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Abstract 

The influence of piezoelectric sensor design on electrothermally actuated micro-electro-mechanical 

(MEMS) resonators performance (resonant frequency and Q factor) has been investigated. Silicon-carbide 

double-clamped beam resonators have been fabricated with platinum electrothermal actuator and lead-

zirconium-titanate piezoelectric sensor on the top of the beam. The fabricated devices differ only in the 

piezoelectric sensor length, while other dimensions and technological parameters are the same. The 200 

µm long devices resonate between 0.6 and 1.1 MHz with Q factor in air up to 410, and can be tuned up to 

300,000 ppm using relatively low DC bias voltages (2 - 6 V). The transmission frequency response 

measurements have shown that the devices, actuated in the same operating conditions, with shorter 

piezoelectric sensor resonate at higher frequencies with higher Q factors. However, the wider frequency 

tuning range has been obtained with devices with longer piezoelectric sensor integrated and positioned 

closer to the centre of the beam.  

Keywords: MEMS resonator, silicon carbide, piezoelectric sensing, electrothermal actuation, tuning 
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I. INTRODUCTION 

Micro-electro-mechanical systems (MEMS) resonators are a potential alternative to filter 

components and quartz crystal currently used in high-end electronic systems due to their small 

size and low operating voltages [1]. Among all transduction techniques for electrical induction of 

mechanical vibrations, major advantages of electrothermal actuation include simple fabrication 

process, low actuation voltages and impedance matching. Several electrothermally actuated 

MEMS resonators have been reported in literature, showing high resonant frequencies, high 

quality (Q) factors and wide frequency tuning ranges [2–5]. Silicon carbide (SiC) is one of the 

most promising materials for the development of high efficient MEMS resonators due to its 

excellent mechanical properties [6]. In addition, high thermal conductivity makes it particularly 

suitable for electrothermal actuation purposes.  

Practical implementation of MEMS resonators requires electrical sensing of mechanical 

vibrations. Recently, we have demonstrated the piezoelectric sensing of an electrothermally 

actuated and tuned MEMS resonator [5]. The use of piezoelectric transduction for electrical 

sensing enables stronger electromechanical coupling and better impedance matching compared 

to the alternative electrostatic transduction [7]. In addition, the fabrication process for the 

piezoelectric transducers can be controlled better than the electrostatic case, since the stringent 

nanometric control of the electrode-to-resonator gap spacing is not required. However, the design 

of the piezoelectric transducer on top of a resonator can significantly affect the resonant 

performance. 

 

In this work, piezoelectric sensors with different dimensions have been integrated on the 

top of SiC double-clamped beams (bridge structure) for the study of the influence of 
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piezoelectric sensor design on device performance. By performing two-port measurements of 

devices' transmission frequency response, the resonant frequency, Q factor and frequency tuning 

range as a function of the piezoelectric sensor length have been investigated. Q factor and 

frequency tuning range dependences on the piezoelectric sensor length have been studied under 

different DC bias conditions, while resonant frequency dependence has been studied under 

equilibrium conditions. 

 

II. TRANSDUCTIONS PRINCIPLES AND DEVICE OPERATION  

Electrothermal actuation is a transduction mechanism based on the Joule heating and 

thereby thermal expansion of a material. The structure of our devices is bimorph meaning that a 

heating Pt layer (electrothermal actuation electrode) is deposited on an 3C-SiC layer. By 

applying a voltage across the electrothermal electrode, electric current is dissipated through the 

electrode resistance. The generated heat induces a temperature gradient within the structure 

leading to the thermal expansion of the entire structure and therefore to a mechanical strain. The 

mechanical strain is enhanced by using two materials with different thermal expansion 

coefficients [8]. Due to square relationship between dissipated power and voltage, the application 

of an actuation voltage with only AC component and the frequency fAC can drive a device into 

resonance if the value of fAC is equal to the half of the structure’s natural frequency f0 (fAC=f0/2) 

[9]. In order to drive a device into resonance using the actuation frequency equal to the 

structure’s natural frequency (fAC=f0), the actuation signal should contain both AC and DC 

components. 

Piezoelectricity has been used as a transduction technique for electrical sensing of our 

devices’ operation. Piezoelectricity refers to the property of a material to become electrically 
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polarized when subjected to mechanical strain. In our devices, the piezoelectric layer is placed on 

the top of the 3C-SiC beam. When the device is electrothermally driven into resonance, the beam 

vibrates in vertical direction inducing mechanical strain in the top piezoelectric layer. As a 

consequence, an alternating voltage with a frequency equal to the frequency of the mechanical 

vibrations can be detected across the piezoelectric material of the output port. 

 

III. EXPERIMENTAL DETAILS  

A. Device design 

The devices have been designed as a two-port double-clamped beam resonator with the 

beam length of 200 µm and width of 50 µm. The electrothermal actuator has been designed with 

two platinum (Pt) arms, parallel to the longer side of the beam, connected by a perpendicular arm 

(u-shaped layout). The electrothermal actuator length is 67 µm (a third of the beam length), the 

arms' width is 20 µm and the spacing between arms is 3 µm. The strong electromechanical 

coupling offered by the electrothermal transduction allows the structure to be driven efficiently 

into vibration by positioning the electrothermal actuator close the beam's root, leaving enough 

area on the other side of the beam for the piezoelectric sensor. The piezoelectric sensor is formed 

from a lead-zirconium-titanate (PZT) layer sandwiched between two Pt layers. PZT has been 

used due to its high piezoelectric coefficient, so that the electromechanical coupling in the 

sensing part is enhanced [7]. Figure 1 shows a scanning electron micrograph of one of the 

fabricated devices, and the top and the side view schematics of the designed devices. 

 

B. Fabrication  
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The fabrication process consists of three major phases: all layers deposition, electrodes 

forming and the beam forming. The all layer deposition phase starts with a 2 µm thick 3C-SiC 

epilayer grown on 4 inch Si wafer [10]. A 100 nm thick silicon dioxide (SiO2) passivation layer 

has been grown thermally and a 10 nm thick titanium (Ti) adhesion layer has been deposited on 

top of the SiO2. The Pt/PZT/Pt stack has been deposited with thicknesses of 100/500/100 nm, 

respectively [11]. In the second phase, the electrodes have been defined photolithographically. 

The Pt and Ti layers have been dry etched while the PZT has been wet etched [12]. After 

pattering the electrodes, a 3 µm thick SiO2 layer has been deposited for masking the 3C-SiC 

layer. The 3C-SiC beam shape has been patterned photolithographically and the exposed SiO2 

has been dry etched.  Afterwards, 3C-SiC beam has been etched and released with inductively-

coupled-plasma [13] and XeF2 chemical etching. 

  

C. Measurement setup 

The fabricated devices have been tested with a RF probe station and the transmission 

frequency response has been measured by an HP 8753C vector network analyzer. Signal-ground 

(SG) probes have been used and two-port short-open-load-through (SOLT) calibration has been 

performed before starting the measurements. The devices under test have been directly 

connected to the network analyzer without any external interface electronics. In order to perform 

electrothermal actuation and resonant frequency tuning, the AC signal applied with the network 

analyzer has been superimposed to a DC voltage provided by an external stabilized DC power. 

The bottom metal contact of the output electrode has been grounded, while the top metal contact 

has been used for piezoelectric sensing. All measurements have been performed in air, at room 

temperature and pressure. 
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IV. RESULTS AND DISCUSSION 

Testing of the devices has been performed by measuring the transmission frequency 

response in atmospheric conditions (Figure 2a). The devices under test differ only in the 

piezoelectric sensor length, while other dimensions and technological parameters are the same. 

In order to perform a comparative study, the devices measured in this work have been taken from 

the same die (0.7 cm
2
) and therefore fabrication related differences such as film thicknesses have 

been minimised. 

 

A. Piezoelectric port length influence on resonant frequency  

The resonant frequency measured as a function of the piezoelectric sensor length is 

shown on Figure 2b. Resonant frequencies in the range of 0.85 – 1.05 MHz have been measured 

for the devices actuated with input signal power of 10 dBm and DC bias voltage of 3 V. By 

decreasing the piezoelectric sensor length from 125 µm to 25µm, the resonant frequency 

increases by ~20 kHz (~24,000 ppm). The observed increase of the resonant frequency as the 

piezoelectric sensor length decreases can be attributed to the decrease of the structure's effective 

mass. The resonant frequency of a multi-layer bridge resonator is proportional to ratio of the 

effective spring constant (dependent on Young's modulus and dimensions of the layers) and the 

effective mass of the structure (dependent on densities and dimensions of the layers). By 

increasing the piezoelectric sensor length, the effective spring constant increases together with 

the structure's effective mass. It is believed that the resonant frequency is affected more strongly 

by the change in the structure's effective mass than by the change in the effective spring constant, 

and therefore the resonant frequency increases with the piezoelectric sensor length decrease. 
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B. Piezoelectric port length influence on Q factor 

The ratio between the stored energy and the dissipated energy (Q factor) of the devices 

can be improved by varying the piezoelectric sensor length. Figure 3 shows the Q-factor, 

calculated as the ration of the resonant frequency and the bandwidth of 3 dB transmission 

magnitude drop, for piezoelectric sensor lengths of 25, 50 and 100 µm as a function of applied 

DC bias voltage. The tested devices have been actuated with a constant input AC signal power of 

10 dBm while the DC bias voltage has been swept in the range of 2 V - 6 V with step of 1 V.  

With a DC bias voltage increase, the Q factor in air has been shown to increase for all 

piezoelectric sensor lengths investigated. In particular, as the DC bias voltage is increased from 2 

V to 6 V, the Q factor increases from ~120 to ~350 and from ~170 to ~410 for devices with the 

piezoelectric sensor length of 100 µm and 25 µm respectively. The increase of Q factor obtained 

with DC bias voltage increase can be attributed to the increase of the vibration amplitude caused 

by the increase of the generated heat [9]. Since the stored energy is proportional to vibration 

amplitude squared, the increase of the vibration amplitude induced by the DC bias voltage 

increase leads to higher Q factor. At fixed DC bias voltage, the Q factor has been shown to 

increase as the piezoelectric sensor length has been decreased. As shown in Figure 3, with the 

piezoelectric sensor length decrease from 100 µm to 25 µm, the Q factor in air has been 

increased from ~120 to ~170 and from ~360 to ~410 for DC bias voltage of 2 V and 6 V 

respectively.  The higher Q factor values achieved with shorter piezoelectric sensors is probably 

because of larger vibration amplitude induced. With the reduction of effective piezoelectric 

sensor area covering the beam, the mass loading held by the beam decreases and consequently a 

larger vibration amplitude can be induced under the same actuating conditions. The resulting 
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vibration amplitude increase and consequently the stored energy increase results in Q factor 

increase. 

 

C. Piezoelectric port length influence on frequency tuning range 

The change of the piezoelectric sensor length has been found to affect the frequency 

tuning range. Figure 4 shows the resonant frequency shift for the devices with piezoelectric 

sensors integrated with lengths of 25, 50 and 100 µm as a function of applied DC bias voltage. 

The resonant frequency tuning range of ~300,000 ppm has been achieved using relatively low 

DC input bias voltage (2 V – 6 V). The decrease in resonant frequency detected as the DC bias 

voltage increases can be attributed to the increase of compressive stress in the beam, caused by 

the increase in thermal expansion of the structure as the temperature increases [14,15]. A wider 

resonant frequency tuning range has been observed for the devices with longer piezoelectric 

sensor length. From Figure 4, for DC bias voltage greater than 4 V, a relatively large difference 

in frequency shift is observable for different piezoelectric sensor lengths. The difference in the 

resonant frequency shift progressively increases with the DC bias voltage increase. In particular, 

as the piezoelectric sensor length increases from 25 µm to 100 µm, the frequency shift is 

observed to increase from ~-120,000 ppm to ~-145,000 (frequency shift increase of ~25,000 

ppm) at DC bias voltage of 5 V and from ~-250,000 ppm to  

~-295,000 (frequency shift increase of ~45,000 ppm) at DC bias voltage of 6 V. The larger 

influence of compressive stress may explain the wider resonant frequency tuning range obtained 

with the devices with longer piezoelectric sensor. By increasing the piezoelectric sensor length 

and positioning it close to the centre of the beam, the induced bending moment and shear force 

are increased, thus resulting in larger compressive stress compared to the case of the shorter 
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piezoelectric sensor positioned further away from the middle of the beam. In addition, as the DC 

bias voltage increase, induced temperature increase resulting in an additional increase of 

compressive stress and consequently in a larger decrease in resonant frequency. 

  

V. CONCLUSIONS 

Piezoelectric sensors with different dimensions have been integrated on the top of 

electrothermally actuated 3C-SiC double-clamped beam resonators for studying the influence of 

piezoelectric sensor design on the device performance. The devices, actuated in the same 

operating conditions, with the shorter piezoelectric sensor have been shown to resonate at higher 

frequency with higher Q factor. The change of resonant frequency with the piezoelectric sensing 

length change is attributed to the change of structure's effective mass, while the change of Q 

factor is attributed to the change of vibration amplitude and consequently energy stored as the 

effective loading mass held by the beam has been changed. Moreover, the frequency tuning 

range has been shown to be affected by the piezoelectric sensor dimensions. With the 

piezoelectric sensor length increase and by positioning the sensor closer to the centre of the 

beam, a wider frequency tuning range has been obtained probably due to larger compressive 

stress induced in the beam. As the devices with the same design have been taken from the same 

die (fabrication related differences have been minimised) and tested in the same operating 

conditions, the results obtained can be used for improving the resonance performance of 

piezoelectrically transduced MEMS resonators. 
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Figure Captions 

Figure 1. SEM image (a), top (b) and side (c) view schematics of the double-clamped 3C-SiC 

beam resonator, with the electrothermal actuator and piezoelectric sensor on top of the beam. 

 

Figure 2. Transmission frequency response of one of the fabricated devices (a) and measured 

resonant frequency versus piezoelectric sensor length (b). 

 

Figure 3. Measured Q factor in air versus tuning DC voltage with the piezoelectric sensor length 

Lout as a parameter. 

 

Figure 4. Measured resonant frequency shift versus tuning DC voltage with the piezoelectric 

sensor length Lout as a parameter. 
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