

Edinburgh Research Explorer

Datatypes in L2

Citation for published version:
Chapman, N, Finn, S & Fourman, MP 1994, Datatypes in L2. in Higher Order Logic Theorem Proving and
Its Applications, 7th International Workshop, Valletta, Malta, September 19-22, 1994, Proceedings. vol. 859,
Springer-Verlag, pp. 128-143. DOI: 10.1007/3-540-58450-1_39

Digital Object Identifier (DOI):
10.1007/3-540-58450-1_39

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Higher Order Logic Theorem Proving and Its Applications, 7th International Workshop, Valletta, Malta,
September 19-22, 1994, Proceedings

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 05. Apr. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/43711774?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1007/3-540-58450-1_39
https://www.research.ed.ac.uk/portal/en/publications/datatypes-in-l2(f0163c85-600d-4fd4-aedd-e29e8fca46bf).html

D a t a t y p e s in L2

Nick Chapman 1, Simon Finn 1, Michael P. Fourman z

1 Abstract Hardware Ltd.
2 Abstract Hardware Ltd. and Edinburgh University

A b s t r a c t . We describe the axiomatisation of a subset of Standard ML's
datatypes in L2 (the LAMBDA Logic). The subset includes parameter-
isation and mutual recursion but has restrictions o n t h e use o f function
type construction. We sketch a set-theoretic model for these datatypes.
Finally, we briefly discuss the relationship between L2's datatypes and
datatypes in HOL.

1 Introduction

LAMBDA is a proof assistant designed for the specification and verification
of digital systems. User-defined data types are an impor tan t tool for expressing
well-structured specifications.

Early versions of LAMBDA (prior to LAMBDA 4.0) used a 'free' logic, allow-
ing terms that may not denote. This logic could support a rich set of data types -
essentially 3 the same as Standard ML [8]. The semantics of these data types can
be described in a s tandard domain-theoretic way [4]; in fact the presence of the
existence predicate, E, means that the information-theoretic domain ordering is
actually expressible in the logic (which therefore contains LCF as a sub-logic).
In about 1991, we decided to change the logic used within the LAMBDA system.
The basic reason for this change is that the old logic appears to be too expressive
for the intended usage of the LAMBDA system; hardware designers are rarely
impressed by having to consider the subtle distinction between the two functions
Ax..L and .l_, for example.

The new LAMBDA logic - now known as L2 - borrows heavily from HOL, but
with a concrete syntax based on Standard ML. The philosophy of LAMBDA is
somewhat different from tha t of HOL; rather than trying to reduce every proof
to a small number of axioms, we are (relatively) happy to allow the system
to construct new axioms from user-supplied definitions. This difference becomes
most apparent in the t rea tment of recursive functions - where LAMBDA doesn' t
require function definitions to be primitive recursive (see [3] for details) - and
in the current work on da ta type definition.

SML-style data type definitions provide a natural way to express specifica-
tions, as we had discovered using the 'old ' logic, so we wanted to provide them

3 Standard ML allows the definition of datatypes that are too general - in the sense
that you can't traverse them with a well-typed recursive function; LAMBDA doesn't
support these datatypes.

129

as part of L2 too. Melham [7] had already shown how to embed a useful sub-
set of the datatype language within HOL. However, it is simply not possible to
provide the full generality of SML datatypes within HOL's set-theoretic model
- a simple argument about set cardinalities shows this; Gunter [5] provides a
constructive proof - in HOL - that it 's not possible in any other sort of model
for HOL either.

Given the constraint of keeping the logic consistent, what kind of datatypes
can we allow? We believe that the version 4 of L2 supported by LAMBDA 4.3
(as described in [2]), which includes parameterisation, mutual recursion and
the (limited) use of function space constructors, is pret ty close to the maximal
datatype language that can be supported by a HOL-like logic. The L2 datatype
sublanguage is, in fact, very similar to the 'full class of [datatype] specifications'
outlined by Gunter in [6]. The principal difference is that L2 data type defini-
tions are able to make use of existing type constructors (and we give sufficient
conditions for this use to be 'legal') whereas Gunter excludes this, although she
adds:

'It is also possible to extend the notion of admissibility to include occur-
rences of certain kinds of type constructors, but the precise definition of
this case is quite complicated and we omit it here.'

2 Design Aims

Our design aims for datatypes in L2 are:

1. The syntax should be the same as that used for datatypes in Standard ML.
2. The class of datatypes provided should be as rich as possible within L2's

classical, polymorphic, higher-order type-theory.
3. Any restrictions imposed on the ML datatypes should be semantically rather

than syntactically based.
4. The induction rules generated by the system should be easy to use within

the LAMBDA proof system.

We have made the following restrictions with respect to Standard ML's
datatypes:

2.1 F u n c t i o n Sp ac e R e s t r i c t i o n

Every datatype must be small enough to be modelled as a set. In particular,
within the body of a datatype definition, there must be no occurrence of that
datatype on the left-hand side of a function arrow. This restriction is treated
semantically, so that

4 L2 evolves as our ideas evolve; in particular, the original version of L2 - supported
by LAMBDA 4.0 - had much poorer support for datatypes.

130

d a t a t y p e (' a , ' b) arrow = Arrow o f 'a -> 'b;
d a t a t y p e bad = Bad o f (b a d , b o o l) arrow;

is, of course, illegal.
To enforce the semantic restriction, LAMBDA computes, for each datatype

and each type parameter, whether that parameter is 'dir ty ' (occurs on the left of
a function-space arrow or as a subtype parameter) or 'clean'. (Subtype param-
eters are 'dirty ' because L2 subtype construction is not, in general, monotonic;
increasing the size of the carrier of the parameter to a polymorphic subtype
may decrease the size of the carrier of the result. In fact - with a suitable sub-
type predicate - the size of the subtype can be arbitrarily related to the size of
the parameter type.) Recursive instances of the datatype within the body 'of its
definition are legal only if they occur in clean positions.

For simplicity, we make the conservative assumption that a parameterised
datatype actuMly depends on all of its type parameters. This means that
LAMBDA may occasionally reject definitions which we could, semantically, al-
low. For example:

datatype 'a ignore = X

datatype funny = Y of funny ignore -> bool

LAMBDA will reject this definition of funny, because it assumes that
funny i g n o r e - which occurs on the left of a function arrow - actually de-
pends on funny. If this restriction became irksome, we could keep track of which
datatypes embed which of their parameters but, for the moment, this seems an
unnecessary refinement.

2 . 2 N o n - e m p t i n e s s R e s t r i c t i o n

Every data type must be non-empty. For example, the definition

d a t a t y p e empty = Empty o f empty;

is not allowed. Note that we impose a semantic restriction rather than saying
something syntactic like 'every datatype must contain a nullary constructor'.
This means that we can allow useful definitions such as

datatype 'a gentree = Tree of 'a gentree list * 'a;

LAMBDA enforces the non-emptiness constraint on datatypes by means of
an abstract interpretation. Each L2 parameterised data type is associated with
a boolean function; this function has one boolean parameter for each type pa-
rameter of the datatype and returns a boolean result. For a non-parameterised
datatype, this function degenerates into a single boolean value.

Informally, the interpretation of the boolean value t r u e is that we know that
the carrier of the corresponding type is non-empty. (As in HOL, all legal L2 types
have non-empty carriers. Since we are trying to establish that a given datatype is

131

legal, however, we can ' t make that assumption here. As we will see later, empty
sets do make an appearance in our model for datatypes; what we have to show
is tha t all legal types are modelled by non-empty sets.) The boolean function
corresponding to an L2 data type tells us whether we can construct an element
of that data type, on the assumption tha t we are given elements of some of the
parameter types (those for which the paramete r in the abstract ion is t r u e) .

A recursive da ta type definition will give rise to a recursive equation for the
corresponding boolean function. We solve such recursive equations by taking
the least fixed point of the corresponding functional i.e. we assume tha t the
da ta type is empty unless we can prove otherwise. (We can only guarantee to find
a fixed point because we know tha t the functional is monotonic. This wouldn ' t
necessarily be the case if we allowed the recursively defined da ta type to occur
on the left-hand side of a function arrow. In practice, this means tha t we have to
check tha t this doesn' t occur be/ore we check for non-emptiness.) The da ta type
definition is legal (or at least, not illegal on the grounds of emptiness) if the
boolean function returns t r u e when all its parameters are t r u e . An example
may make this clearer. Suppose we have the L2 definitions:

datatype (' a , ' b) choice = A of ' a I B of ' b ;
datatype ' a l i s t = n i l I : : o f ' a * ' a l i s t ;
datatype 'a tree = ('a, 'a tree list) choice;

The corresponding boolean functions would satisfy the following equations:

f _ c h o i c e (a , b) = a \ / b
f _ l i s t (a) = t r u e \ / (a / \ f _ l i s t (a))
f_tree(a) = f_choice(a,f_list(f_tree(a)))

which have the least-fixed point solutions:

f_choice(a,b) = a \/ b

f_list(a) = true

f_tree(a) = true

2.3 P a r a m e t e r U n i f o r m i t y R e s t r i c t i o n

For a parameterised datatype, all instances of the da ta type occurring in the
body of the declaration must have identical parameters to the defining instance.
For example, the following definition is not allowed"

datatype 'a up = Up of 'a I Down of ('a up) up;

This restriction is needed to ensure that the induction rule generated for the
da ta type (see below) is well-typed. 5

5 Such datatypes, although legal in Standard ML, are actually useless in practice for
just the same reason - the impossibility of writing well-typed recursive functions to
traverse them.

132

For mutually recursive datatypes, we have an obvious 6 generalisation of this
restriction. All the datatypes being defined together must have the same number
of type parameters and all instances of any of the mutually recursive datatypes
occurring in the body of any of the declarations must have the same type pa-
rameters as occur in the head of that declaration. For example,

d a t a t y p e 'a g e n t r e e = T r e e o f 'a g e n t r e e l i s t * 'a
and 'b gentreelist = List of 'b gentree list

is legal, but

d a t a t y p e (' a , ' b) swapl = X I Y of (' a , ' b) swap2
and (' c , ' d) swap2 = A I B of (' d , ' c) swapl

is not, because the occurrence of (' d , ' c) swap l within the definition of
('c, 'd)swap2 is illegal - the type parameters don' t occur in the same order.

3 A x i o m a t i s a t i o n

Given a legal L2 datatype definition, LAMBDA produces a number of rules to
axiomatise the properties of that datatype. These rules fall into 3 classes:

1. For each unary constructor, LAMBDA produces a rule stating that it is a
1-1 function i.e. two terms built using the constructor are equal only if they
have equal arguments.

2. For each pair of distinct constructors, LAMBDA produces a rule stating that
two terms built using different constructors are unequal.

3. For each datatype, LAMBDA produces an induction rule stating that every
value in the datatype can be built using one of the constructors.

The first two classes of rules are uninteresting and will not be discussed
further. By contrast, constructing appropriate induction rules is somewhat non-
trivial and - for parameterised or mutually-recursive datatypes - also requires
the axiomatisation of a number of auxiliary functions, as will be described below.

The first of these auxiliary functions is the ex t en d function. The ex t en d
function corresponding to a parameterised datatype takes one parameter - a
predicate - for each type parameter of the datatype definition and produces a
predicate which operates on the datatype itself. Roughly speaking, the ex t end
function applies each predicate to all subterms of the corresponding type and
conjoins the results. For example, the L2 datatype definition

datatype 'a tree =

Empty
[J u s t of ' a
[P a i r o f b o o l -> ' a
[Many o f ' a t r e e * 'a t r e e l i s t ;

s This generalisation is so 'obvious', in fact, that we needed 6 months to discover it.

133

would produce the induction rule:

G // H I - forall t , 1 . Ptree#(t)

/\ extend'list (fn x => Ptree#(x)) 1

->> Ptree#(Many (t,l))

G // H [- feral1 f. Ptree#(Pair f)

G // H l- forall x. Ptree#(Just x)

G // H [- Ptree#(Empty)

G // H l- forall t . P t r e e # (t)

which uses the function e x t e n d ' l i s t - previously generated from the definition
of the l i s t datatype - and would also define the e x t e n d ' t r e e function:

fun extend'tree p Empty = TRUE

l extend'tree p (Just x) = p x

I extend'tree p (Pair f) = forall b:bool, p (f b)

] extend'tree p (Many(t,l)) =

extend'tree p t /\ extend'list (extend'tree p) 1

so that tree can itself be used in future datatype definitions. In addition to
the explicit induction rules, LAMBDA allows the definition of 'primitive recur-
sive' functions that manipulate the newly introduced datatype. For example,
LAMBDA would recognise the following function definitions as primitive recur-
sive:

fun coun t I t ems Empty
[coun t I t ems (J u s t
[coun t I t ems (P a i r
] countItems (Many

countItems t +

= 0

x) = l
f) = 2
(t , t l)) =

count It emsInList tl

and countItemsInList

] countItemsInList

countItems t +

[] = 0
(t : : t s) =
countItemsInList ts

We discuss LAMBDA's definition of 'primitive recursive' in more detail later.
The combination of the explicit datatype axioms together with the principle of
definition of primitive recursive functions is categorical i.e. they determine the
structure of the values of the datatype (up to isomorphism).

When we have mutually recursive datatype definitions, expressing the induc-
tion rules requires an extra family of auxiliary functions - the c o n v e r t functions.
For example the definition

datatype 'a T = Bode of 'a * 'a TL

and 'b TL = Nil I Cons of 'b T * 'b TL

generates the following pair of induction rules:

134

G II H [- forall x,tl. c o n v e r t ' T ' T L (fn t => PT#(t)) %1
->> PT#(~ode(x,tl))

G / / H l- forall t . PT#(t)

G / / H [- forall t,tl. r (fn tl => PTL#(tl)) t
/ \ PTL#(tl)

->> PTL#(Cons(t,tl))
G // H [- PTL#(Nil)

G I I H I- forall tl. PTL#(tl)

Each of these induction rules uses an additional ' c o n v e r t ' auxiliary function.
The intuition behind the c o n v e r t functions is that the predicate c o n v e r t ' X' Y P
holds of an object y of type Y precisely if P holds of all the immediate subterms
of y which are of type X e.g. c o n v e r t 'T 'TL converts an (inductive) predicate on
T into a predicate on TL. The definition of these functions is

fun convert'T~TL f Nil = TRUE
] convert'T'TL f (Cons (x,y)) = f x /\ convert'T'TL f y

fun c o n v e r t ' T L ' T f (Node (x , y)) = f y

In general, defining n mutually recursive datatypes generates n induction
rules and n groups of c o n v e r t functions, where each group contains n - 1 mu-
tually recursive functions.

It would have been possible to define the induction rules without introduc-
ing the auxiliary c o n v e r t functions. For example, we could have produced the
following, apparently simpler, rules:

G II B
G II s

G II H

[- forall x,tl. PTL#(tl) ->> PT#(Node(x,tl))

[- forall t,tl. P#(t) / \ PTL#(tl) ->> PTL#(Cons(t,tl))
l - PTL#(Nil)

G II

c II H
G II B

[- forall t . PT#(t)

]- forall x,tl. PTL#(tl) ->> PT#(Node (x,tl))
[- forall t,tl. P#(t) /\ PTL#(tl) ->> PTL#(Cons(t,tl))
i- PTL#(Nil)

G // H]- forall tl. PTL#(tl)

This - allowing for differences in the logic - is how we treated mutually recur-
sive datatypes in LAMBDA 3.X. The reason that we don' t use these seductively
simple rules within the current version of LAMBDA is that they are hard to use.

There are two reasons for this:

135

1. If we are using an induction rule to perform case analysis rather than full-
blown induction, the ' s imple ' rules force us to consider constructors from all
the mutually-recursive datatypes, rather than only the da ta type of interest.

2. When we use an induction rule for ' real ' induction, we need to instant iate
the meta-variables (PT and P T L above) to produce the concrete induc-
tion scheme for the particular predicate tha t we wish to prove. LAMBDA's
higher-order unification will instantiate one of these meta-var iables for us
when we apply the induction rule, but we will then have to instant iate the
other(s) by hand. Wha t makes this part icularly annoying is tha t we normal ly
need to define some auxiliary functions in order to perform the instantiat ion
- we need, in fact, to define the c o n v e r t functions by hand.

The apparent ly more complex induction rules than LAMBDA now generates
solve both of these pragmat ic problems.

4 P r i m i t i v e R e c u r s i o n

LAMBDA will recognise a function definition as primit ive recursive if it can show
by a simple syntactic check that the corresponding function always is total.TThe
syntactic conditions tha t a primitive-recursive function must fulfill are as follows.
Suppose the function is defined by a series of clauses, each with the function
symbol applied to n symbols. For each occurrence of the function symbol in the
body of any clause

1. The function must be applied to at least 1 argument.
2. For some i, 0 _< i < n, the first i arguments must be identical to the first i

pat terns at the head of that clause. The i + l ' t h argument must be strictly
smaller than the i + l ' t h pattern.

For mutual ly recursive functions, we slightly generalise the above rules. Sup-
pose several mutually-recursive functions are defined by clauses. Then, for each
occurrence of any of the mutually-recursive functions in the body of any of the
clauses:

1. The function must be applied to at least 1 argument .
2. For some i, 0 < i < n, where n is the number of pat terns occurring in

that particular clause s, the first i arguments must be identical to the first i
patterns. The i + l ' t h argument must be strictly smaller than the i + l ' t h
pat tern.

Wha t does 'strictly smaller ' mean? An expression is smaller than a pa t te rn
if one of the following holds:

LAMBDA also allows the definition of non primitive-recursive functions. To make
effective use of such a function the user has to discharge a side condition that says,
essentially, that the function 'terminates'. This will be discussed in detail in [3].

s For mutually recursive functions, n may vary from clause to clause because different
functions may have different numbers of parameters; for each individual function,
the number of patterns in each clause should still be constant.

136

1. The pat tern is a variable (N.B. not a constructor) and the expression is the
same variable or consists of the application of that variable to one or more
arguments.

2. The pat tern is a nullary constructor and the expression is the same construc-
tor.

3. The pat tern and expression each consist of an application of the same unary
constructor and the argument in the expression is smaller than the argument
in the pattern.

4. The expression and pat tern are both labelled records (this includes tuples)
with the same labels and each subexpression is smaller than the correspond-
ing subpattern.

5. The expression is smaller than a strict subpattern of the pattern.

An expression is strictly smaller than a pattern if it is smaller than the
pattern, but not identical to it.

5 A x i o m a t i s a t i o n w i t h i n L A M B D A

In this section we describe the concrete form of the induction rules and auxiliary
functions produced by L A M B D A .

5 .1 A u x i l i a r y F u n c t i o n s - e x t e n d

As noted above, LAMBDA generates higher-order ' ex t end ' functions which take
one parameter - a predicate - for each type parameter of the original datatype
definition and produce a predicate which operates on the datatype itself. We
characterised this function as applying each predicate to all subterms of the
corresponding type and conjoining the results. This characterisation of e x t e n d
is slightly too simple:

1. If the type parameter is embedded in the range of a function type, then the
e x t e n d function must quantify over the range of the function, as for P a i r
in the above example. This means that we are interpreting 'subterm' in a
semantic rather than a syntactic sense.

2. If the type parameter is ever embedded in the domain of a function type -
i.e. the type is 'dirty ' - then the corresponding predicate is never applied.
This doesn't cause a problem because we define ex t en d functions precisely so
that we can use parameterised datatypes in the definition of new, indirectly
recursive, datatypes (as we used l i s t in the definition of t r e e , for example)
and our restriction on datatype definitions excludes recursion through such
'dirty ' parameters.

In general, the mutually recursive datatype definition

d a t a t y p e (' a l l , ' a l n) D1
and . . .
and (' a k l , 'akn) Dk = . . . I Cki I . . . [Ckj of tkj [. . .

137

gives rise to the k functions extend 'D1 . . . ex tend 'Dk. Conceptually, we de-
fine these functions as described below; in practice LAMBDA also performs a
'pat tern-l i f t ing ' phase (essentially beta-reduction plus simplification of trivial
conjuncts) to improve the readability of the generated definitions.
For nullary constructors, the ex t end function always returns TRUE

e x t e n d ' D = Pl . . . P n C=i = TRUE

For unary constructors, its value depends on the s tructure of the type of the
constructor

e x t e n d ' D x Pl . . . P n (Cxl vx i) = [[t x i]] vxi

where the ope ra t ion ' [[_]] is defined by

[[t]] : I n v :> TRUE,
where t is any type containing no instance of a clean parameter .

[['a~]] : pi,
where 'a~ 1 is the j ' t h parameter type and 'axj is a clean parameter .

[[(' a ~ l ' axn)D~]] : ex tend 'Dy Pl . . . P , ,
where D r is one of the mutual ly recursive data types 9 - possibly D , itself.

[[(t l t l) D]] : e x t e n d ' D [[t l]] . . . [[t i l l ,
where D is some other da ta type constructor and some t i contains a
clean parameter . Note that this condition logically implies tha t the j ' t h
parameter position of D must be clean.

[[{ z i : t j }]] = :~n { i i : v j } => A ~ ([[t f l] v~),
where {aj : t j} is a labelled record type and some t j contains an in-
stance of a clean parameter .

[[t l -> t 2]] = fn f => ~ o r a l l x : t l . [[t 2]] (f x) ,
where t2 contains an instance of a clean parameter .

The case [[(t l t t) T]] where T is a type abbreviat ion is handled
by expanding the abbreviation.

Note that the predicate pj will never be applied if the corresponding type pa-
rameter, ' a j , is dirty. We could eliminate these parameters altogether, but we
choose not to do so; this means that if, in the future, we change the definition of
'clean' - to take account of datatypes which don ' t embed their arguments, for
example - we won't have to change the type of any existing e x t e n d function.

9 This rule means that the extend functions for mutually recursive datatypes must
also be mutuMly recursive.

138

5.2 Auxiliary Functions - convert

As noted above, the predicate convert'X'u P holds of an object y of type Y
precisely if P holds of all the immediate subterms of y which are of type X i.e.
convert ' X' Y converts an (inductive) predicate on X into a predicate on Y. This
means that the convert ' X ' Y function will have type

(X -> om) -> u -> om

Suppose we have the mutually recursive datatype definition

datatype ('a11 , 'al,) D1 = ...
and ...

and (' a k l ' a k .) Dk = . . . [Ck~ [. . . [Ctj of t~j { . . .

Then, for nullary constructors, the convert function always returns TRUE

convert~D~'Dy P~ C~i = TRUE

For unary constructors, c o n v e r t function depends on the structure of the type
of the constructor

convert'Dx'D~ P~ (Cyj vy/) = [[tyj3] v~j

where the compilation operation [[_]] is here defined to be

[[t]] = f n x => TRUE,
where t is any type containing no instance of any of the mutuMly-
recursive datatypes.

[[(' a ~ l , . . . , ' a y .) D =]] = P~

[[('ayl 'ay.)Dz]] = convert'Dz'Dz P=,
where D~, distinct from D= but possibly the same as Dr, is one of the
mutually-recursive datatypes.

C[(tl tz)D]] = extend'D [[tl]] ... [[tl]],

where D is a previously-defined datatype constructor.

CC{lj : t~}33 = ~n {1~ : vj} => h ~ ([C t j]] v j) ,
where { l j : t i } is a labelled record type.

[Ct I -> t2]] = :fn f --> forall x : tl. CCt2]] (:f x)

As for the e x t e nd functions, we handle the case [[(t l , . . . , t~)T]]
where T is a type abbreviation by expanding the abbreviation.

As for the e x t e n d family of functions, LAMBDA performs pattern-lifting to
optimise the definitions produced by the above naive algorithm.

139

5.3 I n d u c t i o n R u l e s - C o n s t r u c t i o n

Suppose we have the mutually recursive datatype definition

datatype (' a l l ' a l n) DI = . . .
and . . .
and (' a k l 'akn) Dk [Cki [. . . [Ckj of tkj [. . .

LAMBDA will produce k induction rules, one for each datatype. The rule for
each datatype consists of a conclusion plus one premiss for each constructor of
that datatype. For the datatype Dr, the conclusion will be

G / / It I - f o r a l l ~ : (' a r l ' a r ,) D r . PDr#(W)

The premiss corresponding to a nullary constructor, Cri, of type Dr will be

G / / H I- PDr#(Czi)

For a unary constructor, C=i, of type t=i -> (' a t 1 , ' a m) D = , the premiss
will be

G // II [- forall Vxi. pre~i -~ PD~#(patxi)

w h e r e <Vxi,patxi,pre~i> = [[t ~ i]] and the compilation operator [[_]] is de-
fined as follows:

[[{ l j : t j }]] : <@j Vj, {l j : p a t / } , Aj prej>,
where {lj : t j } is alabelled record type, <Vj, p r e j , pa t j> = [[t j]] ,
and we use the notation '@j Yj' to represent vector concatenation.

[[(' a x l 'axn)Dz]] = <v,v ,PDx#(v)>,
where v is a new variable.

[[(' a ~ l ' a , ,) D y]] =
< v , v , c o n v e r t ' D z ' D y (fn z => PD~#(z)) v>,

where Dy is another of the mutually-recursive datatypes and v is a new
variable.

[[(t , t t) D]] =

<v,v,extend'D (fn pail => prel) ... (:fn patl => prel) v>,
where D is a previously-defined datatype constructor, there is an occur-
rence of one of the mutually recursive datatypes in at least one of the
t j , <Vj, p a t / , pre j> = [[t i l l , and v is a new variable.

[[t l -> t 2]] = < f , f , f o r a l l x. p r e [v *-- (f x)]>,
where t~ contains one of the mutually recursive datatypes,
<v, v, pre> = [[t 2]] , v is a variable, and f and x are new variables.

140

EFt 1 - > 1;233 =

< r x. (fn pat => pre) (f x)>,
where t2 contains one of the mutually recursive datatypes,
<V, p a t , pre> = [Et2]] , p a t is not a variable, and f and x are new
variables.

As before, we handle the case [[(t l t l) T]] where T is a type
abbreviation by expanding the abbreviation.

[[t]] = <v,v,TRUE>,
where v is a new variable and none of the above rules apply.

6 Sketch of Semantics

How do we build a set-theoretic model for L2 datatypes? In general the L2
model would be similar to Pit ts ' set-theoretic model for HOL [9]. We then have
to explain how to add the denotations of recursive datatypes. l~ then proceed
in something like the following stages:

1. We model an L2 datatype as the least fixed point of a monotonic function
on a suitable lattice of sets (with a suitable appeal to Tarski's Fixed Point
Theorem justify the existence of a fixed point.) The restrictions that we have
made on the ,form of L2 datatypes are just what we need to ensure that such
a monotonic function exists and that the resulting fixed point is a non-empty
set. In particular:

(a) We made the restriction that all instances of the datatype occurring in
the body of the declaration must the same parameters as the defining
instance. This means that we can treat the parameter types as fixed
when we construct the fixed point and then parameterise the result. (If
we didn't have this restriction we would need to find the fixed point of
a functional rather than just a function.)

(b) The restriction that recursive occurrences of the datatype occurring in
the body of its definition may only occur in 'clean' positions is precisely
what we need to show that the function is monotonic. (Here we need to
make the assumption that previously defined parameterised datatypes
give rise to functions that are indeed monotonic in their 'clean' param-
eters. We can justify this by an induction on the number of previously-
defined datatypes,)

2. We next need to show that the newly-defined parameterised datatype is
a monotonic function of its 'clean' parameters. This should be standard
argument involving the least fixed points of monotonic functions.

10 We also have to explain how to handle non-primitive recursive functions; this will be
treated in [3] - the techniques used there are remarkably similar to our treatment of
datatypes.

141

3. At this stage in the argument, we have established tha t the L2 da ta type can
be represented as a set. We next have to show tha t the abstract interpretat ion
is correct i.e. tha t it is conservative in its prediction about whether the
da ta type is non-empty.

4. Next we have to consider the e x t e n d functions. I f we regard them as func-
tions on sets (represented by their characteristic functions) we can see that
we can define the ex t end function for a da ta type - as a least fixed point -
in much the same way as we defined the da ta type itself.

5. Finally the induction rules can be justified by an argument involving least
fixed points of monotonic functions. The only complication here is tha t
e x t e n d functions appear to ignore their 'd i r ty ' arguments i.e. Pi is t reated as
if it were f n _ => t r u e whenever the i ' t h paramete r type is dirty. This isn' t
actually a problem, because when the i ' t h paramete r type is dirty, Pi actu-
ally is f n _ => t r u e i.e. 'd i r ty ' types are treated as fixed and non-empty
throughout the proof. (We could simplify this proof by making the definition
of the e x t e n d function match the da ta type definition more exactly, but tha t
wouldn' t be very user-friendly.)

7 R e l a t i o n s h i p o f L 2 d a t a t y p e s t o H O L d a t a t y p e s

As we noted in the introduction, the main technical difference between L2
data types and Gunter's[6] HOL data types is that L2 da ta type definitions may
make use of existing type constructors. In some respects, this difference is not
impor tan t because it is always possible to expand out the use of such type con-
structors by introducing new, mutually-recursive, datatypes. For example, we
could treat the definition:

d a t a t y p e ' a g e n t r e e = Tree of ' a g e n t r e e l i s t * ' a ;

as if it were:

d a t a t y p e ' a g e n t r e e =
Tree of 'a gentree_list * 'a

and 'a gentree list =

Nil I Cons of 'a gentree * 'a gentree_list

If we do this consistently, we can reduce a collection of L2 da ta type definitions
into a form equivalent to Gunter's[6] 'full class of specifications'. (Our function-
space condition is sufficient to show tha t the expanded form meets Gunter ' s
admissibility conditions.) This is perhaps the simplest way to give a meaning to
L2 da ta type definitions.

Doing this at the source level would have a distinct price however. The two
types ' a gentree list and ' a gentree_list are isomorphic but they are not
identical. This means that it would not be possible to apply useful general pur-
pose functions such as map to an object of type ' a g e n t r e e . . l i s t and so it would
be necessary to develop a separate theory of lists for each such ' ins tant ia t ion ' of
the l i s t constructor.

142

8 F u t u r e W o r k

When we s tar ted the first draft of this paper, we believed tha t our character-
isation of L2 data types was essentially complete, and tha t the data types we
described were in some sense 'max ima l ' for a HOL-like logic.ltSince then, we
have had a couple of ideas for extensions.

We currently t reat all subtyping as 'dir ty ' . This means, for example, tha t if
we add an integer index to each node of a g e n t r e e and specify, using subtyping,
tha t such indices mus t all be distinct then we can ' t use the resulting type in any
future da ta type definition. Given the current HOL (or L2) type scheme, this
seems to be unavoidable. The problem is that we can ' t tell whether or not the
subtype predicate makes the subtype non-monotonic in the size of the subtype 's
parameters , so we have regard all the subtype 's parameters as potentially non-
monotonic ' i .e . 'd i r ty ' .

We believe tha t it may be possible to make a small change to the type scheme
to remove this restriction, al though we haven ' t worked out all the details yet. The
basic idea is to borrow Standard ML's concept of ' impera t ive ' type variables to
keep track of which type parameters are 'clean' and which are 'd i r ty ' . Standard
functions have normal 'appl icat ive ' types, but (rather ironically) quantifiers get
' impera t ive ' types rather like Standard ML's re:~ constructor.

Two reviewers pointed out the close relationship between the definition of a
da ta type and the associated principle of definition for functions on tha t datatype.
Although we have successfully defined induction rules using parameterised data-
types, we have not done so well with the definitional principle. For example, we
defined the function e o u n t I t e m s as:

fun countItems Empty = 0

I countItems (Just x) = 1

I countItems (Pair f) = 2

I c o u n t I t e m s (Many (t , t l)) =
c o u n t I t e m s t + c o u n t I t e m s I n L i s t t l

and countItemsInList [] = 0

I countltemsInList (t::ts) =

countItems t + countItemsInList ts

Here the recursion pat tern for coun t I t ems , in part icular the use of the auxiliary
function c o u n t I t e m s I n L i s t , is exactly what one would expect if we had defined
a local ' a t r e e _ l i s t da ta type rather than using ' a t r e e l i s t in the da ta type
definition. A more natural definition of c o u n t I t e m s would be something like:

f u n c o u n t I t e m s Empty = 0
I c o u n t I t e m s (J u s t x) = 1

11 With the exception - already noted - that we can define a better function space
restriction by keeping track of whether a type constructor actually uses all its type
parameters.

143

c o u n t I t e m s (P a i r f) = 2
c o u n t I t e m s (Many (t , t l)) =

r t +
fold'list (0, op +) (map'list countltsms tl);

Here we are assuming tha t the f o l d ' l i s t and map ' l i s t functions would be au-
tomat ical ly generated from the da ta type definition for l i s t and, crucially, tha t
we can regard this definition as primitive recursive. There is clearly considerable
scope for investigating LAMBDA's definition of 'pr imit ive recursion'.

9 Acknowledgements

Our t rea tment builds on the work of Mat t Fairtlough[1] and we are grateful to
Mat t for many useful discussions. We would also like the thank the anonymous
referees many of whose constructive suggestions have been incorporated into
this paper. The work reported in this paper was part ial ly funded by the projects
Formal System Design (IED/2/1292) and Synthesis, Optimisation and Analysis
(JESSI AC8).

References

1. Matt Fairtlough, Research into ML Datatypes, in Formal System Design (IED
Project 1292) Deliverable D13, Edinburgh University, February 1992.

2. Simon Finn, Michael P. Fourman, L2 - The LAMBDA Logic, in LAMBDA 4.3
Reference Manuals, Abstract Hardware Limited, September 1993.

3. Simon Finn, Michael Fourman, John Longley, Partial Functions in a Total Setting,
in preparation.

4. M.P. Fourman and W.K. Phoa, A Proposed Categorical Semantics for Pure ML, in
ICALP '92 International Colloquium on Automata, Languages, and Programming,
Wien Austria, Springer-Verlag LNCS, 1993.

5. Elsa L. Gunter, Why We Can't have SML Style da ta type Declarations in HOL, in
Higher Order Logic Theorem Proving and its Applications (HOL'92), ed. L.J.M.
Claessen, M.J.C. Gordon, North-Holland 1993.

6. Elsa L. Gunter, A Broader Class of Trees for Recursive Type definitions in HOL, in
Higher Order Logic Theorem Proving and its Applications (HUG'93), ed. Jeffrey J.
Joyce, Carl-Johan H. Seger, Lecture Notes in Computer Science 780, Springer-Verlag
1994.

7. Thomas F. Melham, Formalizing Abstraction Mechanisms for Hardware Verifica-
tion in Higher Order Logic, PhD Thesis and Technical Report 201, University of
Cambridge, August 1990.

8. Robin Mflner, Mads Torte and Robert Harper, The Definition of Standard ML, MIT
Press, 1990.

9. Andy Pitts, Set-Theoretic Semantics, in The HOL System DESCRIPTION, HOL88
Documentation, 1991.

