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D a t a t y p e s  in L2 

Nick Chapman  1, Simon Finn 1, Michael P. Fourman z 

1 Abstract Hardware Ltd. 
2 Abstract Hardware Ltd. and Edinburgh University 

A b s t r a c t .  We describe the axiomatisation of a subset of Standard ML's 
datatypes in L2 (the LAMBDA Logic). The subset includes parameter- 
isation and mutual recursion but has restrictions o n  t h e  use  o f  function 
type construction. We sketch a set-theoretic model for these datatypes. 
Finally, we briefly discuss the relationship between L2's datatypes and 
datatypes in HOL. 

1 Introduction 

LAMBDA is a proof assistant designed for the specification and verification 
of digital systems. User-defined data types  are an impor tan t  tool for expressing 
well-structured specifications. 

Early versions of LAMBDA (prior to LAMBDA 4.0) used a 'free'  logic, allow- 
ing terms that  may  not denote. This logic could support  a rich set of data types  - 
essentially 3 the same as Standard ML [8]. The semantics of these data types  can 
be described in a s tandard domain-theoretic way [4]; in fact the presence of the 
existence predicate, E, means that  the information-theoretic domain ordering is 
actually expressible in the logic (which therefore contains LCF as a sub-logic). 
In about  1991, we decided to change the logic used within the LAMBDA system. 
The basic reason for this change is that  the old logic appears  to be too expressive 
for the intended usage of the LAMBDA system; hardware designers are rarely 
impressed by having to consider the subtle distinction between the two functions 
Ax..L and .l_, for example.  

The new LAMBDA logic - now known as L2 - borrows heavily from HOL, but 
with a concrete syntax based on Standard ML. The philosophy of LAMBDA is 
somewhat  different from tha t  of HOL; rather than trying to reduce every proof 
to a small number  of axioms, we are (relatively) happy to allow the system 
to construct new axioms from user-supplied definitions. This  difference becomes 
most  apparent  in the t rea tment  of recursive functions - where LAMBDA doesn' t  
require function definitions to be primitive recursive (see [3] for details) - and 
in the current work on da ta type  definition. 

SML-style data type  definitions provide a natural  way to express specifica- 
tions, as we had discovered using the 'old '  logic, so we wanted to provide them 

3 Standard ML allows the definition of datatypes that are too general - in the sense 
that you can't traverse them with a well-typed recursive function; LAMBDA doesn't 
support these datatypes. 
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as part  of L2 too. Melham [7] had already shown how to embed a useful sub- 
set of the datatype language within HOL. However, it is simply not possible to 
provide the full generality of SML datatypes within HOL's set-theoretic model 
- a simple argument about set cardinalities shows this; Gunter  [5] provides a 
constructive proof - in HOL - that  it 's not possible in any other sort of model 
for HOL either. 

Given the constraint of keeping the logic consistent, what kind of datatypes 
can we allow? We believe that  the version 4 of L2 supported by LAMBDA 4.3 
(as described in [2]), which includes parameterisation, mutual  recursion and 
the (limited) use of function space constructors, is pret ty close to the maximal 
datatype language that  can be supported by a HOL-like logic. The L2 datatype 
sublanguage is, in fact, very similar to the 'full class of [datatype]  specifications' 
outlined by Gunter in [6]. The principal difference is that  L2 data type defini- 
tions are able to make use of existing type constructors (and we give sufficient 
conditions for this use to be 'legal') whereas Gunter excludes this, although she 
adds: 

'It is also possible to extend the notion of admissibility to include occur- 
rences of certain kinds of type constructors, but the precise definition of 
this case is quite complicated and we omit it here.' 

2 Design Aims 

Our design aims for datatypes in L2 are: 

1. The syntax should be the same as that  used for datatypes in Standard ML. 
2. The class of datatypes provided should be as rich as possible within L2's 

classical, polymorphic, higher-order type-theory. 
3. Any restrictions imposed on the ML datatypes should be semantically rather 

than syntactically based. 
4. The induction rules generated by the system should be easy to use within 

the LAMBDA proof system. 

We have made the following restrictions with respect to Standard ML's 
datatypes: 

2.1 F u n c t i o n  Sp ac e  R e s t r i c t i o n  

Every datatype must be small enough to be modelled as a set. In particular, 
within the body of a datatype definition, there must be no occurrence of that  
datatype on the left-hand side of a function arrow. This restriction is treated 
semantically, so that  

4 L2 evolves as our ideas evolve; in particular, the original version of L2 - supported 
by LAMBDA 4.0 - had much poorer support for datatypes. 
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d a t a t y p e  ( ' a , ' b )  arrow = Arrow o f  'a  ->  'b;  
d a t a t y p e  bad = Bad o f  ( b a d , b o o l )  arrow;  

is, of course, illegal. 
To enforce the semantic restriction, LAMBDA computes, for each datatype 

and each type parameter,  whether that  parameter is 'dir ty '  (occurs on the left of 
a function-space arrow or as a subtype parameter) or 'clean'. (Subtype param- 
eters are 'dirty '  because L2 subtype construction is not, in general, monotonic; 
increasing the size of the carrier of the parameter to a polymorphic subtype 
may decrease the size of the carrier of the result. In fact - with a suitable sub- 
type predicate - the size of the subtype can be arbitrarily related to the size of 
the parameter  type.) Recursive instances of the datatype within the body 'of  its 
definition are legal only if they occur in clean positions. 

For simplicity, we make the conservative assumption that  a parameterised 
datatype actuMly depends on all of its type parameters. This means that  
LAMBDA may occasionally reject definitions which we could, semantically, al- 
low. For example: 

datatype 'a ignore = X 

datatype funny = Y of funny ignore -> bool 

LAMBDA will reject this definition of funny, because it assumes that  
funny i g n o r e  - which occurs on the left of a function arrow - actually de- 
pends on funny. If this restriction became irksome, we could keep track of which 
datatypes embed which of their parameters but, for the moment,  this seems an 
unnecessary refinement. 

2 . 2  N o n - e m p t i n e s s  R e s t r i c t i o n  

Every data type must be non-empty. For example, the definition 

d a t a t y p e  empty  = Empty o f  empty;  

is not allowed. Note that  we impose a semantic restriction rather than saying 
something syntactic like 'every datatype must contain a nullary constructor'.  
This means that  we can allow useful definitions such as 

datatype 'a gentree = Tree of 'a gentree list * 'a; 

LAMBDA enforces the non-emptiness constraint on datatypes by means of 
an abstract interpretation. Each L2 parameterised data type is associated with 
a boolean function; this function has one boolean parameter  for each type pa- 
rameter of the datatype and returns a boolean result. For a non-parameterised 
datatype,  this function degenerates into a single boolean value. 

Informally, the interpretation of the boolean value t r u e  is that  we know that  
the carrier of the corresponding type is non-empty. (As in HOL, all legal L2 types 
have non-empty carriers. Since we are trying to establish that  a given datatype is 
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legal, however, we can ' t  make that  assumption here. As we will see later, empty  
sets do make an appearance in our model for datatypes;  what  we have to show 
is tha t  all legal types are modelled by non-empty sets.) The  boolean function 
corresponding to an L2 data type  tells us whether we can construct an element 
of that  data type,  on the assumption tha t  we are given elements of  some of the 
parameter  types (those for which the paramete r  in the abstract ion is t r u e ) .  

A recursive da ta type  definition will give rise to a recursive equation for the 
corresponding boolean function. We solve such recursive equations by taking 
the least fixed point of the corresponding functional i.e. we assume tha t  the 
da ta type  is empty  unless we can prove otherwise. (We can only guarantee to find 
a fixed point because we know tha t  the functional is monotonic. This wouldn ' t  
necessarily be the case if we allowed the recursively defined da ta type  to occur 
on the left-hand side of a function arrow. In practice, this means tha t  we have to 
check tha t  this doesn' t  occur be/ore we check for non-emptiness.)  The  da ta type  
definition is legal (or at least, not illegal on the grounds of emptiness) if the 
boolean function returns t r u e  when all its parameters  are t r u e .  An example 
may  make this clearer. Suppose we have the L2 definitions: 

datatype ( ' a , ' b )  choice = A of  ' a  I B of  ' b ;  
datatype ' a  l i s t  = n i l  I : :  o f  ' a  * ' a  l i s t ;  
datatype 'a tree = ('a, 'a tree list) choice; 

The corresponding boolean functions would satisfy the following equations: 

f _ c h o i c e ( a , b )  = a \ /  b 
f _ l i s t ( a )  = t r u e  \ /  (a  / \  f _ l i s t ( a ) )  
f_tree(a) = f_choice(a,f_list(f_tree(a))) 

which have the least-fixed point solutions: 

f_choice(a,b) = a \/ b 

f_list(a) = true 

f_tree(a) = true 

2.3 P a r a m e t e r  U n i f o r m i t y  R e s t r i c t i o n  

For a parameterised datatype,  all instances of the da ta type  occurring in the 
body of the declaration must  have identical parameters  to the defining instance. 
For example,  the following definition is not allowed" 

datatype 'a up = Up of 'a I Down of ('a up) up; 

This restriction is needed to ensure that  the induction rule generated for the 
da ta type  (see below) is well-typed. 5 

5 Such datatypes, although legal in Standard ML, are actually useless in practice for 
just the same reason - the impossibility of writing well-typed recursive functions to 
traverse them. 
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For mutually recursive datatypes, we have an obvious 6 generalisation of this 
restriction. All the datatypes being defined together must have the same number 
of type parameters and all instances of any of the mutually recursive datatypes 
occurring in the body of any of the declarations must have the same type pa- 
rameters as occur in the head of that  declaration. For example, 

d a t a t y p e  'a  g e n t r e e  = T r e e  o f  'a  g e n t r e e l i s t  * 'a  
and 'b gentreelist = List of 'b gentree list 

is legal, but  

d a t a t y p e  ( ' a , ' b )  swapl = X I Y of  ( ' a , ' b )  swap2 
and ( ' c , ' d )  swap2 = A I B of  ( ' d , ' c )  swapl 

is not, because the occurrence of ( ' d ,  ' c ) swap l  within the definition of 
( 'c,  'd)swap2 is illegal - the type parameters don' t  occur in the same order. 

3 A x i o m a t i s a t i o n  

Given a legal L2 datatype definition, LAMBDA produces a number of rules to 
axiomatise the properties of that  datatype. These rules fall into 3 classes: 

1. For each unary constructor, LAMBDA produces a rule stating that  it is a 
1-1 function i.e. two terms built using the constructor are equal only if they 
have equal arguments. 

2. For each pair of distinct constructors, LAMBDA produces a rule stating that  
two terms built using different constructors are unequal. 

3. For each datatype, LAMBDA produces an induction rule stating that  every 
value in the datatype can be built using one of the constructors. 

The first two classes of rules are uninteresting and will not be discussed 
further. By contrast, constructing appropriate induction rules is somewhat non- 
trivial and - for parameterised or mutually-recursive datatypes - also requires 
the axiomatisation of a number of auxiliary functions, as will be described below. 

The first of these auxiliary functions is the ex t en d  function. The ex t en d  
function corresponding to a parameterised datatype takes one parameter - a 
predicate - for each type parameter of the datatype definition and produces a 
predicate which operates on the datatype itself. Roughly speaking, the ex t end  
function applies each predicate to all subterms of the corresponding type and 
conjoins the results. For example, the L2 datatype definition 

datatype 'a tree = 

Empty 
[ J u s t  of  ' a  
[ P a i r  o f  b o o l  -> ' a  
[ Many o f  ' a  t r e e  * 'a  t r e e  l i s t ;  

s This generalisation is so 'obvious', in fact, that we needed 6 months to discover it. 
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would produce the induction rule: 

G // H I -  forall t , 1 .  Ptree#(t) 

/\ extend'list (fn x => Ptree#(x)) 1 

->> Ptree#(Many (t,l)) 

G // H [- feral1 f. Ptree#(Pair f) 

G // H l- forall x. Ptree#(Just x) 

G // H [-  Ptree#(Empty) 

G // H l- forall t .  P t r e e # ( t )  

which uses the function e x t e n d '  l i s t  - previously generated from the definition 
of the l i s t  datatype - and would also define the e x t e n d ' t r e e  function: 

fun extend'tree p Empty = TRUE 

l extend'tree p (Just x) = p x 

I extend'tree p (Pair f) = forall b:bool, p (f b) 

] extend'tree p (Many(t,l)) = 

extend'tree p t /\ extend'list (extend'tree p) 1 

so that  tree can itself be used in future datatype definitions. In addition to 
the explicit induction rules, LAMBDA allows the definition of 'primitive recur- 
sive' functions that  manipulate the newly introduced datatype. For example, 
LAMBDA would recognise the following function definitions as primitive recur- 
sive: 

fun  coun t I t ems  Empty 
[ coun t I t ems  ( J u s t  
[ coun t I t ems  ( P a i r  
] countItems (Many 

countItems t + 

= 0 

x ) = l  
f )  = 2 
( t , t l ) )  = 

count It emsInList tl 

and countItemsInList 

] countItemsInList 

countItems t + 

[] = 0 
( t : : t s )  = 
countItemsInList ts 

We discuss LAMBDA's definition of 'primitive recursive' in more detail later. 
The combination of the explicit datatype axioms together with the principle of 
definition of primitive recursive functions is categorical i.e. they determine the 
structure of the values of the datatype (up to isomorphism). 

When we have mutually recursive datatype definitions, expressing the induc- 
tion rules requires an extra family of auxiliary functions - the c o n v e r t  functions. 
For example the definition 

datatype 'a T = Bode of 'a * 'a TL 

and 'b TL = Nil I Cons of 'b T * 'b TL 

generates the following pair of induction rules: 
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G II H [- forall x,tl. c o n v e r t ' T ' T L  (fn t => PT#(t)) %1 
->> PT#(~ode(x,tl)) 

G / /  H l- forall t .  PT#(t) 

G / /  H [- forall t,tl. r (fn tl => PTL#(tl)) t 
/ \  PTL#(tl) 

->> PTL#(Cons(t,tl)) 
G // H [- PTL#(Nil) 

G I I  H I- forall tl. PTL#(tl) 

Each of these induction rules uses an additional ' c o n v e r t '  auxiliary function. 
The intuition behind the c o n v e r t  functions is that  the predicate c o n v e r t  ' X' Y P 
holds of an object y of type Y precisely if P holds of all the immediate subterms 
of y which are of type X e.g. c o n v e r t  'T 'TL converts an (inductive) predicate on 
T into a predicate on TL. The definition of these functions is 

fun convert'T~TL f Nil = TRUE 
] convert'T'TL f (Cons (x,y)) = f x /\ convert'T'TL f y 

fun c o n v e r t ' T L ' T  f (Node ( x , y ) )  = f y 

In general, defining n mutually recursive datatypes generates n induction 
rules and n groups of c o n v e r t  functions, where each group contains n - 1 mu- 
tually recursive functions. 

It would have been possible to define the induction rules without  introduc- 
ing the auxiliary c o n v e r t  functions. For example, we could have produced the 
following, apparently simpler, rules: 

G II B 
G II s 

G II H 

[- forall x,tl. PTL#(tl) ->> PT#(Node(x,tl)) 

[- forall t,tl. P#(t) / \  PTL#(tl) ->> PTL#(Cons(t,tl)) 
l -  PTL#(Nil) 

G II 

c II H 
G II B 

[ -  forall t .  PT#(t) 

]- forall x,tl. PTL#(tl) ->> PT#(Node (x,tl)) 
[- forall t,tl. P#(t) /\ PTL#(tl) ->> PTL#(Cons(t,tl)) 
i- PTL#(Nil) 

G // H ]- forall tl. PTL#(tl) 

This - allowing for differences in the logic - is how we treated mutually recur- 
sive datatypes in LAMBDA 3.X. The reason that  we don' t  use these seductively 
simple rules within the current version of LAMBDA is that they are hard to use. 

There are two reasons for this: 
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1. If  we are using an induction rule to perform case analysis rather  than  full- 
blown induction, the ' s imple '  rules force us to consider constructors from all 
the mutually-recursive datatypes,  rather than only the da ta type  of interest. 

2. When we use an induction rule for ' real '  induction, we need to instant iate  
the meta-variables (PT  and P T L  above) to produce the concrete induc- 
tion scheme for the particular predicate tha t  we wish to prove. LAMBDA's  
higher-order unification will instantiate one of these meta-var iables  for us 
when we apply the induction rule, but we will then have to instant iate  the 
other(s) by hand. Wha t  makes this part icularly annoying is tha t  we normal ly  
need to define some auxiliary functions in order to perform the instantiat ion 
- we need, in fact, to define the c o n v e r t  functions by hand. 

The apparent ly  more complex induction rules than  LAMBDA now generates 
solve both of these pragmat ic  problems. 

4 P r i m i t i v e  R e c u r s i o n  

LAMBDA will recognise a function definition as primit ive recursive if it can show 
by a simple syntactic check that  the corresponding function always is total.TThe 
syntactic conditions tha t  a primitive-recursive function must  fulfill are as follows. 
Suppose the function is defined by a series of clauses, each with the function 
symbol  applied to n symbols. For each occurrence of the function symbol  in the 
body of any clause 

1. The function must  be applied to at least 1 argument.  
2. For some i, 0 _< i < n, the first i arguments  must  be identical to the first i 

pat terns  at the head of that  clause. The i + l ' t h  argument  must  be strictly 
smaller than the i + l ' t h  pattern.  

For mutual ly  recursive functions, we slightly generalise the above rules. Sup- 
pose several mutually-recursive functions are defined by clauses. Then,  for each 
occurrence of any of the mutually-recursive functions in the body of any of the 
clauses: 

1. The function must  be applied to at least 1 argument .  
2. For some i, 0 < i < n, where n is the number  of pat terns  occurring in 

that  particular clause s, the first i arguments  must  be identical to the first i 
patterns.  The i + l ' t h  argument  must  be strictly smaller than the i + l ' t h  
pat tern.  

Wha t  does 'strictly smaller '  mean? An expression is smaller than a pa t te rn  
if one of the following holds: 

LAMBDA also allows the definition of non primitive-recursive functions. To make 
effective use of such a function the user has to discharge a side condition that says, 
essentially, that the function 'terminates'. This will be discussed in detail in [3]. 

s For mutually recursive functions, n may vary from clause to clause because different 
functions may have different numbers of parameters; for each individual function, 
the number of patterns in each clause should still be constant. 
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1. The pat tern is a variable (N.B. not a constructor) and the expression is the 
same variable or consists of the application of that  variable to one or more 
arguments. 

2. The pat tern is a nullary constructor and the expression is the same construc- 
tor. 

3. The pat tern and expression each consist of an application of the same unary 
constructor and the argument in the expression is smaller than the argument 
in the pattern.  

4. The expression and pat tern are both labelled records (this includes tuples) 
with the same labels and each subexpression is smaller than the correspond- 
ing subpattern. 

5. The expression is smaller than a strict subpattern of the pattern.  

An expression is strictly smaller than a pattern if it is smaller than the 
pattern,  but  not identical to it. 

5 A x i o m a t i s a t i o n  w i t h i n  L A M B D A  

In this section we describe the concrete form of the induction rules and auxiliary 
functions produced by L A M B D A .  

5 .1  A u x i l i a r y  F u n c t i o n s  - e x t e n d  

As  noted above, LAMBDA generates higher-order ' ex t end '  functions which take 
one parameter  - a predicate - for each type parameter of the original datatype 
definition and produce a predicate which operates on the datatype itself. We 
characterised this function as applying each predicate to all subterms of the 
corresponding type and conjoining the results. This characterisation of e x t e n d  
is slightly too simple: 

1. If the type parameter  is embedded in the range of a function type, then the 
e x t e n d  function must quantify over the range of the function, as for P a i r  
in the above example. This means that  we are interpreting 'subterm' in a 
semantic rather than a syntactic sense. 

2. If the type parameter is ever embedded in the domain of a function type - 
i.e. the type is 'dirty '  - then the corresponding predicate is never applied. 
This doesn't cause a problem because we define ex t en d  functions precisely so 
that  we can use parameterised datatypes in the definition of new, indirectly 
recursive, datatypes (as we used l i s t  in the definition of t r e e ,  for example) 
and our restriction on datatype definitions excludes recursion through such 
'dirty '  parameters. 

In general, the mutually recursive datatype definition 

d a t a t y p e  ( ' a l l ,  . . . .  ' a l n )  D1 . . . .  
and . . .  
and ( ' a k l  . . . .  , 'akn) Dk = . . . I  Cki I . . . [  Ckj of  tkj  [ . . .  
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gives rise to the k functions extend 'D1 . . .  ex tend 'Dk.  Conceptually, we de- 
fine these functions as described below; in practice LAMBDA also performs a 
'pat tern-l i f t ing '  phase (essentially beta-reduction plus simplification of trivial 
conjuncts) to improve the readability of the generated definitions. 
For nullary constructors, the ex t end  function always returns TRUE 

e x t e n d ' D =  Pl . . . P n  C=i = TRUE 

For unary constructors, its value depends on the s tructure of the type of the 
constructor 

e x t e n d ' D x  Pl . . . P n  (Cxl vx i )  = [ [ t x i ] ]  vxi 

where the ope ra t ion ' [  [_] ] is defined by 

[ [ t ] ]  : I n  v :>  TRUE, 
where t is any type containing no instance of a clean parameter .  

[[ 'a~]]  : pi, 
where 'a~ 1 is the j ' t h  parameter  type and 'axj is a clean parameter .  

[ [ ( ' a ~ l  . . . . .  ' axn)D~]]  : ex tend 'Dy  Pl . . . P , ,  
where D r is one of the mutual ly  recursive data types  9 - possibly D ,  itself. 

[ [ ( t l  . . . . .  t l ) D ] ]  : e x t e n d ' D  [ [ t l ] ]  . . . [ [ t i l l ,  
where D is some other da ta type  constructor and some t i contains a 
clean parameter .  Note that  this condition logically implies tha t  the j ' t h  
parameter  position of D must be clean. 

[ [ { z i  : t j } ] ]  = :~n { i  i : v j }  => A ~ ( [ [ t f l ]  v~), 
where {aj : t j}  is a labelled record type and some t j  contains an in- 
stance of a clean parameter .  

[ [ t l  -> t 2 ] ]  = fn  f => ~ o r a l l  x : t l .  [ [ t 2 ] ]  ( f  x) ,  
where t2 contains an instance of a clean parameter .  

The case [ [ ( t l  . . . . .  t t ) T ] ]  where T is a type abbreviat ion is handled 
by expanding the abbreviation. 

Note that  the predicate pj will never be applied if the corresponding type pa- 
rameter,  ' a  j ,  is dirty. We could eliminate these parameters  altogether, but  we 
choose not to do so; this means that  if, in the future, we change the definition of 
'clean'  - to take account of datatypes which don ' t  embed their arguments,  for 
example - we won't  have to change the type of any existing e x t e n d  function. 

9 This rule means that the extend functions for mutually recursive datatypes must 
also be mutuMly recursive. 
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5.2 Auxiliary Functions - convert 

As noted above, the predicate convert'X'u P holds of an object y of type Y 
precisely if P holds of all the immediate subterms of y which are of type X i.e. 
convert ' X' Y converts an (inductive) predicate on X into a predicate on Y. This 
means that the convert ' X ' Y function will have type 

(X -> om) -> u -> om 

Suppose we have the mutually recursive datatype definition 

datatype ('a11 .... , 'al,) D1 = ... 
and ... 

and ( ' a k l  . . . . .  ' a k . )  Dk = . . . [  Ck~ [ . . . [  Ctj of  t~j { . . .  

Then, for nullary constructors, the convert function always returns TRUE 

convert~D~'Dy P~ C~i = TRUE 

For unary constructors, c o n v e r t  function depends on the structure of the type 
of the constructor 

convert'Dx'D~ P~ (Cyj vy/) = [[tyj3] v~j 

where the compilation operation [ [_] ] is here defined to be 

[ [ t ] ]  = f n  x => TRUE, 
where t is any type containing no instance of any of the mutuMly- 
recursive datatypes. 

[ [ ( ' a ~ l ,  . . . ,  ' a y . ) D = ] ]  = P~ 

[[('ayl ..... 'ay.)Dz]] = convert'Dz'Dz P=, 
where D~, distinct from D= but possibly the same as Dr, is one of the 
mutually-recursive datatypes. 

C[(tl ..... tz)D]] = extend'D [[tl]] ... [[tl]], 

where D is a previously-defined datatype constructor. 

CC{lj : t~}33 = ~n {1~ : vj}  => h ~ ( [ C t j ] ]  v j ) ,  
where { l j  : t i }  is a labelled record type. 

[Ct I -> t2]] = :fn f --> forall x : tl. CCt2]] (:f x) 

As for the e x t e nd  functions, we handle the case [ [ ( t l ,  . . . ,  t~)T]]  
where T is a type abbreviation by expanding the abbreviation. 

As for the e x t e n d  family of functions, LAMBDA performs pattern-lifting to 
optimise the definitions produced by the above naive algorithm. 
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5.3 I n d u c t i o n  R u l e s  - C o n s t r u c t i o n  

Suppose we have the mutually recursive datatype definition 

datatype ( ' a l l  . . . . .  ' a l n )  DI = . . .  
and . . .  
and ( ' a k l  . . . . .  'akn) Dk . . . .  [ Cki [ . . . [  Ckj of tkj  [ . . .  

LAMBDA will produce k induction rules, one for each datatype. The rule for 
each datatype consists of a conclusion plus one premiss for each constructor of 
that  datatype. For the datatype Dr, the conclusion will be 

G / /  It I -  f o r a l l  ~ : ( ' a r l  . . . . .  ' a r , ) D r .  PDr#(W) 

The premiss corresponding to a nullary constructor, Cri, of type Dr will be 

G / /  H I- PDr#(Czi) 

For a unary constructor, C=i, of type t=i -> ( ' a t 1  . . . .  , ' a m ) D = ,  the premiss 
will be 

G // II [- forall Vxi. pre~i -~ PD~#(patxi) 

w h e r e  <Vxi,patxi,pre~i> = [ [ t ~ i ] ]  and the compilation operator [ [ _ ] ]  is de- 
fined as follows: 

[ [ { l j  : t j } ] ]  : <@j Vj, {l j  : p a t / } ,  Aj prej>,  
where {lj  : t j }  is alabelled record type, <Vj, p r e j ,  pa t j>  = [ [ t j ] ] ,  
and we use the notation '@j Yj' to represent vector concatenation. 

[ [ ( ' a x l  . . . . .  'axn)Dz]] = <v,v ,PDx#(v)>,  
where v is a new variable. 

[ [ ( ' a ~ l  . . . . .  ' a , , ) D y ] ]  = 
< v , v , c o n v e r t ' D z ' D y  ( fn  z => PD~#(z)) v>, 

where Dy is another of the mutually-recursive datatypes and v is a new 
variable. 

[ [ ( t ,  . . . . .  t t ) D ] ]  = 

<v,v,extend'D (fn pail => prel) ... (:fn patl => prel) v>, 
where D is a previously-defined datatype constructor, there is an occur- 
rence of one of the mutually recursive datatypes in at least one of the 
t j ,  <Vj, p a t / ,  pre j> = [ [ t i l l ,  and v is a new variable. 

[ [ t l  -> t 2 ] ]  = < f , f , f o r a l l  x. p r e [ v  *-- ( f  x)]>,  
where t~ contains one of the mutually recursive datatypes, 
<v, v,  pre> = [ [ t 2 ] ] ,  v is a variable, and f and x are new variables. 
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EFt  1 - >  1;233 = 

< r  x. ( fn  pat => pre) ( f  x)>, 
where t2 contains one of the mutually recursive datatypes,  
<V, p a t ,  pre> = [Et2] ] ,  p a t  is not a variable, and f and x are new 
variables. 

As before, we handle the case [ [ ( t l  . . . . .  t l ) T ] ]  where T is a type 
abbreviation by expanding the abbreviation. 

[ [ t ] ]  = <v,v,TRUE>, 
where v is a new variable and none of the above rules apply. 

6 Sketch of Semantics  

How do we build a set-theoretic model for L2 datatypes? In general the L2 
model would be similar to Pit ts '  set-theoretic model for HOL [9]. We then have 
to explain how to add the denotations of recursive datatypes. l~ then proceed 
in something like the following stages: 

1. We model an L2 datatype as the least fixed point of a monotonic function 
on a suitable lattice of sets (with a suitable appeal to Tarski's Fixed Point 
Theorem justify the existence of a fixed point.) The restrictions that  we have 
made on the ,form of L2 datatypes are just what we need to ensure that  such 
a monotonic function exists and that  the resulting fixed point is a non-empty 
set. In particular: 

(a) We made the restriction that  all instances of the datatype occurring in 
the body of the declaration must the same parameters as the defining 
instance. This means that  we can treat the parameter types as fixed 
when we construct the fixed point and then parameterise the result. (If 
we didn't  have this restriction we would need to find the fixed point of 
a functional rather than just a function.) 

(b) The restriction that  recursive occurrences of the datatype occurring in 
the body of its definition may only occur in 'clean' positions is precisely 
what we need to show that  the function is monotonic. (Here we need to 
make the assumption that  previously defined parameterised datatypes 
give rise to functions that  are indeed monotonic in their 'clean' param- 
eters. We can justify this by an induction on the number of previously- 
defined datatypes,) 

2. We next need to show that  the newly-defined parameterised datatype is 
a monotonic function of its 'clean' parameters. This should be standard 
argument involving the least fixed points of monotonic functions. 

10 We also have to explain how to handle non-primitive recursive functions; this will be 
treated in [3] - the techniques used there are remarkably similar to our treatment of 
datatypes. 
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3. At this stage in the argument,  we have established tha t  the L2 da ta type  can 
be represented as a set. We next have to show tha t  the abstract  interpretat ion 
is correct i.e. tha t  it is conservative in its prediction about  whether the 
da ta type  is non-empty.  

4. Next we have to consider the e x t e n d  functions. I f  we regard them as func- 
tions on sets (represented by their characteristic functions) we can see that  
we can define the ex t end  function for a da ta type  - as a least fixed point - 
in much the same way as we defined the da ta type  itself. 

5. Finally the induction rules can be justified by an argument  involving least 
fixed points of monotonic functions. The only complication here is tha t  
e x t e n d  functions appear  to ignore their 'd i r ty '  arguments  i.e. Pi is t reated as 
if it were f n  _ => t r u e  whenever the i ' t h  paramete r  type is dirty. This  isn' t  
actually a problem, because when the i ' t h  paramete r  type is dirty, Pi actu- 
ally is f n  _ => t r u e  i.e. 'd i r ty '  types are treated as fixed and non-empty  
throughout  the proof. (We could simplify this proof  by making the definition 
of the e x t e n d  function match the da ta type  definition more exactly, but  tha t  
wouldn' t  be very user-friendly.) 

7 R e l a t i o n s h i p  o f  L 2  d a t a t y p e s  t o  H O L  d a t a t y p e s  

As we noted in the introduction, the main technical difference between L2 
data types  and Gunter's[6] HOL data types  is that  L2 da ta type  definitions may  
make use of existing type constructors. In some respects, this difference is not 
impor tan t  because it is always possible to expand out the use of such type con- 
structors by introducing new, mutually-recursive, datatypes.  For example,  we 
could treat  the definition: 

d a t a t y p e  ' a  g e n t r e e  = Tree  of  ' a  g e n t r e e  l i s t  * ' a ;  

as if it were: 

d a t a t y p e  ' a  g e n t r e e  = 
Tree of 'a gentree_list * 'a 

and 'a gentree list = 

Nil I Cons of 'a gentree * 'a gentree_list 

If  we do this consistently, we can reduce a collection of L2 da ta type  definitions 
into a form equivalent to Gunter's[6] 'full class of specifications'. (Our function- 
space condition is sufficient to show tha t  the expanded form meets  Gunter ' s  
admissibility conditions.) This is perhaps the simplest way to give a meaning to 
L2 da ta type  definitions. 

Doing this at the source level would have a distinct price however. The two 
types ' a  gentree list and ' a  gentree_list are isomorphic but  they are not 
identical. This means that  it would not be possible to apply useful general pur- 
pose functions such as map to an object of type ' a g e n t r e e . . l i s t  and so it would 
be necessary to develop a separate theory of lists for each such ' ins tant ia t ion '  of 
the l i s t  constructor. 
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8 F u t u r e  W o r k  

When we s tar ted the first draft  of this paper, we believed tha t  our character- 
isation of L2 data types  was essentially complete, and tha t  the data types  we 
described were in some sense 'max ima l '  for a HOL-like logic.ltSince then, we 
have had a couple of ideas for extensions. 

We currently t reat  all subtyping as 'dir ty ' .  This  means,  for example,  tha t  if 
we add an integer index to each node of a g e n t r e e  and specify, using subtyping, 
tha t  such indices mus t  all be distinct then we can ' t  use the resulting type in any 
future da ta type  definition. Given the current HOL (or L2) type scheme, this 
seems to be unavoidable. The  problem is that  we can ' t  tell whether or not the 
subtype predicate makes the subtype non-monotonic in the size of the subtype 's  
parameters ,  so we have regard all the subtype 's  parameters  as potentially non- 
monotonic ' i .e .  'd i r ty ' .  

We believe tha t  it may  be possible to make a small change to the type scheme 
to remove this restriction, al though we haven ' t  worked out all the details yet. The 
basic idea is to borrow Standard ML's  concept of ' impera t ive '  type variables to 
keep track of which type parameters  are 'clean'  and which are 'd i r ty ' .  Standard 
functions have normal  'appl icat ive '  types, but (rather ironically) quantifiers get 
' impera t ive '  types rather  like Standard ML's re:~ constructor. 

Two reviewers pointed out the close relationship between the definition of a 
da ta type  and the associated principle of definition for functions on tha t  datatype.  
Although we have successfully defined induction rules using parameterised data-  
types, we have not done so well with the definitional principle. For example,  we 
defined the function e o u n t I t e m s  as: 

fun  countItems Empty = 0 

I countItems (Just x) = 1 

I countItems (Pair f) = 2 

I c o u n t I t e m s  (Many ( t , t l ) )  = 
c o u n t I t e m s  t + c o u n t I t e m s I n L i s t  t l  

and countItemsInList [] = 0 

I countltemsInList (t::ts) = 

countItems t + countItemsInList ts 

Here the recursion pat tern  for coun t I t ems ,  in part icular  the use of the auxiliary 
function c o u n t I t e m s I n L i s t ,  is exactly what one would expect if we had defined 
a local ' a  t r e e _ l i s t  da ta type  rather  than using ' a  t r e e  l i s t  in the da ta type  
definition. A more natural  definition of c o u n t I t e m s  would be something like: 

f u n  c o u n t I t e m s  Empty = 0 
I c o u n t I t e m s  ( J u s t  x )  = 1 

11 With the exception - already noted - that we can define a better function space 
restriction by keeping track of whether a type constructor actually uses all its type 
parameters. 
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c o u n t I t e m s  ( P a i r  f )  = 2 
c o u n t I t e m s  (Many ( t , t l ) )  = 

r  t + 
fold'list (0, op +) (map'list countltsms tl); 

Here we are assuming tha t  the f o l d '  l i s t  and map ' l i s t  functions would be au- 
tomat ical ly  generated from the da ta type  definition for l i s t  and, crucially, tha t  
we can regard this definition as primitive recursive. There is clearly considerable 
scope for investigating LAMBDA's  definition of 'pr imit ive recursion'. 
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