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Abstract 

We investigated whether speakers represent their partners’ task in a joint naming 

paradigm. Two participants took turns in naming pictures; occasionally the (initial) 

picture was replaced by a different picture (target), signalling that they had to stop 

naming the initial picture. When the same participant had to name the target picture, 

he or she completed the name of the initial picture more often than when neither 

participant had to name the target picture. Crucially, when the other participant had to 

name the target picture, the first participant also completed the name of the initial 

picture more often than when neither participant named the target picture. However, 

the tendency to complete the initial name was weaker when the other participant had 

to name the target than when the same participant went on to name the target. We 

argue that speakers predict that their partner is about to respond using some, but not 

all, of the mechanisms they use when they prepare to speak.  

Keywords:  coordination, joint task, prediction, forward model, error repair 
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How do speakers coordinate? 

Evidence for prediction in a joint word-replacement task 

 

1. Introduction 

There is substantial evidence that observers predict actions (e.g., Kilner, Vargaa, 

Duval, Blakemore, & Sirigu, 2004; Ramnani & Miall, 2004; Flanagan & Johansson, 2003; 

Graf et al., 2007; see Wilson & Knoblich, 2005 for a review). For example, the readiness 

potential, which indexes the preparation of motor responses, is present from about 500 ms 

prior the observation of a predictable hand action (Kilner et al., 2004). Similarly, 

comprehenders often predict language (e.g,, Altmann & Kamide, 1999; Van Berkum, Brown, 

Zwitserlood, Kooijman, & Hagoort, 2005; see Huettig, Rommers, & Meyer, 2011; Kutas, 

DeLong, & Smith, 2011; Pickering & Garrod, 2007; Van Petten & Luka, 2012 for reviews 

and discussion). For example, readers experience difficulty (i.e., enhanced N400) when the 

form of the indefinite article in English is not consistent with the initial phoneme of a highly 

expected noun (e.g., "an" when the expected noun begins with a consonant; DeLong, Urbach, 

& Kutas, 2005), indicating that phonological features of an upcoming word can be predicted. 

But how do comprehenders compute such predictions? Researchers have proposed 

different mechanisms (Kutas, et al., 2011; Levy, 2008; Pickering & Garrod, 2007, 2013). In 

this paper, our aim is to answer one general question about the nature of such mechanisms, 

that is: To what extent are the mechanisms used for prediction related to the mechanisms 

used when preparing to speak? In other words, are the process of preparing to speak and the 

process of predicting whether another person is about to speak related to one another? If so, 

one would expect predictions to affect language production on-line. More precisely, if the 
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same mechanism is implicated concurrently in speech preparation and in predicting that 

another person is about to speak, then we would expect the latter process to affect the former.  

There is some evidence that production processes might be involved in prediction 

during language comprehension. Federmeier, Kutas, and Schul (2010) reported that a late 

prefrontal positivity induced by plausible but unexpected nouns (which is thought to index 

error correction and/or prediction updating; Federmeier, Wlotko, De Ochoa-Dewald, & 

Kutas, 2007) is greatly reduced in older compared to younger adults. Importantly, the 

magnitude of this component in the older group correlated with production measures of 

verbal fluency (see also DeLong, Groppe, Urbach, & Kutas, 2012). Similarly, Mani and 

Huettig (2012) found that 2-years-olds with larger production (but not comprehension) 

vocabularies were more likely to predict upcoming referents (by looking at corresponding 

pictures) than their peers with smaller production vocabularies. These studies suggest that the 

ability or tendency to predict during language comprehension is correlated with language 

production abilities both in older adults and in children. 

Pickering and Garrod (2013) proposed that prediction during language comprehension 

is subserved by the same mechanism that subserves feedforward control during language 

production, namely forward models (e.g., Wolpert, 1997). In their proposal, forward models 

map from production commands (communicative intentions) to the (production and 

comprehension) representations that will be retrieved as a consequence of executing those 

production commands. During language production, forward-model predictions are used for 

self-monitoring and learning. During comprehension, they are used in other-monitoring, and 

crucially to speed up and enhance understanding of the speaker’s utterances (see Pickering & 

Garrod, 2014).  

Recent MEG evidence suggests that covert language production (imagining to 

articulate or covert rehearsal in working memory) can selectively enhance early auditory 
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responses to syllables (Tian & Poeppel, 2013; Ylinen et al., 2014). In addition, motor 

activation occurs during speech perception, particularly during adverse conditions 

(D’Ausilio, Bufalari, Salmas, & Fadiga, 2012). Finally, activation in the right cerebellum 

correlates with adaptation to distorted speech in a perceptual task (Guediche, Holt, Laurent, 

Lim, & Fiez, 2014), while rTMS of the right cerebellum delays predictive eye-movements to 

upcoming linguistic referents (Lesage, Morgan, Olson, Meyer, & Miall, 2012). Importantly, 

the cerebellum has been implicated in the computation of forward models by several authors 

(e.g., Ito, 2008), and there is some evidence that the computation of motor-to-auditory 

mappings might be atypical in patients with cerebellar lesions (Knolle, Schröger, & Kotz, 

2013). 

In sum, there is converging evidence for the implication of production mechanisms in 

prediction of one’s own and others’ utterances. Specifically, the evidence reviewed above 

suggests that prediction could involve some form of internal simulation of a production 

process, and that it might be remarkably specific.  In other words, comprehenders might 

simulate, using language production mechanisms, details of the linguistic content of another’s 

utterance, for example associated with meaning (e.g., such as whether an upcoming referent 

is likely to be an edible object) or sound (e.g., whether an upcoming noun is likely to start 

with a consonant, or whether an upcoming vowel is likely to involve formant frequencies 

within a certain range).  

However, at present, clear causal evidence for the implication of language production 

processes in content-specific prediction is limited to phonetics. Neurophysiological studies of 

syllable or pseudoword perception show that an articulation-related mechanism (i.e., 

activation of speech motor programs) is responsible for the effects of overt and covert 

language production on neural responses in auditory areas. But we do not yet know whether 

the same would hold for words and other meaningful units.  
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In addition, production and prediction could share general-purpose mechanisms (e.g., 

heightened attention; preparedness to respond), rather than language-specific mechanisms 

(i.e., processes involved in formulating utterances). While general-purpose mechanisms 

would not be able to support prediction of specific linguistic content (i.e., what somebody is 

about to say), they could in principle support prediction of whether another is about to speak 

(or, indeed, act in some other way). Such mechanisms could, for example, help speakers to 

predict whether another conversational participant is about to take the floor (Wenke et al., 

2011), either by producing a linguistic utterance or by producing a non-verbal utterance (e.g., 

pointing gesture; Clark, 1996). 

In this study, we tested the hypothesis that speakers predict whether another person is 

about to speak using mechanisms that are also implicated when they prepare to speak 

themselves, and investigated whether beliefs about another person’s upcoming task can affect 

the way a speaker produces his or her own utterance. To this aim, we devised a joint language 

production task that requires participants to take turns in speaking. Joint tasks have been used 

to study similar issues in the domain of action, as we briefly discuss below before returning 

to language. 

 

1.1 Joint Tasks in the Action Domain 

In joint task paradigms (Knoblich, Butterfill, & Sebanz, 2011; Sebanz, Bekkering, & 

Knoblich, 2006; Sebanz & Knoblich, 2009), participants are tested in pairs and are assigned 

complementary tasks (i.e., they each perform half of the task that would be performed by a 

single participant in solo task paradigms; see below). For example, in one study (Knoblich & 

Jordan, 2003), pairs of participants attempted to keep a circle aligned with a moving dot on a 

computer screen. In each pair, one participant could accelerate the tracker only to the right, 

while the other could accelerate it only to the left. Performance in the joint task is usually 
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compared to performance in a solo version of the same task. In this study, in the solo version 

an individual participant could control the tracker’s velocity in both directions (using two 

hands).  

Interestingly, Knoblich and Jordan (2003) found that performance in the joint task 

improved over time, and eventually became as good as in the solo task. In the tracking task, 

accurate timing is essential for good performance. For example, the right participant should 

avoid accelerating when the left participant is accelerating in the opposite direction. In order 

to avoid overlap, the right participant needs to predict the left participant’s actions, and vice 

versa. This study therefore suggests that, under some conditions at least (e.g., given sufficient 

time to adapt to their partner), people can predict each other’s actions, and, furthermore, that 

such predictions can affect action planning online in a way that is similar to how predictions 

of the effects of one’s own action can affect planning. 

The rationale behind the comparison between joint and solo versions of the same task 

is as follows: If performance of a participant in a pair (or indeed, performance of the pair as a 

whole) is similar to performance of an isolated participant, then it suggests that similar 

mechanisms underlie performance in both situations. It has been argued that such similarity 

in performance can be explained, in part, by the assumption that self- and other-generated 

actions share the same representational format (though additional mechanisms might be 

necessary; see Sebanz, Bekkering, Knoblich, 2006). Interestingly, it has also been suggested 

that one mechanism operating in joint tasks could involve keeping track of whose turn it is to 

respond (Wenke et al., 2011).  

In this study we apply an analogous rationale to the domain of language and compare 

performance in a joint language task to performance in a solo language task to investigate 

whether predicting that another will speak makes use of the same mechanisms involved in 

speech preparation. Importantly, this is the first study to investigate whether the coordination 
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of two successive utterances between two speakers can be supported by the same 

mechanisms that support the coordination of two successive utterances produced by the same 

speaker. 

 

1.2 A Joint Language Production Task 

In our joint language production task, two speakers, A and B, sit next to one another in 

front of the same computer screen. Speaker A produces an initial utterance (a picture’s name), 

and then speaker B produces a second target utterance (another picture’s name, which is 

unrelated to the first picture’s name). More precisely, when the picture A is instructed to 

name is replaced by a new picture, speaker A has to stop producing her utterance as quickly 

as possible; then speaker B names the new picture (see below). We call this the joint word-

replacement task. We ask whether and how the way speaker A produces the initial utterance 

is affected by the fact that speaker B will later speak. We are interested in speaker A’s (rather 

than B’s) utterance because it occurs first. Therefore, any effects of B’s task on A’s utterance 

would be due to A’s prediction of what B is about to do (and not to A’s comprehension of B’s 

utterance).  

If speaker A indeed predicts that B will speak, the mechanism(s) she uses to compute 

this prediction could stand in one of three relationships with respect to the mechanism(s) she 

uses to prepare her own utterance. One possibility is that prediction mechanisms are entirely 

independent from production mechanisms. For example, predictions could be computed using 

an inference-based mechanism. Note that speaker A does not comprehend any part of B’s 

utterance before she has finished her own utterance (as B starts speaking only after A has 

stopped). But it is possible that A predicts that B is about to respond by inferring what B is 

most likely to do given the instructions A received about the task, perhaps using mechanisms 

involved in elaborative (i.e., predictive) inferences (e.g., McKoon & Ratcliff, 1986).  
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If this account is correct, predicting that another speaker is about to speak should have 

no direct and immediate effect on production processes. Say that speaker A infers that B is 

about to speak. Even if A constructs this inference very quickly (within the space of planning 

and uttering a single word), there is no reason to expect that doing so should affect A’s 

production of her own utterance. Therefore, we term this the separate mechanisms account. 

A second possibility is that the mechanisms that speaker A uses to predict B’s act of 

responding are precisely the mechanisms that she uses to prepare her own utterance. In other 

words, predicting that B is about to speak would entail the same processes on the part of 

speaker A that she would use to prepare to speak herself. We term this the shared 

mechanisms account. If this account is correct, predicting that another is about to speak 

should have the same effect as preparing to speak, because speaker A would automatically 

activate all the production processes leading to the formulation of the target picture name 

even though B has to name this picture. An analogous suggestion has been made in the joint 

action literature to explain why in joint tasks people appear to represent their partner’s 

responses as if they were their own (Knoblich et al., 2011). 

A third possibility is that predictions of others’ utterances are computed using some of 

the mechanisms used when producing utterances, but not all. We term this the overlapping 

mechanisms account. If this account is correct, predicting that another is about to speak 

should have some effect on production processes, but this effect might be different from the 

effect of preparing to speak oneself.  

In order to distinguish among these three possibilities, we tested two more versions of 

our word-replacement task in addition to the joint version described above. In the no-

replacement version of the task, speaker A names the initial picture but speaker B (who is 

present) does not name the target picture. Therefore, B remains silent and there is simply no 

response to predict. In the solo word-replacement task, instead, A names the initial picture 
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and then names the target picture as well. (B is still present and performs the same solo task 

on different trials.) Therefore, A needs to retrieve the second picture name and will go 

through all the stages of language production (from concept selection to articulation), as 

assumed by all theories of single word production (e.g., Dell, 1986; Levelt, Roelofs, & 

Meyer, 1999).  

If prediction mechanisms are completely independent of production mechanisms, the 

joint word-replacement task should be equivalent to the no-replacement task: Even if A 

predicts that B is about to speak in the joint version, A’s predictions should not affect the way 

A produces her utterance, given that speakers are not given any explicit instruction to 

coordinate their utterances with their partner’s utterances; in other words, predicting that 

another is about to speak should have a comparable effect on production as predicting no 

response at all. On the contrary, if the shared mechanisms account is correct, then the joint 

version of the word-replacement task should be equivalent to the solo word-replacement task, 

as A would predict B’s response in the joint task using the same mechanisms that she uses to 

prepare the target utterance in the solo task.  

Finally, if the overlapping mechanisms account is correct, the joint word-replacement 

task will not be equivalent to the no-replacement task, because in the joint task A predicts that 

B is about to speak using some mechanisms that can affect production. However, the joint 

version need not be equivalent to the solo version, because in the joint task A predicts that B 

is about to speak using some mechanisms that are used during language production, but not 

the full range of language production mechanisms.  

Language production is of course a complex process, which involves both 

mechanisms that are specific to formulating an utterance (Levelt, 1989) and mechanisms that 

are shared with other cognitive activities (e.g., attention, memory, motor preparation). 

Accordingly, there are two versions of the overlapping mechanisms account. One version 
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claims that the mechanisms that are shared between production and prediction are specifically 

linguistic (i.e., some of the mechanisms of language production are used to predict that 

another is about to speak). The other version claims that the shared mechanisms are general-

purpose mechanisms, instead. 

We return to this issue in the Discussion. Here, we note that our study was not 

designed to distinguish between alternative versions of the overlapping mechanisms account. 

Rather, our aim was to test among the separate mechanisms, the shared mechanisms, and the 

overlapping mechanisms account. Importantly, the solo word-replacement and the no-

replacement tasks have been used by Hartsuiker, Catchpole, De Jong, and Pickering (2008), 

so we can use their findings to formulate specific hypotheses about the joint word-

replacement task. Hartsuiker et al. were interested in how speakers coordinate the planning 

and articulation of two utterances in speech repairs. We briefly review this literature below to 

consider which factors might affect performance in the solo version of the task, and then ask 

whether similar factors would affect performance in our joint task. 

 

1.3 Coordinating Stopping and Resuming Speech 

In instances of self-repair, the speaker coordinates the planning and articulation of 

two utterances: the initial utterance and the replacement. Thus in “Left – er – right in front of 

me” (Levelt, 1989, p. 484), the initial word (left) is completed, and then the replacement 

(right) follows after an editing expression (er). But sometimes the initial word is not 

completed, as in “To the left side of the purple disk is a v – a horizontal line” (most likely, the 

intended word was vertical; Levelt, 1989, p. 474). These examples illustrate that there is 

variability as to where speakers stop (between words or within words) when they detect an 

inappropriate word and correct themselves (Levelt, 1983).  



Running head: COORDINATING SPEAKERS 12 

This observation has sparked considerable theoretical (Hartsuiker & Kolk, 2001; 

Levelt, 1989; Nooteboom, 1980) and empirical investigation, both in the form of 

observational studies (Blakmer & Mitton, 1991; Seyfeddinipur, Kita, & Indefrey, 2008) and 

experiments (Hartsuiker, et al., 2008; Hartsuiker, Pickering, & De Jong, 2005; Tydgat, 

Stevens, Hartsuiker, & Pickering, 2011; cf. Van Wijk & Kempen, 1987). In these 

experiments, self-repairs are induced by asking participants to describe an initial picture, 

which is then replaced by a target picture. This sometimes causes participants to reformulate 

their utterances. 

Note that such experiments do not investigate the situation in which the speaker 

detects an internally generated error. Specifically, the need to reformulate is caused by a 

change in the environment (see Tydgat et al., 2011, p. 360). However, this feature of the task 

is useful for our purposes, as it makes the solo version of the task directly comparable to the 

joint version of the task.  

According to the account proposed by Hartsuiker and Kolk (2001), and modified by 

Hartsuiker et al. (2008) and Tydgat et al. (2011), the speaker simultaneously initiates two 

processes when executing a self-repair: the process of stopping articulation and the process of 

planning the replacement. These processes proceed in parallel and share a limited pool of 

resources. Therefore, the process of planning the replacement competes with the process of 

stopping the initial word. In other words, the speaker uses production mechanisms to begin 

preparing the target word while also trying to stop the planning and articulation of the initial 

word, therefore incurring interference. This hypothesis is supported by two findings. 

First, Hartsuiker et al. (2008) found that speakers complete initial words more often 

when they subsequently had to produce a replacement (53.9%) than when they simply had to 

stop speaking (21.5%; see also Tydgat et al., 2011). Thus, speakers find it harder to stop the 

initial word when they also need to start preparing a replacement than when they do not. This 
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could reflect competition between a “go” and a “stop” signal, in line with the account 

proposed by Hartsuiker et al.
1
 Alternatively, speakers might strategically evaluate whether it 

is better to interrupt the initial word as quickly as possible or to continue with articulation 

(Tydgat et al., 2011; cf. Seyfeddinipur et al., 2008, when self-repairing internally generated 

errors); by continuing to articulate previously planned material, speakers could in fact re-

allocate resources from stopping to replacement planning, and ensure that the replacement is 

ready in reasonable time. Second, Hartsuiker et al. (2008; Experiment 1) found that the 

spoken duration of the initial word was longer when planning the replacement was made 

more difficult by degrading the target picture. 

To sum up, replacing a word with another involves the coordination of two processes 

that compete for resources: 1. stopping the initial word; 2. planning the replacement. Note 

that we do not assume that processes are specific to speech, nor that the stopping process and 

the re-planning process need to belong to the same domain in order for interference to occur 

(as long as they have access to a common pool of resources). Stopping and resuming speech 

could indeed rely on a general-purpose monitoring system (see Riès, Janssen, Dufau, Alario, 

& Burle, 2011).   

More importantly, in the solo version of the word-replacement task, one speaker 

carries out both the stopping and the replacement planning processes. In the no-replacement 

task, instead, the speaker stops the initial word but does not plan the replacement (so only one 

process is involved). Finally, in the joint version, the two processes are distributed between 

two speakers: Speaker A plans the initial word and stops, and speaker B plans the 

replacement. The question we ask in this study is whether A uses some processes involved in 

                                                           

1
 Note that Hartsuiker et al. (2008) did not comment on this aspect of their results (and did 

not test for it statistically). 
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planning the replacement to predict that B is about to speak in the joint version of the task. 

The next section describes the experimental conditions and presents the expected findings 

according to the separate mechanisms, the shared mechanisms, and the overlapping 

mechanisms account.  

 

1.4 An Experimental Comparison of the Accounts 

In three conditions, a pair of participants viewed a picture that appeared on a shared 

screen, and we cued one or the other participant to name that picture. On a small proportion 

(9%) of trials, the initial picture changed into a target picture (as in Hartsuiker et al., 2008). 

When the change occurred, the participant was instructed to stop naming the initial picture as 

quickly as possible.  

In all conditions, the cued participant varied across trials. Instructions about the target 

picture depended on the condition to which the participant was assigned. In the SELF 

condition (solo task), the cued participant also named the target picture. This condition 

therefore followed Hartsuiker et al.’s (2008) Experiment 1, except that it involved two (co-

present) participants. In the OTHER condition (joint task), the other (non-cued) participant 

named the target picture. In the NO condition (no-replacement task), neither participant 

named the target picture. This last condition therefore followed Hartsuiker et al.’s Experiment 

2, except that it again involved two participants. Following the results of Hartsuiker et al., we 

hypothesized that participants in the SELF condition would complete the initial word more 

often than participants in the NO condition. This finding would confirm that participants in 

the SELF condition were planning the target picture name before stopping the initial name 

and that these processes competed for resources.  

Note that the presence of another person can affect individual performance in 

complex ways, sometimes yielding facilitation, sometimes interference (e.g., Klauer, 
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Herfordt, & Voss, 2008). Indeed, the presence of another person serves as a retrieval cue for 

words that have been uttered by that person and facilitates picture naming (Horton, 2007). So 

it was important to investigate whether Hartsuiker et al.’s (2008) results would be replicated 

in the presence of another person. To further ensure comparability between our results and 

theirs, in all conditions the target picture was either intact or degraded (with 50% of its 

contours removed). Based on Hartsuiker et al.’s Experiment 1, we expected participants in 

the SELF condition to stop naming the initial picture later when the target picture was 

degraded versus intact (i.e., a degradation effect). More resources are needed to retrieve the 

name of a degraded picture because the associated concept is more difficult to identify; 

therefore, the process of planning the target word should interfere more with the process of 

stopping the initial word when the target picture is degraded than when it is intact. In 

addition, based on Hartsuiker et al.’s Experiment 2, we expected no degradation effect in the 

NO condition. 

Consider now the novel OTHER condition. Let us assume that, at some point during 

the process of stopping the initial word, speaker A predicts that speaker B is about to speak. If 

prediction mechanisms are completely independent of production mechanisms (as the 

separate mechanisms account assumes), speaker A’s prediction will not affect her ability to 

stop producing the initial word. Therefore, A should find stopping the initial word no harder 

in the OTHER condition than in the NO condition. More specifically, she should be no more 

likely to complete the initial word in the OTHER than in the NO condition.  

But if, on the contrary, A predicts that B is about to speak using the same mechanisms 

she would use when she prepares to speak herself (as the shared mechanisms account 

assumes), then A’s prediction should affect her ability to stop producing the initial word. 

More precisely, A’s prediction should affect her ability to stop producing the initial word in 

the same way as the process of planning the target word would affect her ability to stop (i.e., 
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as in the SELF condition). Therefore, A should be more likely to complete the initial word in 

the OTHER than in the NO condition and, moreover, A should be as likely to complete the 

initial word in the OTHER as in the SELF condition.  

Finally, if A predicts that B is about to speak using some of the mechanisms that are 

used in production, but not all of them (as the overlapping mechanisms account assumes), 

then A’s prediction should still affect her ability to stop producing the initial word. Crucially, 

however, this effect need not be the same as in the SELF condition. One possibility is that A 

might find it less hard to stop in the OTHER than in the SELF condition (while still finding it 

harder than in the NO condition, where production mechanisms are not used at all). Table 1 

summarizes the differences between the accounts. 

 

INSERT TABLE 1 ABOUT HERE 

 

2. Method 

2.1 Participants 

 Ninety-six students from the University of Edinburgh participated in the experiment. 

They were either paid £6 or received course credit in return for participation. All were native 

English speakers and reported no language impairment. Participants were matched to form 48 

pairs, which were then randomly assigned to each of the three conditions. Thus, we tested 16 

pairs of participants in each condition. Most participants did not know their partners 

beforehand. The study was approved by the Ethics Committee of the Department of 

Psychology of the University of Edinburgh. 

2.2 Materials 

 The materials were simple black and white line drawings. There were 32 target 

pictures, each of which appeared in an intact and a degraded format. These were the target 
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pictures used by Hartsuiker et al. (2008), derived from a set originally developed by Meyer, 

Sleiderink, and Levelt (1998). To create the degraded versions, Meyer et al. deleted “50% of 

the black pixels, in regions where they could be reconstructed by straight or smoothly curved 

lines” (p. 27). There were 32 initial pictures, also taken from Hartsuiker et al., and 128 filler 

pictures from Snodgrass and Vanderwart (1980). Each of the 64 experimental items 

constituted a unique combination of an initial picture and a target picture. The pictures were 

combined in such a way that every target picture occurred after 2 initial pictures and every 

initial picture preceded 2 target pictures (e.g., glasses-mouse, glasses-wall, orange-mouse, 

orange-wall). In each item, the names for the initial and target pictures had different initial 

phonemes and unrelated meanings (see Appendix A for a complete list of the experimental 

items). Initial pictures and filler pictures were presented inside a colored frame (green or red) 

in order to cue one participant to name that picture (see Procedure). Target pictures were 

presented without a frame (the instructions made clear who was to name a given target 

picture; see Procedure). Initial and target pictures were used both on change (experimental) 

and no-change (filler) trials, whereas filler pictures were used only on no-change trials. 

2.3 Design 

 Degradation (intact vs. degraded) was varied within participants and items. Condition 

(SELF, OTHER, NO) was varied between participants but within items. We first created four 

lists containing the 64 experimental items (change trials). Every initial picture and target 

picture occurred twice in each list of change trials. Each target picture appeared once 

degraded and once intact. The degraded version of a target picture was paired with an initial 

picture of one color and the intact version was paired with an initial picture of the other color; 

also, each initial picture occurred once in each color. This meant that each participant in a 

pair named each initial picture and each target picture only once on change trials (though, of 

course, they saw each initial and each target picture twice). In addition, we divided the 
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experiment into two blocks and each initial picture and each target picture appeared once in 

each block. For each experimental item, every combination of color-assignment and target 

degradation (red initial – degraded target, red initial – intact target, green initial – degraded 

target, green initial – intact target) occurred once across lists. For each of the 4 lists, we 

derived 4 random orders, with the constraint that each block appeared first in half these 

orders.  

We also constructed 2 lists of no-change trials. Each contained 640 items: the 32 

target pictures twice (once degraded, once intact) in isolation; the 32 initial pictures twice in 

isolation; and the 128 fillers, four times each. The two lists were constructed so that the target 

pictures and initial pictures that were presented in one color in the first list were the other 

color in the second list. They were also split into two blocks, with repetitions of the same 

picture being equally distributed between blocks. To create running lists, one no-change trial 

list was combined with one change trial list. The pairing was done in such a way that target 

pictures in the change trial list had the opposite degradation relative to their instances (within 

the same block) in the no-change trial list, and were always named by the other participant. 

Each change trial was separated by at least three no-change trials. The same 16 running lists 

were presented in each of the three between-participants conditions.  

2.4 Procedure 

The experiment was controlled using E-Prime (Version 2.0). First the participants were 

introduced to each other and told that they were going to do a task together. They were then 

familiarized with the materials in individual booths. They were shown the 192 pictures (32 

initial pictures, 32 target pictures, 128 fillers) with the corresponding names, and were 

instructed to read the names out loud to aid memory. Next, the two participants were seated 

in front of the same computer screen. Half of the pairs were instructed that the pictures in the 

green frame were to be named by the person on the left, and the pictures in the red frame 



Running head: COORDINATING SPEAKERS 19 

were to be named by the person on the right. The other half of the pairs were instructed that 

the pictures in the red frame were to be named by the person on the left, and the pictures in 

the green frame were to be named by the person on the right. They were told to use the names 

that they had learned during the naming phase.  

The instructions about change trials depended on condition. For pairs in the SELF 

condition, cued participants were instructed to stop naming the initial picture and name the 

interrupting picture as fast as possible. Therefore, in the SELF condition the participant who 

responded to the initial picture also responded to the target picture on the same trial. Cued 

participants in the OTHER condition were also instructed to stop naming the initial picture as 

fast as possible, but this time the other participant had to name the interrupting picture. 

Therefore, in the OTHER condition one participant responded to the initial picture and the 

other responded to the target picture on the same trial. The color of the initial picture frame 

indicated who was to perform which task on any given change trial. Both participants 

performed each task equally often in each block, while they took turns according to a 

randomized sequence. Finally, in the NO condition, cued participants were again instructed to 

stop naming the initial picture as fast as possible, but they were told to ignore the interrupting 

picture. Therefore, in the NO condition none of the participants responded to the target 

picture on change trials (see Fig. 1). 

 

INSERT FIGURE 1 ABOUT HERE 

 

Before starting the experiment, the participants completed 8 practice trials. These 

were 5 no-change trials and 3 change trials on which filler pictures were used instead of 

experimental pictures. After the practice, the instructions were summarized again and the 

participants were warned that some of the pictures would consist of dashed lines.  
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All trials started with a fixation cross which remained on the screen for 2500ms. On 

no-change trials an initial picture (with a colored frame) then appeared for 500ms. On change 

trials the initial picture appeared for 300ms and was then replaced by a target picture (without 

a colored frame) that appeared for 500ms. The inter-trial interval was 3300ms after a change 

trial and 3000ms after a no-change trial. Participants spoke into head-mounted microphones 

and their responses were digitally recorded on two separate channels. For each change trial, 

two audio files were generated (and automatically stored), one time-locked to initial-picture 

onset, the other time-locked to target-picture onset. An experimental session lasted 

approximately 45 minutes. 

2.5 Scoring 

Only change trials are relevant for our hypotheses, so only the audio files recorded 

during these trials were analyzed. Data from 7 pairs (3 in the SELF condition, 2 in the 

OTHER condition, 2 in the NO condition) had poor audio quality, and so background noise 

was reduced by batch processing their change-trial files, using Adobe Audition (Version 

1.05). Responses that were still inaudible or could not be categorized were excluded from 

further analyses; if there were more than 10 such trials for a single pair, the whole set of data 

for that pair was discarded. This resulted in the loss of 1.8% of the data in the SELF 

condition, 1.4% in the OTHER condition, and 3.5% in the NO condition, in which one pair 

was discarded.  

The remaining responses were annotated off-line (half by the first, half by the second 

author). We first noted errors and disfluencies (e.g., um, repetitions) in producing the initial 

or target name (in SELF and OTHER); see the Results section for percentages. For two target 

pictures (mouth, steps), participants responded with an alternative name (lips, stairs) on at 

least 39% of the trials. As these were clearly acceptable responses, we included these trials in 



Running head: COORDINATING SPEAKERS 21 

the analyses. All other naming errors were coded as such and the corresponding trials were 

discarded. Correct and fluent initial responses were divided into three response types: 

completed initial (e.g., apple chair), interrupted initial (e.g., ap- chair), and skipped initial 

(e.g., chair).  

Second, three time-points were manually annotated on the audio files using the 

phonetic analysis software Praat (Boersma & Weenink, 2010): the onset of the initial name, 

the offset of the initial name, and the onset of the target name (in the SELF and OTHER 

conditions). We used these time-points to determine the following time measures: Initial 

Onset (onset of initial name relative to onset of the initial picture); Initial Duration (onset of 

initial name to offset of initial name); Target Onset (onset of target name relative to onset of 

the target picture, in the SELF and OTHER conditions); Interval (offset of initial name to 

onset of target name, in the SELF and OTHER conditions). The primary measure of interest 

was Initial Duration. However, we also analyzed the other time measures, in part to 

determine whether our results were consistent with Hartsuiker et al. (2008). Summary tables 

and a brief description of these results can be found in Appendix B. Additional data exclusion 

and trimming criteria for the time measures are reported in the Results section (for Initial 

Duration) and in Appendix B (for the other measures). 

2.6 Data Analysis 

The data were analyzed using Generalized Linear mixed-effects models (Bates, 

Maechler, & Dai, 2008; Baayen, Davidson, & Bates, 2008) in R (Version 2.7.2). For the 

response type data, we used a logistic link function (Jaeger, 2008) and conducted a binomial 

analysis (comparing the likelihood of a completed response against the likelihood of 

observing any of the two other kinds of responses; i.e., an interrupted or a skipped response). 

For Initial Duration, we only included completed initial responses in the analysis. This was 

motivated by the fact that there were no specific predictions for the factor Response Type. In 
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addition, completed responses were more evenly distributed than interrupted responses (see 

Table 2) and we hoped, in this way, to minimize issues related to the imbalance in the 

proportion of response types across conditions (see below). Consequently, the predictors of 

interest for the analysis of Initial Duration were only Condition and Degradation. See 

Appendix B for details of the analyses of the other time measures. 

In all analyses, we started by fitting the complete model; we then removed predictors 

that were not significant from the model, using a backward stepwise procedure, and stopped 

whenever removing a predictor caused a significant loss of fit (assessed using a log-

likelihood ratio test). We report coefficients, standard errors, and Wald’s t-tests from the 

complete model together with results of the likelihood ratio test for each predictor (Barr, 

2008; Quené & van den Bergh, 2008). Regarding random effects, we started with the full 

random effect structure, including random slopes (for all factors and their interaction) and 

random intercepts for both subjects and items (defined as a combination of initial and target 

picture). Given that random slopes are only appropriate for within-subjects and within-items 

factors, we included by-subjects random slopes for Degradation and by-items random slopes 

for Degradation, Condition, and their interaction. If the model with full random effects 

specification did not converge, we simplified it by removing the higher-order term 

(interaction of Condition and Degradation). We then tested whether specific random effects 

significantly contributed to model fit using likelihood ratio tests. We report estimates of the 

variances and covariances of all random effects that passed the test (with an alpha-value of .1 

instead of .05 to account for the conservativity of these tests).  

We used sum coding for our predictors, both in the response type analyses and in the 

analyses of Initial Duration. For the analyses of the other time measures, we used contrast 

(Helmert) coding, so that the coefficients associated with the factor Condition could be more 

easily interpreted (see Appendix B for further details). Because Response Type was not under 
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experimental control and was in fact affected by Condition (see below), the number of 

observations per cell varied widely, leading to a highly imbalanced design for the time 

analyses. This means that in order to have weighted estimates for the fixed effects, it is 

necessary to weight the contrasts by the observed cell counts. We therefore used weighted 

coding (Cohen, Cohen, West, & Aiken, 2003; Serlin & Levin, 1985; West, Aiken, & Krull, 

1996) for all the predictors entered in the analyses of the time measures (see Appendix B for 

an example).  

 

3. Results 

3.1 Response Type Data 

As stated in the Scoring section, for the analyses of response type we excluded the 

trials where the initial picture was not named correctly or the initial name contained 

hesitations or repetitions (5.1% in the SELF condition, 5.8% in the OTHER condition, 4.7% 

in the NO condition). This left us with 963 data points in the SELF condition, 962 in the 

OTHER condition, and 914 in the NO condition. The percentages of Completed, Interrupted, 

and Skipped initial responses in each condition are reported in Table 2, separately for 

degraded versus intact trials. 

 

INSERT TABLE 2 ABOUT HERE 

 

 The best-fitting model included only Condition as a predictor, whereas Degradation 

had no effect on the proportion of completed responses, nor did the interaction. No random 

slopes were justified, so only random intercepts were retained (see Table 3). Participants 
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completed the initial name more often in the OTHER condition (63.2%) than in the NO 

condition (46.5%). They also completed the initial name more often in the SELF condition 

(83.4%) than in the OTHER condition. In order to test the hypotheses of the three accounts 

laid out in the Introduction, we then set the OTHER condition as the reference level, and we 

defined two contrasts, one comparing the mean of the OTHER condition to the mean of the 

NO condition (Condition1), the other comparing the mean of the OTHER condition to the 

mean of the SELF condition (Condition2). The first contrast therefore tests whether speakers 

complete the initial word more often in the OTHER than in the NO condition, which would 

be compatible with both the shared mechanisms and the overlapping mechanisms account 

(but not with the separate mechanisms account). The second contrast tests whether speakers 

complete the initial word more in the SELF than in the OTHER condition, which would be 

compatible with the overlapping mechanisms account but not with the shared mechanisms 

account. Importantly, both contrasts were associated with estimates significantly different 

from zero (Condition1: B= -0.99, SE= .46, z = -2.16, p<.05; Condition2: B= 1.57, SE = .47, z 

= 3.36, p<.001) in a model that included only Condition amongst the fixed effects. Overall, 

these results are compatible with the overlapping mechanisms account, but not with the 

shared mechanisms account or the separate mechanisms account. 

 

INSERT TABLE 3 ABOUT HERE 

 

3.2 Initial Duration 

For the analyses of Initial Duration, we removed all trials that were more than 2.5 SD 

from the grand mean or more than 3 SD from the by-subject mean (2.5% in SELF, 2.0% in 

OTHER, 1.7% in NO). As stated above, we limited our analyses to completed initial 

responses. Apart from this, we conducted the same analyses as for the response type data. In 
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addition, we conducted separate analyses for the three conditions in order to compare our 

results directly to Hartsuiker et al.’s (2008) findings.  

 

INSERT TABLE 4 ABOUT HERE 

 

Participants took 12 ms longer to stop before they named degraded than before they named 

intact targets in the SELF condition (see Table 4, completed responses). The inclusion of by-

item random slopes for the factor Condition significantly improved fit (see Table 5). The 

main effect of Degradation marginally improved fit (p=.09), as did the interaction of 

Degradation and Condition (p=.07); the main effect of Condition was not significant. When 

we fitted separate models to the three conditions (Table 6), we found a degradation effect in 

the SELF condition (p<.01) but not in the OTHER or NO conditions (both t’s < 1). 

 

INSERT TABLE 5 ABOUT HERE 

INSERT TABLE 6 ABOUT HERE 

 

4. Discussion 

We investigated whether participants in a joint language production task predict that 

their partner will speak using language production mechanisms and whether such prediction 

affects production of their own utterance. To do so, we compared a solo word-replacement 

task (the SELF condition), a joint word-replacement task (the OTHER condition), and a no-

replacement task (the NO condition).  
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We found that participants completed their initial utterance more often in the OTHER 

condition (63.2%) than the NO condition (46.5%), but less often in the OTHER condition 

than the SELF condition (84.3%). Therefore, we replicated Hartsuiker et al.’s (2008) findings 

in a two-person setting, as participants completed the initial word more often when they later 

named the target word than when they did not name the target word. The tendency to 

complete the initial word was greater in our SELF condition than in their Experiment 1 

(53.9%), and similarly larger in our NO condition than in their Experiment 2 (21.5%), 

perhaps because the lower percentage of change trials in our study (9%) than in theirs 

(12.5%) made the task of stopping overall harder for our participants. In addition, in the 

SELF condition, we replicated the effect of Degradation in their Experiment 1 on the duration 

of the initial word. Similarly, in the NO condition, we found no effect of Degradation on the 

duration of the initial word, as in their Experiment 2.
2
  

Participants tended to complete the initial word more often in the OTHER than in the 

NO condition. This suggests that they predicted that their partner was about to speak and that 

this prediction interfered with the process of stopping speech. This finding is consistent with 

the claim that predicting that another speaker is about to speak relies on some of the same 

mechanisms used during production, and is therefore not consistent with the separate 

mechanisms account. In addition, participants tended to complete the initial word less often 

in the OTHER condition than in the SELF condition. This suggests that they did not activate 

production mechanisms to the same extent in the OTHER as in the SELF condition, and 

                                                           

2
 Note that Hartsuiker et al. (2008) analyzed both completed and interrupted responses, 

whereas we analyzed only completed responses. They did so because the proportions of 

completed and interrupted responses were much less unbalanced in their experiments than in 

our experiment. 
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hence the study is not consistent with the shared mechanisms account. In sum, this set of 

findings is compatible only with the overlapping mechanisms account. We discuss this 

account in detail in Section 4.1. 

The finding that inhibiting a response (i.e., stopping on change trials) is harder for 

speakers when they know that their partner is about to respond (in the OTHER condition), 

than when they know their partner is not about to respond (in the NO condition) is consistent 

with neuroscientifc studies of joint action. In particular, several ERP studies reported 

increased response inhibition demands on NO-GO trials in joint tasks compared to individual 

go/no-go tasks. This suggests that participants in joint tasks represent their partner’s actions 

on NO-GO trials, and need to apply a higher level of inhibition (indexed by an enhanced no-

go P3 component) to avoid responding overtly when it is their partner’s turn to respond 

(Sebanz, Knoblich, Prinz, & Washer, 2006; Tsai, Kuo, Jing, Hung, Tzeng, 2006; Tsai, Kuo, 

Hung, & Tzeng, 2008). In addition, in one fMRI study (Sebanz, Rebbechi, Knoblich, Prinz, 

& Fritz, 2007) NO-GO trials in the joint condition (compared to an individual condition in 

which the partner was present but not active) showed increased activity in the SMA 

(Supplementary Motor Area), which is implicated in the execution of motor responses (see 

e.g., Mostofsky & Simmonds, 2008).  

Finally, de Bruijn, Miedl, and Bekkering (2008) tested participants in a competitive 

speeded go/no-go task. Participants who performed more poorly (i.e., were on average slower 

than their partner) showed reduced no-go P3 amplitudes (and hence, lower inhibition) when 

their partner was responding compared to when their partner was not responding (so both 

actors had to inhibit a response), suggesting that they could not help but represent their 

partner’s task and that this impaired their performance. 
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Note that all these studies used manual responses. We are not aware of comparable 

imagining or electrophysiological evidence for tasks involving verbal responses. Future 

studies could investigate the neural correlates of the decreased likelihood of stopping word-

internally in the OTHER compared to the NO condition. 

4.1 Predicting that You Are about to Speak 

The overlapping mechanisms account states that prediction uses some, but not all of 

the mechanisms used during production. It therefore raises the question: What is the precise 

nature of prediction mechanisms? We know that they are used in language production, but 

what kind of mechanisms are they? As mentioned in the Introduction, it is possible that they 

are general-purpose mechanisms, like those implicated in the allocation of attention or in 

preparing a (not necessarily verbal) response. It is also possible that such mechanisms are 

specific to the process of producing language (as opposed to, for example, producing a non-

linguistic action). 

This study cannot adjudicate between these two versions of the overlapping 

mechanisms account. We showed that speakers find it harder to stop an utterance when they 

know their partner will produce another utterance than when they know their partner will 

produce no response. However, we do not know whether speakers would also find it harder to 

stop if they knew their partner were about to act in some other way (e.g., pressing one button 

if the target picture is degraded, and another button if the picture is intact).  

Indeed, speakers appear to coordinate the production of two successive utterances in a 

similar way to the production of one utterance and of a manual response. Speakers who were 

asked to name a left object and a right object in close succession (i.e., without pausing) 

shifted their gaze to the right object later with respect to the onset of speech when the left 

object had a long (trisyllabic) name than a short (monosyllabic) name, possibly because long 
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names are planned more incrementally (Meyer, Belke, Häcker, & Mortensen, 2007, 

Experiment 1; see also Griffin, 2003). The same pattern was observed when speakers were 

asked to name the left object and then press a button to categorize a symbol that appeared on 

the right side of the screen (Meyer, Belke, Häcker, & Mortensen, 2007, Experiment 4).  

Nevertheless, ours is the first study to compare the coordination of two successive 

utterances within and between speakers, and to show that the way in which speakers produce 

their utterances can be affected by whether they predict their partner will soon act. It suggests 

that between-speaker coordination makes use of some mechanisms that are also involved in 

preparing to speak. Below, we discuss how our findings relate to other evidence for the 

implication of language production mechanisms in prediction. Particularly, we focus on two 

related proposals that stress the language-specific nature of prediction mechanisms and 

consider how such proposals could account for our findings. Both views assume that the 

mechanisms common to language production and language prediction are domain specific, 

but they differ in the details of the mechanisms involved. 

The first proposal is that predicting that another will speak (or, indeed, what another 

will say) entails activation of linguistic representations within the language production 

system. If A predicts that B is going to speak, she does this by going through the stages of 

language production (e.g., accessing semantics, syntax, phonology) that she goes through 

when she prepares to speak herself. Importantly, the finding that our participants completed 

their utterance less when they predicted that their partner was about to speak than when they 

were about to speak indicates that the production system was only partly activated when A 

predicted that B was about to speak. Accordingly, at some point during the process of 

language production, A might inhibit her production system (so that she does not actually 

speak). 
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There is evidence that language production mechanisms are activated during language 

comprehension. Listening to speech modulates the excitability of muscles involved in 

articulation (Fadiga, Craighero, Buccino, & Rizzolatti, 2002; Roy, Craighero, Fabbri-Destro, 

& Fadiga, 2008; Watkins, Strafella, & Paus, 2003; Yuen, Davis, Brysbaert, & Rastle, 2010). 

Moreover, D’Ausilio, Jarmolowska, Busan, Bufalari, and Craighero (2011) repeatedly 

exposed participants to a pseudoword (e.g., birro) and used TMS to reveal immediate 

appropriate articulatory activation (associated with rr) when they heard the first part of the 

same item (bi, when coarticulated with rro) compared to when they heard the first part of a 

different item (bi, when coarticulated with ffo). Similarly, when observing a signed utterance 

that ended in a semantically unexpected sign, German signers showed an enhanced N400 

effect whose onset began before the onset of the sign itself, during the transition from the 

previous sign (Hosemann, Herrmann, Steinbach, Bornkessel-Schlesewsky, & Schlesewsky, 

2013). This suggests that activation of the language production system might be involved in 

prediction, so that listeners in D’Ausilio et al.’s study activated the specific articulators 

involved in the production of the expected sound, and observers in Hosemann et al.’s study 

activated details of the kinematics of the expected sign.  

However, it is not known whether activation always occurs at all stages of language 

processing, with inhibition suppressing only overt production (as findings such as D’Ausilio 

et al., 2011 suggest), or whether inhibition can occur at any stage. This question is 

reminiscent of a discussion concerning the nature of inner speech, where some accounts posit 

fully-specified sub-phonemic features (Corley, Brocklehurst, & Moat, 2011), whereas others 

maintain a more abstractionist view in which inner speech is specified only up to the 

phonological level (Oppenheim & Dell, 2010). But it is also possible that inhibition can occur 

at an even earlier stage (e.g., before or during lexical selection). 
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The second proposal is that predicting that another will speak (or, indeed, what 

another will say) involves the computation of forward models. Pickering and Garrod (2013) 

proposed that speakers send a production command (communicative intention) to two 

different systems: the production implementer and the forward production model. The output 

of the production implementer (which contains the mechanisms contained in all models of 

language production) is an actual utterance, together with its associated set of structured 

linguistic representations, encoding semantics, syntax, and phonology. The output of the 

forward model, instead, is a prediction of some aspects of the representation of an utterance, 

possibly including a prediction of some aspects of the semantics, syntax, and phonology of 

the utterance. For example, upon recognizing a chair, speakers might predict that a concrete 

noun beginning with the phoneme /tʃ/ is about to be produced. Importantly, forward-model 

predictions are normally ready before the representations computed by the production 

implementer. Therefore, they can be used for the online control of language production 

processes.  

For example, imagine a sports commentator reporting live on a soccer match. She is 

providing some statistics about previous matches, when one of the players suddenly performs 

an amazing pass that could lead to a goal. The commentator then issues a stop signal to her 

articulators (depending on various factors; e.g., how much she values fluency; cf. 

Seyfeddinipur et al., 2008), and starts retrieving the player’s name from memory (using the 

production implementer). This process requires resources, and therefore interferes with the 

process of stopping speech.  

In addition, and before retrieving the player’s name, the commentator predicts that she 

will soon produce an utterance (using a forward model). Of course, the commentator has had 

to stop and reformulate before. She might have learned that it is difficult to stop speech while 

attempting to formulate a new utterance. She could, therefore, remove resources from the 
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process of stopping speech and predictively allocate those resources to the process of 

retrieving the player’s name, thus performing the latter task more efficiently (see Tydgat et 

al., 2011). Forward-model predictions could thus affect how quickly the commentator stops 

speaking, and could do so very rapidly. 

In the same way, in our SELF condition, the cued participant sends a stop signal to the 

articulators. The participant also intends to name the target picture, and therefore sends a 

command to the production implementer. At the same time, a copy of the command is sent to 

a forward production model that computes a prediction that a word will be produced. At this 

point, the participant has not completed the process of stopping and is therefore still naming 

the initial picture. The prediction that the target word will be produced triggers the 

(predictive) reallocation of resources from the process of stopping to the process of retrieving 

the target word, thus delaying the stopping process. In addition, the cued participant retrieves 

the target picture’s name using the production implementer. This process takes up resources 

and further delays the process of stopping speech, thus increasing the tendency to complete 

the initial word. 

When a speaker is planning an utterance, the predictions generated by the forward 

model are always accompanied by the activation of representations within the production 

implementer, which in turn normally leads to articulation. Crucially, according to Pickering 

and Garrod’s (2013) account, forward-model predictions can be computed for another 

speaker’s upcoming utterance as well (see Section 1). Note that, while forward production 

models are production mechanisms, and can affect ongoing language production, they can do 

so without activating the production implementer. In fact, according to Pickering and Garrod 

the production implementer is not required for prediction of other people’s utterances and the 

activation in D’Ausilio et al. (2011) could potentially be incidental, rather than causally 

involved in prediction. 



Running head: COORDINATING SPEAKERS 33 

Now imagine a situation in which our sports commentator is assisted by a (male) 

partner. While describing some background details, she realizes that her partner has noticed 

the action. She predicts that he is about to speak. However, she does not retrieve the 

semantics, syntax, or phonology of her partner’s utterance and does not therefore have to take 

resources away from her own production. But because she predicts that her partner is about to 

speak using the same mechanism that she would use to predict that she is about to speak, she 

might nevertheless take some resources away from stopping (because this has proved 

effective in the past). Note that this might not be an effective strategy, as it might be argued 

that the commentator should try and stop as quickly as possible. Nevertheless, delaying 

stopping could be beneficial in other ways; for example, it might give her partner more time 

to get ready whatever he is planning to say. 

In a similar way, the cued participant in our OTHER condition knows that her partner 

intends to name the target picture, and therefore forms a representation of his production 

command. A copy of the command is sent to the forward production model and, as in the 

SELF condition, the prediction that a word will be produced triggers the reallocation of 

resources, away from the process of stopping. Unlike in the SELF condition, however, the 

participant does not use the representation of her partner’s production command to drive 

retrieval of linguistic representations within the implementer. Therefore, the (partner’s) 

naming of the target picture does not interfere with the process of stopping speech. This 

might explain why the tendency to complete the initial word was weaker in the OTHER than 

in the SELF condition.  

In conclusion, our results indicate (i) that some mechanisms used during production 

are implicated in prediction; (ii) that production mechanisms are not as strongly activated 

when speakers predict others as when they prepare their own utterances. Our results are 

therefore compatible with both versions of the overlapping mechanisms account, that is with 
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a version in which the mechanisms overlapping between production and prediction are 

linguistic in nature (i.e., a subset of the mechanisms used during language production, 

whether forward model computations or the retrieval of linguistic representations), and with a 

version in which the mechanisms overlapping between production and prediction are general 

purpose and common to the preparation of non-verbal actions. 

4.2 Prediction and Between-Speaker Coordination in Dialogue 

What is the relevance of these results for our understanding of the coordination that 

takes place between speakers in natural conversations? Clearly, our task is very different 

from natural conversation. First, speaker A and speaker B produce two completely unrelated 

utterances. Second, the moment at which the speaker-switch occurs, and the direction of the 

switch, are fixed and determined by the experimenter. Third, the experimental conditions 

were particularly favorable for prediction: A could see what picture B was going to name, and 

she knew, because of the instructions, that B was about to name it. (This contrasts with the 

situation faced by the sport commentator, who might be much more uncertain about her 

partners upcoming action). 

In addition, it is possible that participants in the OTHER condition developed a 

tendency to attend to the target picture even on trials on which they did not have to name it. 

The cued participant does the same thing in the NO and OTHER conditions, except that the 

cued participant names some target pictures in the OTHER condition, and these pictures of 

course have the same characteristics as the pictures that their partner names on the other 

trials. This aspect of the task might enhance the activation of production processes related to 

the target pictures, and in turn cause the cued participant to complete the names of the initial 

pictures more often in the OTHER condition than the NO condition. If so, it may be the case 

that people are affected by the fact that their partner is about to speak more under conditions 

in which they sometimes have to speak themselves.  
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Note that, because the proportion of change trials was very low in our experiment, 

naming the target picture on half of those trials is unlikely, on its own, to account for the 

increased tendency to complete the initial word in the OTHER compared to the NO 

condition. Moreover, participants in the OTHER condition never had to name an initial and a 

target picture on the same trial. Nevertheless, a future study could test whether participants 

who always name either the initial or the target pictures (i.e., they never switch roles) would 

tend to complete the initial word to the same or to a smaller extent as they did in the OTHER 

condition in this study.  

Appendix B reports that that the interval between the first and second picture names 

was longer in the OTHER compared to the SELF condition.  This finding suggests that 

within-speaker coordination was not as successful as between-speaker coordination. It 

implies that between-speaker coordination is not identical to within-speaker coordination, and 

that predicting that another is about to speak is only one of the processes that support the 

coordination of utterances between speakers in conversation (Vesper, Butterfill, Knoblich, & 

Sebanz, 2010). 

Despite such limitations, we suggest that our experiment provides evidence about 

some mechanisms that can be used in conversation (at least when conditions are favorable, 

and in conjunction with other mechanisms). Note that many natural conversations could 

support accurate predictions, because interlocutors can capitalize either on a long 

interactional history that leads to alignment (Pickering & Garrod, 2004) or on the highly 

formulaic nature of language in many activity types (e.g., purchasing an item in a shop, fixing 

an appointment at the doctor; Clark, 1996; Levinson, 1992). Moreover, production processes 

are particularly likely to be activated in natural conversations where interlocutors switch 

between the roles of speaker and listener all the time. 
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In addition, while we have only provided evidence that speakers can predict that their 

partner is going to speak, it is possible that similar mechanisms underlie the ability to predict 

what one’s partner is going to say and when. Clearly, interlocutors would greatly benefit from 

the ability to predict (i) that their partner is going to speak; (ii) what their partner is going to 

say; (iii) when they partner is going to speak. Prediction (i) would allow them to decide 

whether to continue or stop speaking themselves. Prediction (ii) would help them prepare an 

adequate response to the current speaker’s contribution, or to complete the speaker’s 

utterance. Prediction (iii) would be useful for smooth turn-taking.  

The idea that the computation of predictions underlies interlocutors’ ability to 

coordinate their utterances is consistent with the projection theory of turn taking (Sacks, 

Schegloff, & Jefferson, 1974), whose central claim is that listeners predict possible 

completion points of a speaker’s utterance as it unfolds, and that such completions points are 

where a change of speaker can potentially occur. Corpus studies have shown that inter-turn 

gaps tend to be very short, with mode offset of the distribution varying between 0 and 200 ms 

for a range of languages (Stivers et al., 2009). People take 500-700ms to start speaking in 

reaction to a cue, even if the material is pre-planned and only needs to be retrieved from 

memory (e.g., Ferreira, 1991). Thus, interlocutors must regularly predict turn endings, and 

plan their contribution in advance. De Ruiter and colleagues have indeed shown that listeners 

are able to reliably predict when a turn is going to end and that this ability is based on a 

prediction of what the speaker is going to say ( De Ruiter, Mitterer, & Enfield, 2006; Magyari 

& De Ruiter, 2012).  

More generally, the idea that processes involved in production might be recruited to 

predict and comprehend the utterances produced by one’s interlocutor provides an 

explanation of how people are able to perform the joint activity of dialogue, as discussed by 

Pickering and Garrod (2013). They proposed that interlocutors who mutually predict one 
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another using production mechanisms eventually become coordinated, and that this 

straightforwardly explains the smoothness of turn-taking and the occurrence of cross-person 

contributions. In addition, prediction might underlie alignment of representations (Pickering 

& Garrod, 2004); and, vice versa, prediction tends to be successful because interlocutors 

become sufficiently similar during the conversation (so that they can predict what the other is 

about to say by predicting what they themselves would say next). However, these theoretical 

considerations are yet to be supported by experimental findings. We suggest that joint 

language tasks like the one employed in this study could be used to investigate, for example, 

whether speakers whose representations are aligned (e.g., similar speech rate, lexical choices) 

can coordinate better with one another (Gambi & Pickering, 2013). 

 

5. Conclusion 

We showed that speakers can predict that another person is going to speak and that 

such predictions can affect how quickly they stop their own utterance. This indicates that 

predicting that another is about to speak makes use of some of the processes involved in 

preparing to speak. Future research should investigate whether such processes are general 

purpose or domain specific and how they could be used to support coordination between 

speakers in dialogue. 
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Items Used on Change Trials 
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Appendix B 

Supplementary Analyses 

For the analyses of Target Onset and Interval (in the SELF and OTHER conditions), 

we excluded all trials in which the initial or the target word was named incorrectly or 

produced disfluently (14.7% in SELF, 15.0% in OTHER). For Initial Onset and Interval, we 

also excluded all trials with skipped initial responses (but we included interrupted responses, 

as we were interested in the effect of Response Type; see Table 2). In the OTHER condition, 

it was possible to have negative values for Interval (overlap between the two participants’ 

responses). Such cases (6.5%) were also excluded from the analyses of Target Onset and 

Interval in the OTHER condition for the sake of comparability between conditions. For each 

condition separately, we then removed all trials that were more than 2.5 SD from the grand 

mean or more than 3 SD from the by-subject mean from the analyses (initial onset: 3.0% in 

SELF, 2.7% in OTHER, 3.0% in NO; target onset: 3.4% in SELF, 2.9% in OTHER; initial-

target interval: 4.9% in SELF, 2.7% in OTHER).  

The starting point was the model including the factors Condition, Degradation, 

Response Type, all the possible two-way interactions, and the three-way interaction. We set 

the SELF condition as the reference level, and we defined two contrasts, one comparing the 

weighted average of OTHER and NO to SELF (Condition1), and the other comparing 

OTHER against NO (Condition2). We used weighted contrast coding for all predictors. So, 

for example, the contrast for the two-level factor Response Type was not (-.5, .5), but rather 

(-.5*ni/N; .5*nc/N), where ni is the count of interrupted responses, nc is the count of 

completed responses and N = ni + nc (completed responses were taken as the reference 

level). In this way, the intercept corresponds to the weighted grand mean and the estimates 
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for the main effects are equal to twice the difference between levels of the corresponding 

factor. 

 

INSERT TABLE B1 ABOUT HERE 

INSERT TABLE B2 ABOUT HERE 

 

The onset of the initial picture name (see Tables B1 and B2) was delayed for 

interrupted initials compared to completed initials.  There was also some indication of the 

effect being larger in the SELF (756 vs. 700 ms) and OTHER (755 vs. 716 ms) conditions 

than in the NO condition (703 vs. 705 ms), as indicated by a Response Type by Condition 

interaction. Finally, the effect of Response Type was larger before intact than before 

degraded targets in the SELF (85 vs. 23 ms) and the OTHER (60 vs. 15 ms) conditions (see 

significant Response Type by Degradation interaction and the marginal three-way interaction 

of Response Type, Degradation, and Condition). Hartsuiker et al. (2008) also reported longer 

onset times for interrupted than for completed initials (though only in their Experiment 2), 

and suggested that it was due to the stopping process being more likely to stop word-

internally when the initial word is initiated later.  

 

INSERT TABLE B3 ABOUT HERE 

INSERT TABLE B4 ABOUT HERE 
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The Interval between the offset of the initial name and the onset of the target name (in 

the SELF and OTHER conditions) was longer before degraded than before intact targets and 

longer in the OTHER than in the SELF condition (see Tables B3 and B4). The three-way 

interaction of Response Type, Degradation, and Condition was marginal, suggesting that the 

effect of Degradation was larger before interrupted (79 ms) than before completed  (11 ms) 

responses in the SELF condition but not in the OTHER condition (14 vs. 69 ms). Hartsuiker 

et al. (2008) reported a non-significant trend in the same direction in their Experiment 1. 

In addition, in the SELF condition we observed a numerical trend for longer intervals 

after interrupted (146 ms) than after completed (91 ms) initial names. Hartsuiker et al. (2008) 

reported a significant difference in the same direction. According to them, this is because 

participants have more time to plan the target name while still articulating the initial name 

when they complete than when they do not. The difference was smaller in our experiment (55 

ms) than in Hartsuiker et al. (150 ms), perhaps because intervals after interruptions were 

shorter in our experiment than theirs (146 vs. 216 ms). This might depend, in turn, on our 

participants’ reduced propensity to interrupt (see Discussion).  

 

INSERT TABLE B5 ABOUT HERE 

INSERT TABLE B6 ABOUT HERE 

 

Finally, the onset of the target picture name was delayed for degraded with respect to 

intact targets in both the SELF (809 vs. 777ms) and the OTHER condition (921 vs. 868ms), 

indicating that the manipulation was effective in both conditions (see Tables B5 and B6). 

Target onset latencies were also significantly longer in the OTHER (894 ms) than in the 
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SELF condition (792 ms). Target onsets varied as a function of initial Response Type, but 

differently in the two conditions. In the SELF conditions, latencies were much longer after 

skipped initials (878 ms) than after completed (785 ms) or interrupted (760 ms) initials. In the 

OTHER condition, instead, the target was named faster when the initial was interrupted (852 

ms) or skipped (844 ms) than when it was completed (924 ms).  

 

 

 

 

 

 

 


