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Abstract. We present a rigorous methodology for the modelling and
implementation of correct by construction healthcare workflows. It relies
on the theoretical concept of proofs-as-processes that draws a connection
between logical proofs and process workflows. Based on this, our method-
ology offers an increased level of trust through mathematical guarantees
of correctness for the constructed workflows, including type correctness,
systematic resource management, and deadlock and livelock freedom.
Workflows are modelled as compositions of abstract processes and can
be deployed as executable code automatically. We demonstrate the ben-
efits of our approach through a prototype system involving workflows for
assignment and delegation of clinical services while tracking responsibil-
ity and accountability explicitly.

Keywords: process modelling in healthcare; formal verification; work-
flow automation; healthcare process integration

1 Introduction

The primary aim of our research is to combine and use the rich theory of proofs-
as-processes [1] and a rigorous, logical engine to develop a pragmatic method-
ology for the development of trustworthy, correct by construction healthcare
workflows. This allows the combination of the benefits from both Business Pro-
cess Modelling (BPM) and formal methods, so that in addition to the flexibility,
scalability, maintainability, and separation of concerns offered by process mod-
elling, we can obtain an added level of trust of the correctness and consistency
with regards to the modelled workflows.

In particular, our efforts focus on the management of information and re-
sources in clinical and administrative procedures involving health and social care
providers. We provide a framework that allows a high level modelling of such
procedures that can lead to the reduction of redundancies and process repeti-
tions, better enforcement of policies and continuity and consistency of practice,
while abstracting from the complex clinical decision making. Ultimately, this
could improve patient safety and reduce costs and the time spent by carers in
their effort to adhere to guidelines.



2 Correct by construction healthcare workflows

Our methodology allows the construction of workflows as process composi-
tions. Component processes can be specified abstractly based on their inputs,
outputs, preconditions and effects. Our framework offers mathematical guaran-
tees of correctness with respect to the information flow, resource management,
typing, and deadlock and livelock freedom. Most importantly, our correct by
construction workflows can be automatically deployed as executable code.

We begin the analysis of our approach by describing the core theoretical
background in Section 2, followed by a breakdown of the methodology in Section
3. We analyse the added benefits of our formal approach in Section 4, whereas
Section 5 describes the kind of healthcare processes that our approach is tailored
to. We then demonstrate our methodology in a practical healthcare application,
with emphasis on the deployment stage, in Section 6. We conclude with an
overview of lessons learned with respect to the application of our methodology
in healthcare in Section 7, brief comparison to related work in Section 8, and
our plans for future work in Section 9.

2 Theoretical background

Our approach involves validating that a system is correct in the sense that it is
mathematically guaranteed to give the expected result based on its specification.
Such guarantees of correctness are particularly important in healthcare systems,
where maintaining safety and policy adherence is crucial and a bug in the code
may have severe implications to patients’ lives. For the purpose of formally
verifying healthcare workflows, as already mentioned, we make use of the proofs-
as-processes paradigm, which involves a mapping between logical proofs and
processes described in process calculus terms.

Essentially, we can construct logical specifications of processes and process
workflows using Classical Linear Logic (CLL) [5], which emphasizes formulas
that represent resources. Assumptions cannot be ignored or copied so no re-
sources can duplicate or vanish. CLL allows the construction of logical specifi-
cations of processes with respect to the types of their inputs, outputs, precondi-
tions, and effects (IOPEs). Moreover, CLL allows the specification of IOPEs that
are either parallel (simultaneous) or optional. Optional IOPEs can be used, for
example, to express the possibility of a process throwing an exception instead of
producing the expected result (e.g. when an unexpected obstacle occurs during
an operation). It is worth mentioning that most process composition method-
ologies do not give explicit considerations to exceptions.

In order to abstract from the complicated underlying CLL specifications, we
have devised an intuitive, diagrammatic representation [15], where processes are
boxes with solid edges for parallel IOPEs and dashed edges for optional ones.

For instance, consider a possible specification for the process describing a
blood test. In order to perform the test, we require the patient details, a referral,
a scheduled time, and a blood sample. The blood test results can be either
conclusive or inconclusive (in which exceptional case there may be a decision for
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repeating the blood test at a later date). This process can be specified in CLL
and represented diagrammatically as shown in Figure 1.

Fig. 1. Diagrammatic specification of the blood test process.

Using the proofs-as-processes paradigm, CLL workflow specifications can be
translated to executable terms in the π-calculus [10], which is a formalism aimed
at the description of concurrent processes as independent, atomic entities. These
communicate asynchronously by message passing. Over the years, the π-calculus
has inspired a variety of process algebras as well as BPM languages such as
BPEL, and has been used as the means to formalise their semantics [8].

The combination of CLL and the π-calculus forms the basis for a formal
semantics and rigorous workflow design, thus leading to workflow systems that
are correct by construction, based on the methodology described next.

3 Methodology

Our methodology has been developed within the following set of assumptions:

1. We assume a set of atomic healthcare processes that can interface a variety of
services, including Electronic Medical Records (EMRs), medical equipment
and instruments, and Human Provided Services (HPSs) through the use of
electronic forms. Each of these can be described using a type specification
of their inputs, outputs, preconditions, and effects (IOPEs).

2. The methodology is agnostic to the inner working of the available processes,
which are treated as ‘black boxes’. We assume the processes are well behaved
and always satisfy their type specification.

3. We assume all of the available processes always terminate.

Based on these assumptions, our methodology follows a standard process
modelling approach. We consult with a variety of stakeholders, including health-
care practitioners, administrators, policy makers, and patients to breakdown
the selected task into a number of individual but interdependent steps. The con-
sultation is most commonly in the form of contextual interviews, shadowing,
questionnaires, and frequent communication.

We then proceed to construct specifications of these steps as processes by
identifying their IOPEs and formalising them using our logic based system. The
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system allows the combination of these processes to construct composite work-
flows. More specifically, processes can be combined in sequence, in parallel, and
conditionally. Each process combination is formally verified by our underlying
logic engine which performs the necessary inference steps automatically.

Once the composition stage is complete, the system provides a complete, ex-
ecutable, concurrent π-calculus specification for the constructed workflow. This
allows the user to perform visual simulations using a built-in tool and empirically
verify the behaviour of the workflow before deploying it as a live system.

Our system also provides advanced deployment functionality that allows the
user to export executable Scala [13] code for a constructed workflow automati-
cally. This is accomplished through our implemented extension of Scala’s PiLib
library [3] which allows a direct translation of π-calculus terms into Scala code.

The roadmap for our deployment procedure is shown in Figure 2. Since we
assume available processes are ‘black boxes’, the deployed code represents those
as partially abstract classes (also known as traits) which need to be implemented
as a concrete instance. The code of the Scala class responsible for the workflow
execution and associated information flow is generated automatically.

Fig. 2. The general roadmap of the workflow deployment procedure.

Scala allows a seamless integration with any available Java library, which
makes the deployed system flexible with respect to integrating modern tools,
such as EMRs, e-form technologies, healthcare devices etc.

The deployed code coordinates the available processes according to the corre-
sponding formally verified workflow. It executes concurrently and asynchronously
while remaining free of deadlocks and livelocks.
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4 Benefits through proofs-as-processes

The mathematical core of the proofs-as-processes approach combines the prop-
erties of CLL with the concurrent computation of the π-calculus. We have em-
bedded this theory in a logic-based engine called HOL Light [7]. The resulting
framework allows the user to perform formally verified inference and construct
process models, based on the methodology described above, while providing the
following unique benefits with respect to the stated assumptions:

1. Explicit, verified information/resource flow: The constructed models
aim to make the information and resource flow between existing atomic
processes (Assumption 1) explicit and consistent. This includes enforcing the
resource dependencies between the processes as introduced by the user, and
allowing fine grained control of the process execution order as well as which
processes should execute in which cases. This minimizes unnecessary clinical
procedures and guarantees that all the necessary information (test results,
patient records, clinical assessments, etc.) and resources (drugs, samples,
equipment, etc.) will be available before any procedure is initiated.

2. Systematic resource management: As already mentioned, the proper-
ties of CLL disallow any implicit duplication or consumption (vanishing) of
resources. This greatly facilitates resource accounting during composition so
that the user does not need to manually keep track of resources, especially
when there is a large number of them at a given stage. Limited resources,
such as reusable results from costly, lengthy, or invasive medical tests, can
not “magically” appear or disappear. Moreover, all possible outcomes (in-
cluding exceptions that are often forgotten about), as defined by the IOPEs
of the involved processes (Assumption 1) must be handled explicitly.

3. Concurrent execution and deadlock and livelock freedom: The com-
posed workflow is executed concurrently in order to maximize efficiency. This
allows for independent clinical procedures to be performed simultaneously,
thus saving time, without the user having to explicitly state this (unless
there is an explicit or implicit dependency, processes will run in parallel by
default). At the same time, if each component process always terminates
(Assumption 3), the theoretical background of our methodology guarantees
that termination is preserved in the composed workflow and no deadlocks or
livelocks are introduced during composition. This prevents, for example, the
workflow being blocked by 2 clinicians waiting for feedback from each other.

4. Type correctness during composition: The logical engine guarantees the
correct matching of the user-defined types (Assumption 1) as processes are
being composed and eventually leads to executable code that is typechecked
in advance. This allows deployment in untyped programming languages as
well as integration of heterogeneous components. It also provides a degree
of consistency and continuity in the workflow in the sense that it guarantees
that the involved resource types do not mutate during execution.

5. Automated workflow deployment: The result of our composition is im-
mediately translatable to executable code that can be used both for simula-
tion purposes and in a production setting (e.g. a hospital). This minimizes
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the time and cost of workflow deployment which is particularly important,
especially in cases of maintenance where minor updates in the process models
or the corresponding healthcare policies can take a considerable amount of
time to be implemented in practice. In our case, this happens with the click
of a button. Moreover, the abstraction from the inner working of each process
(Assumption 2) allows our workflows to integrate with existing technologies,
including medical devices, EMRs, mobile devices etc.

It is worth mentioning that our diagrammatic interface [15] hides the under-
lying reasoning engine so that little to no logic expertise is required to use our
framework. The user applies mouse gestures to compose processes diagrammat-
ically, with all logical inference steps taken care of automatically in the back-
ground. The resulting diagram depicts the information flow in the composite
model so that it can be understood by a variety of stakeholders, including health
carers, policy makers, and IT developers (see Figure 3 for an example).

5 Healthcare Processes

The approach is tailored towards the modelling of everyday practices of care
providers. These are governed by finite processes that repeat for every individ-
ual case, but are most commonly informal and require considerable amounts of
time and effort from the carers, including the effort to track individual patient
pathways daily by memory.

As previously mentioned, we focus on the exchange of resources and informa-
tion in such processes, and we aim to provide automated coordination through
verified workflow modelling. We, therefore, model individual, finite, terminating
processes (that exclude iterative or feedback processes), which may involve the
provision of healthcare services, administrative or documentation procedures, as
well as interfacing with electronic systems such as medical devices and EMRs.

More specifically, our CLL based formalism, caters for abstract, high level
process specifications and does not allow loops (but can include finite iterations).
Although this level of expressivity may appear relatively simple in comparison
to other workflow languages, and, moreover, introducing deadlock and livelock
freedom in a language without loops may be viewed as less challenging, our recent
experience in real-world healthcare modelling indicates that our framework fits
well within the current needs of healthcare stakeholders (see Section 7).

We proceed to demonstrate our methodology in more detail through a work-
ing example involving collaboration patterns in healthcare.

6 Formal verification of collaboration patterns in
healthcare

In our primary example, we use our formally verified process modelling method-
ology to model and deploy patterns of collaborative work in healthcare, originally
described in recent work by Grando et al. [6]. Modelling aspects of this work have
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been described in detail in previous papers [14, 16], whereas in the current work
we concentrate on workflow automation.

We focus our investigation on basic collaboration scenarios in healthcare that
involve two agents, also known as actors. These may correspond to any member
of the medical staff, including doctors and nurses. We are particularly interested
in two patterns or skeletal plans that differentiate between the types of col-
laboration through assignment and delegation of clinical services. In these, one
of the two actors, the requester, asks for a particular clinical service (e.g. spe-
cialized diagnosis or treatment, administration of a drug, etc.) from the other,
the provider. In order for a contract to be signed between the requester and
the provider, it must be ensured that the provider is competent to perform the
service. Moreover, depending on whether the service is assigned or delegated, re-
sponsibility and accountability is either transferred to the provider (assignment)
or maintained by the requester (delegation). We proceed to explain the approach
in more detail in the next few sections.

6.1 Process modelling

The first stage of our BPM-inspired methodology involves the breakdown of the
individual steps. Clinical services are broken down to a series of individual tasks
and goals, also known as keystones, that each of the actors must perform in
order to complete the service. These include tasks that must be performed in
exceptional cases and unexpected situations. Each keystone has preconditions
that must be met for it to be achieved, and success conditions that describe the
achieved effects upon its successful completion. We give a brief description of
the modelled keystones for the our healthcare collaboration patterns next:

– The ServiceASSGRequest and ServiceDELGRequest keystones initiate a re-
quest for an assignment and a delegation of a patient respectively.

– The CollabDecision keystone corresponds to the decision of whether there
is a competent actor available to provide the service of a requested contract.

– Once a contract has been accepted by a competent provider the requester
can finalize the agreement in the ContractAwarded keystone.

– The ServiceProvide keystone corresponds to the task of executing a re-
quested clinical service that is currently pending. The service may either be
completed successfully or an obstacle may occur preventing its completion.

– The OutcomeCheck keystone corresponds to the goal of checking the outcome
of the provided service by the responsible actor. For simplicity we assume
this goal is always successful.

– The AssgResponsible and DelegResponsible keystones correspond to au-
tomated procedures that determine the responsible actor in the cases of an
assignment and a delegation respectively.

We proceed to compose these keystones/processes in 2 complete workflows
that fully describe the patterns of assignment and delegation and enforce the
responsibility and accountability constraints. Due to space limitations we only
present the assignment workflow in Figure 3, although, for those interested, both
diagrams can be found in a previous paper [16].
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Fig. 3. Diagram of the assignment pattern as a verified process composition. Note that
the pattern has been split into 2 parts at the indicated point for it to fit within the
page.

6.2 Workflow automation

We now come to the crux of the current paper: once the healthcare collaboration
patterns have been modelled as formally verified workflows using our logic-based
framework, our system allows the automatic deployment of Scala code in order
to achieve computer-based coordination of the assignment and delegation pro-
cedures. The only requisite in order to produce a fully functioning system is
the implementation of the keystones/processes, which can then be integrated
directly in the deployed coordinator.

In order to demonstrate the functionality of such a deployment, we have
developed a web-based system that emulates part of a hospital environment. We
will simply refer to this system as the DigiHealth (Digital Healthcare) prototype.

DigiHealth includes a minimal relational database with dummy data about
patients, medical staff, clinical services, handover contracts, and potential obsta-
cles. Each keystone/process is implemented as an interaction with DigiHealth’s
API. The order in which the API calls (process invocations) are made and the
involved information is exchanged are both dictated by the formally verified
workflow as opposed to some hardcoded solution. In this way, we obtain a full
transition from a information/resource flow diagram (see Figure 3) to the coor-
dination of actual administrative procedures for the assignment and delegation
of patients, with all the properties provided by our logic-based framework (see
Section 4). Additional workflows can be defined on top of the same available pro-
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cesses, so that different guidelines, cf. the patient delegation case in the previous
section, can be implemented while reusing the existing process implementations.

The user interface is accessible by any mobile device, and provides all the nec-
essary information to the user, including available contracts, pending requests,
pending services, and the ability to initiate new assignments or delegations of
patients. A sample screenshot of the interface is shown in Figure 4.

It is worth noting that the user is only shown information and processes that
are relevant to them. They are relieved from the burden of keeping track of pa-
tients, monitoring the state of the assignment or delegation taking place (or more
generally the state of the patient flow), coordinating the next steps, or ensuring
the information is communicated to all the necessary clinical collaborators. Us-
ing simple selections, e-form based point and clicks, and standard gestures, the
users only perform their own part, while the the deployed coordinator takes care
of the workflow based on the diagrammatic, logic-based specification.

Fig. 4. Sample screenshot from the prototype DigiHealth system.

7 Lessons learned

Our formally verified process modelling is currently being applied to real-world
projects involving (distinct groups of) UK clinicians interested in aspects such
intra-hospital patient transfers and integrated care pathways. For example, we
are collaborating with leading HIV clinicians in Glasgow and Edinburgh in an
ongoing effort for the automation of Integrated Care Pathways for HIV patients
in Scotland. Our preliminary models include the first three months of care for
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HIV patients, including assessment and consultation. Based on these collabora-
tions, we believe that our methodology is particularly applicable to healthcare
for the following reasons:

1. In real world healthcare scenarios, there is a very large number of resources
being exchanged at every stage as well as many conditional and exceptional
situations, and it often becomes cumbersome to keep track of or record them
in a formalised healthcare procedure. Our framework greatly facilitates this
task, thanks to its resource accounting mechanisms.

2. The task of tracking information and resources itself is deemed of high im-
portance in healthcare, because it affects the efficiency, time, and cost of
every day care provision and, more importantly, patient safety, since, for
example, patient drop outs due to neglected pathways are common.

3. It is often challenging to communicate the technicalities of workflows to
healthcare practitioners. Experience has shown that our diagrammatic mod-
els are easily understandable by clinical collaborators and allow them to
reflect upon their practices. The prospect of automated deployment is also
very attractive to carers, who spend a large fraction of their valuable time
tracking, memorizing, and documenting pathways.

4. The mathematical core of our framework provides guarantees that enable all
stakeholders to trust that the modelled workflow will behave correctly.

5. The formal underpinnings of the used languages, namely CLL and the π-
calculus, in combination with the abstract level of the process specifications
open the doors to further analysis and verification, including the possibility
to integrate with other workflow, simulation, and verification technologies.

To summarize, despite the relative simplicity of our process specifications, our
methodology seems to fit well for the particular purpose of formalising healthcare
procedures such as integrated care pathways as workflows to improve every day
practices of healthcare providers.

8 Related Work

The current research is inspired by recent work by Grando et al. [6]. In this,
they proposed logic-based, pen-and-paper specifications of reusable patterns for
specifying assignment and delegation of tasks and goals during collaborative
work and sketched proofs that desirable properties, known as safety principles,
related to accountability, responsibility, and competence could be ensured.

Workflow-based approaches are often used in healthcare informatics to pro-
vide automated IT support for practitioners. Tallis [17], for example, is one of
the leading tools for the specification and enactment of clinical applications.
Such tools are most commonly used in an effort to support decision making in
diagnosis and treatment. In our case, though, we are closer to a business process
oriented approach that abstracts from these procedures and focuses on improv-
ing the operational support and automating some of the organizational aspects
of patient care by, for instance, alleviating the need to communicate the same
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information to multiple people separately, automatically documenting repetitive
information, and detaching social conventions from the healthcare workflow.

A related approach focusing on organisational workflows in healthcare with
the aim of minimizing medical errors is presented by Malhotra et al. [9]. They
focus on building a cognitive model of the workflow in order to identify error-
prone regions. TESTMED [2] is another related project aimed towards providing
operational support in hospital wards through multimodal interfaces.

The main advantage of our approach compared to others is the formal verifi-
cation of the constructed patterns and the automated extraction of an executable
model. The end-product is a system whose correctness is mechanically verified
with associated guarantees regarding the enforcement of modelled conditions
and policies, thereby allowing a high level of trust in the implemented workflow.

9 Conclusion and Future work

In this work, we presented a formal verification approach to the modelling and
implementation of healthcare workflows. Our methodology takes advantage of
the proofs-as-processes paradigm, a theory that connects logical proofs with
process workflows, in order to generate correct by construction process compo-
sitions. In particular, we provide mathematical guarantees of properties for the
generated workflows, including a verified information flow, systematic resource
management, type correctness, and deadlock and livelock freedom. Workflows
are modelled as compositions of abstract processes, specified by their inputs,
outputs, preconditions, and effects. The verified models can be automatically
deployed as executable Scala code, thus greatly facilitating workflow automation
and maintenance. The deployed systems support integration and interoperability
with existing infrastructure and may be accessed by mobile devices.

We demonstrate the value our methodology adds to traditional process mod-
els through the prototype system DigiHealth. Patterns of collaboration in health-
care involving assignment and delegation of clinical services are formalised and
deployed on DigiHealth, allowing for the automation of the corresponding proce-
dures based on a verified protocol. The stakeholders can work their way through
the two workflows using the web interface, without the need to keep track of the
progress themselves, and with the added trust our rigorous framework provides.

Our plans for future work involve a variety of optimisations on the gener-
ated code, including distributed execution (for deployment on the Cloud) and
tracking of workflow analytics. In addition, we plan to explore connections and
mappings to existing technologies such as the Business Process Model and Nota-
tion (BPMN) [12], the Business Process Execution Language (BPEL) [11], and
RESTful web services [4]. Finally, we are looking to pursue further collabora-
tions with healthcare providers and policy makers to investigate other potential
uses of our methodology for the formalisation of healthcare procedures.
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