00 1.06 0.99 0.87 1.13 0.97 1.04ge() 1.01 1.00 0.93 1.07 1.00 1.00 1.01 1.00 0.93 1.07 1.00 1.00mp3d() 1.02 0.98 0.92 1.08 0.94 1.06 1.00 1.02 0.95 1.08 0.96 1.05paths() 1.03 1.00 0.94 1.07 0.99 1.01 1.04 1.00 0.94 1.06 1.00 1.01water() 1.00 1.00 0.91 1.10 0.99 1.01 1.03 1.00 0.90 1.09 0.99 1.01average 1.04 1.00 0.92 1.09 0.98 1.02 1.03 1.00 0.92 1.09 0.98 1.02Table 3: Sensitivity of execution time to variations in cache size, cache latency and memory latency.The basis is 256Kbytes, 3 processor cycles and 120ns, respectively.Bugge et.al, in [8], compare the performance of three uniprocessor memory architectures, two ofwhich based on a 32- and on a 64-bits wide Futurebus+ . The third employs SCI links between sec-ondary cache and memory. Their trace-driven simulation results indicate that with a time-sharedmultiprogramming workload, secondary cache size has the largest impact on the performance ofthe memory hierarchy whereas the in
uence of tag access latency is small.Throughput and round-trip delay. The behaviour of SCI's transport mechanism is invest-igated next. Figure 7 shows the throughput per node, that is, the number of bytes per timeunit inserted in the output bu�er by the processor and cache/memory controller. The averagepacket size varies from 36:0 to 43:4 bytes, smaller rings carrying larger packets. Also, smallercaches generate more of the smaller packets that carry the coherency commands.
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280 and 320ns. On a 16-node ring, between 320 and 380ns and, on a 32-node ring, between 390and 440ns. On 8-node rings, the shared data miss latencies of an SCI ring are comparable tothose of a slotted ring. On 16- and 32-node rings, the SCI ring would have higher latencies.Figure 10 shows the tra�c per link as a function of ring size. The tra�c consists of the packetsinserted by a node and the packets passing through that node addressed to downstream nodes.mp3d() and paths() produce high levels of tra�c and su�er higher latencies. The plots inFigures 7, 9, and 10 provide evidence that SCI rings do not scale well past 8 nodes for programsthat have poor locality or high levels of data sharing.
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uence of this can be gauged from the values for the uniprocessor. As discussedearlier, for a 100MHz clock, an increase of 30% in memory latency slows execution down by upto 6%, chol() and mp3d() being the worst a�ected. Most of the loss in speedup for chol(),mp3d() and paths() is caused by saturation of the network. Plots of the ratio of link tra�c for100 and 200MHz processors are almost identical to those in Figure 11. Programs that use littlebandwidth can use a lot more whereas programs that nearly saturate the ring su�er even higherround-trip delays with a faster clock. 12
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WFigure 11: Speedup achieved by doubling processor clock frequency, with cache sizes of 64 (left) and256Kbytes (right).5 ConclusionThis paper presents the results of detailed simulation of multiprocessors based on SCI rings. Thesimulator was driven with address traces produced on-the-
y from �ve scienti�c applications.These consist of two parallel loops, Gaussian elimination and all-to-all minimumcost paths, andthree thread based programs from the SPLASH suite: Cholesky, MP3D and Water.The in
uence of secondary cache size and latency and of memory latency were investigated. Forthe workload chosen, rings with 2 to 16 processors and cache sizes of 64, 128, 256 and 512Kbytes,it was found that secondary cache latency has a stronger impact on performance than cache size.64Kbytes caches proved to be too small for the data set sizes employed. Memory latency hasthe smallest, but non-negligible, impact on execution time.Of the �ve programs, only MP3D and all-to-all paths needed high bandwidths, `paths' onlyachieving high throughputs with 64Kbytes of cache and its lower hit ratios. The throughputsachieved by MP3D on 4- and 8-node rings were between 80 and 90Mbytes/s. On 16-node rings,its throughput fell to about 55Mbytes/s because of the high network tra�c (over 600Mbytes/sper link). Its round-trip delays were about 50% higher than the other programs. Rings with16 nodes seem to saturate at the load levels caused by MP3D. All programs except Water showpoorer performance on a 16-node ring when compared to 4- or 8-node rings. This indicates that,for the workload used, the maximum e�cient ring size is 8 nodes.The clock frequency of microprocessors roughly doubles every two or three years. The use offaster processors increases the throughputs of the programs and their demands on the network.The experiments shown that, with a processor clock and secondary cache twice as fast, rings thatare saturated with slow processors will be even more saturated with faster processors. Programsthat are not near to saturating the network achieve high speedups.The continuation of the work described here comprises of the simulation of higher dimensionalnetworks. These will consist of rings of 4 or 8 nodes interconnected by switches. It is anticipatedthat the high computational costs will limit the scope of investigation somewhat.Acknowledgements The authors would like to thank Stuart Anderson and Todd Heywood forhelpful comments on an early version of this paper. The referees provided valuable comments oncontents and presentation. Graham Riley, at CNC, Manchester University, supplied the parallelversion of Gaussian elimination. Roberto Hexsel is partially supported by a grant from CAPES,Ministry of Education, Brazil. 13
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[23] Daniel Menasc�e and Luiz A Barroso. A methodology for performance evaluation of parallel ap-plications on multiprocessors. Journal of Parallel and Distributed Computing, 14(1):1{14, January1992.[24] S L Scott, J R Goodman, and M K Vernon. Performance of the SCI ring. In Proc. 19th Int. Symp.on Comp. Arch., pages 403{414. ACM SIGARCH Comp Arch News 20(2), May 1992.[25] Steven L Scott and James R Goodman. Performance of pipelined K-ary N-cube networks. TechReport 1010, Univ of Wisconsin{Madison, February 1991.[26] Steven Lee Scott. Toward the design of large-scale, shared-memory multiprocessors. Tech Report1100, Univ of Wisconsin{Madison, 1992. PhD thesis.[27] J P Singh, W-D Weber, and A Gupta. SPLASH: Stanford ParalleL Applications for SHared-memory. Technical Report CSL-TR-91-469, Computer Science Dept, Stanford Univ, April 1991.Also in ACM SIGARCH Comp Arch News 20(1).Appendix: The Scalable Coherent InterfaceThe description that follows concentrates on those features of SCI that are of relevance in thispaper. For more details, please see [18, 19, 14]. SCI consists of three parts, the physical-levelinterfaces, the packet-based logical communication protocol, and the distributed cache coherenceprotocol. The physical interfaces are high speed unidirectional point-to-point links. One of theversions prescribes links 16 bits wide which can transfer data at peak speed of 1 Gbyte/s. Thestandard supports a general interconnect, providing a coherent shared-memory model, scalableup to 64K nodes. An SCI node can be a memory module, a processor-cache pair, an IO moduleor any combination of these. The number of nodes on a ring can range from two to a fewtens. For most applications, a multiprocessor will consist of several rings, connected together byswitches, i.e. nodes with more than one pair of link interfaces.Logical Protocol The logical protocol comprises the speci�cation of the sizes and types ofpackets and of the actions involved in the transference of information between nodes. A packetconsists of an unbroken sequence of 16-bit symbols. It contains address, command/control andstatus information plus optional data and a check symbol. A command/control packet can be 8or 16 symbols long, a data packet is 40 symbols long and an echo packet is 4 symbols in length.A data packet carries 64 bytes of data.The protocol supports two types of actions: requests and responses. A complete transaction, forinstance, a remote memory data read, starts with the requester sending a request-send packet tothe responder. The acceptance of the packet by the responder is acknowledged with a request-echo. When the responder has executed the command, it generates a response-send packetcontaining status information and possibly data. Upon receiving the response-send packet, therequester completes the transaction by returning a response-echo packet. The communicationprotocol ensures forward progress and contains deadlock and livelock avoidance mechanisms.The network access mechanism used by SCI is the register insertion ring. Figure 1 shows a blockdiagram of the ring interface. A node retains packets addressed to itself and forwards the otherpackets to the downstream node. A request transaction starts with the sender node placing arequest-send packet, addressed to the receiver node, in the output bu�er. Transmission can startif there are no packets at the bypass bu�er and no packet is being forwarded from the stripperto the multiplexor. At the receiver, the stripper parses the incoming packet and diverts it to theinput bu�er. On recognising a packet addressed to itself, the stripper generates an echo packetaddressed to the sender and inserts it in place of the `stripped' packet. If there is space at theinput bu�er, the echo carries an ack (positive acknowledge) status. Otherwise, the packet isdropped and a nack (negative acknowledge) is returned to the sender who will then retransmitthe packet.It is likely that during the transmission of a packet, the bypass bu�er will be �lled with packetsnot addressed to the node. Once transmission stops, the node enters the recovery phase during15



which no packets can be inserted by the node. Each packet stripped creates spaces in the symbolstream. These spaces, called idle symbols, eventually allow the bypass bu�er to drain, when newtransmissions are then possible. The protocol also ensures that the downstream nodes cannotinsert new packets until the recovery phase is complete. This will cause a reduction in overalltra�c and create enough idles to drain the bypass bu�er { for details see [18, 24].When a packet is output, a copy of it is kept in an active bu�er. If the status of its echo isack, the original packet is dropped from the active bu�er and the node can transmit anotherpacket. If the echo carries a nack, the packet is retransmitted. This allows for one or morepackets to be active simultaneously, e.g. one transaction initiated by the processor and other(s)initiated by the cache or memory controller(s). The number of active bu�ers depends on thetype of the \pass transmission protocol" implemented. The options are: only one outstandingpacket, one request-send and one response-send outstanding or, several outstanding request- orresponse-send packets.Coherence Protocol The SCI coherence protocol is a write-invalidate chained directoryscheme. Each cache line tag contains pointers to the next and previous nodes in the doubly-linked sharing list. A line's address consists of a 16-bit node-id and 48-bit address o�set. Thestorage overhead for the memory directory and the cache tags is a �xed percentage of the totalstorage capacity. For a 64-byte cache block, the overhead at memory is 4% and at the cachetags 7%.
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Figure 12: Sharing list setup (left) and purge sequence (right). Solid lines represent sharing list links,dotted lines represent messages.Consider processors A, B and C, read-sharing a memory line L that resides at node M { see16



Figure 12. Initially, the state of the memory lines is `home' and the cache blocks are `invalid'. Aread-cached transaction is directed from processor A to the memory controller M (1). The stateof line L changes from `home' to `gone' and the requested line is returned (2). The requester'scache block state changes to the `head' state, i.e. head of the sharing list. When processor Brequests a copy of line L (3), it receives a pointer to A from M (4). A cache-to-cache transaction,called prepend, is directed from B to A (5). On receiving the request, A sets its backward pointerto B and returns the requested line (6). Node C then requests a copy of L fromM (7) and receivesa pointer to node B (8). Node C requests a copy from B (9). The state of the line at B changesfrom `head' to `mid' and B sends a copy of L to C (10). In SCI, rather than having severalrequest transactions blocked at the memory controller, all requests are immediately prependedto the respective sharing lists. When a block has to be replaced, the processor detaches itselffrom the sharing list before 
ushing the line from the cache.Before writing to a shared line, the processor at the head of the sharing-list must purge theother entries in the list to obtain exclusive ownership of the line { see Figure 12. Node A, inthe `head' state, sends an invalidate command to node B (1). Node B invalidates its copy of Land returns its forward pointer (pointing to C) to A (2). Node A sends an invalidate commandto C (3) which responds with a null pointer, indicating it is the tail node of the sharing list(4).The state of line L, at node A, changes to `exclusive' and the write completes. When a nodeother then the `head' needs to write to a shared line, that node has to interrogate the memorydirectory for the head of the list, acquire head status and then purge the other entries. If thewriter is at the middle or tail, it �rst has to detach itself from the sharing list before attemptingto become the new head.
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