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Which image characteristics predict where people fixate when memorizing natural images? To answer this question,
we introduce a new analysis approach that combines a novel scene-patch analysis with generalized linear mixed
models (GLMMs). Our method allows for (1) directly describing the relationship between continuous feature value
and fixation probability, and (2) assessing each feature’s unique contribution to fixation selection. To demonstrate
this method, we estimated the relative contribution of various image features to fixation selection: luminance and
luminance contrast (low-level features); edge density (a mid-level feature); visual clutter and image segmentation to
approximate local object density in the scene (higher-level features). An additional predictor captured the central
bias of fixation. The GLMM results revealed that edge density, clutter, and the number of homogenous segments
in a patch can independently predict whether image patches are fixated or not. Importantly, neither luminance nor
contrast had an independent effect above and beyond what could be accounted for by the other predictors. Since the
parcellation of the scene and the selection of features can be tailored to the specific research question, our approach
allows for assessing the interplay of various factors relevant for fixation selection in scenes in a powerful and flexible
manner.

Keywords: naturalistic scenes; image features; eye movements; fixation probability; GLMM

Introduction

Research using simple displays has shown that atten-
tion and memory are coupled, as evidenced by inter-
ference between attention and features of items in
visual working memory.1,2 In the context of natural
scenes, however, it has remained controversial which
features drive attention. Since eye movements are
highly correlated with the path of visual attention,3

this question can be operationalized by asking which
properties make a region of a complex scene likely
to be fixated.

The dominant theoretical and computational
framework to emerge has been image salience, in
which low-level properties of the stimulus play a
crucial role in guiding attention and the eyes.4,5

Empirical studies on salience maps have addressed
the questions of what features should be part of the

map and how these features should be combined.6

The typical approach has been to test if there are any
differences between visual characteristics at loca-
tions that were fixated by observers and control
locations.7,8 The basic picture that emerged is that
image features, including luminance, contrast, and
edge density all differ between fixated locations and
control locations.9 However, such explorations of
visual features at fixation suffer from several limita-
tions. First, such analyses compare average feature
values for two post hoc created groups of fixated
and control locations in a scene. A more informative
approach would be one that distinguishes between
fixated and nonfixated scene regions and directly
describes the relationship between fixation proba-
bility and local feature values on a continuous scale.
For example, a mixture model approach suggested
that observers do not actively fixate luminance
extremes,10 which is suggestive of a nonmonotonic
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relationship between luminance and fixation prob-
ability. Such relationships cannot be uncovered by
existing analysis approaches. Second, for a partic-
ular location, different features tend to be corre-
lated, possibly shadowing the true effect (or true
null-effect) of one feature by image-inherent cor-
relations to other features.11 Similarly, features and
viewing behavior are both associated with generic
biases. Importantly, it is a well-established finding
that observers fixate more often toward the center of
the image than the edges.7,9,12 This central bias is not
fully explained by centrally located features or initial
fixation location.13 To be of interest, any effects of
image features need to be above and beyond such
generic biases. In turn, considering their relevance
for viewing behavior, such biases should be treated
as “features” in their own right,14 rather than just
being accounted for by baseline choice.

Here, we introduce a novel analysis approach,
which overcomes these issues. First, we present a
scene-patch analysis that allows for fully describing
the relationship between continuous feature values
and fixation probability. Second, we utilize a statisti-
cal control approach to assess each feature’s unique
contribution to fixation selection.

Five candidate image features were chosen. First,
three common measures of local image statistics that
characterize different properties of image luminance
were examined: luminance, luminance contrast, and
edge density. Luminance contrast, arguably the best
investigated feature, has been found to be elevated at
fixated scene patches in grayscale images.7,8,12,15,16 In
addition, edge density has been found to be greater
at fixated than nonfixated locations.7,17

In addition, we examined visual clutter18 as a
surrogate measure for objects and synergistic image
segmentation19 as an approximation of local object
density in the scene. Clutter is an image-based
feature of visual complexity, which has been studied
mostly in the context of a search task. A frequently
adopted model of clutter is the feature congestion
model,18 which estimates clutter in terms of the
density of luminance contrast, color, and orienta-
tion. In a study investigating the influence of clutter
on real-world scene search, it was found that the first
fixation, but not subsequent fixations, tended to be
centered on a region of significantly higher clutter
than would be predicted by chance.20 One goal
of image segmentation is to break up the image

into meaningful “chunks,” approximating the
beginnings of an object-based representation. Here,
we use synergistic image segmentation,19 which
combines image segmentation based on the mean
shift procedure21 with a confidence-based edge
detector.22

Luminance and luminance contrast are low-level
features. Edge density is operationalized as a mid-
level feature, as it can be defined independent of
object content, but is not contained in the second-
order scene structure.23 We operationalize clutter
and synergistic segmentation as higher-level fea-
tures (but not high-level features, as their computa-
tion does not include any contextual component or
task demand).

This study presents a statistical modeling frame-
work to simultaneously test the influence of image
features on fixation selection in scenes during a
memorization task. Our approach requires three
steps of image and data processing. First, feature
maps for each image and feature are constructed
via image processing. Second, to obtain local image
statistics, each photograph is parcellated into local
image regions. Unless otherwise stated, we use a
8 × 6 grid, yielding 48 quadratic scene patches (see
Fig. 1A) with each grid cell spanning 3.2° × 3.2°
(100 × 100 pixels). For each patch, local image
statistics are extracted from the image feature maps.
Third, the empirical eye-fixation data are mapped
onto the scene analysis grid: For each observer and
image it is coded whether a given image patch was
fixated (1) or not (0) throughout the trial. General-
ized linear mixed models (GLMMs) are then used
to assess the impact of various image features on
selecting image patches for fixation.

Methods

Participants, apparatus, and materials
Analyses were based on a large corpus of eye move-
ments during scene viewing.24,25 Seventy-two par-
ticipants (mean age = 22.6 years, 34 males) each
viewed 135 color photographs of real-world scenes
from a variety of categories (indoor and outdoor).
The 92 indoor scenes came from different subcate-
gories, ranging from common rooms in one’s house
(e.g., living room, kitchen) to images from shops,
garages, etc. Scenes were presented on a 21-inch
CRT monitor with a screen resolution of 800 × 600
pixels and subtended 25.78° horizontally × 19.34°
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Original Image with GridA LuminanceB Edge DensitiyC

ClutterD Image SegmentationE

Figure 1. Example image and feature maps. (A) The original image with the analysis grid overlaid. (B) Luminance map. (C) Edge
density map after filtering the image with a Sobel operator. (D) Feature-congestion visual clutter map. (E) Synergistic segmentation
of the scene, resulting into 2,277 homogenous tiles.

vertically at a viewing distance of 90 cm. Eye move-
ments were recorded using an SR Research EyeLink
1000/2K system. Data from the right eye were ana-
lyzed.

Design and procedure
The 135 scenes were divided into three blocks of 45
scenes. In each block, participants performed one of
three viewing tasks: scene memorization, preference
judgment, or scene search.24 For the purpose of this
paper, only data from the memorization task were
analyzed. Participants were instructed to encode the
scene in preparation of an old/new recognition test
administered at the end of the experiment. Each
trial started with a centrally located pretrial fixation
marker, which acted as a fixation check. Afterwards,
the scene was presented for 8 seconds. Scenes were
rotated through task and task order across groups
of participants.

Data analysis
Gaze raw data were converted into a fixation
sequence matrix using SR Research Data Viewer.
Data were further processed and analyzed using
MATLAB 2009b (The MathWorks, Natick, MA,
USA) and the R system for statistical computing
(version 3.1; R Development Core Team, 2014)
under the GNU General Public License (Version
2, June 1991). Image processing was performed in
MATLAB.

Computation of image features. For each image,
five different features were defined at each of the 8
× 6 grid locations.

Luminance. Luminance of each pixel was defined
by converting the sRGB values of the image (assum-
ing IEC 61966–2–1 specification) to CIE L*a*b*
space and retaining only luminance (L*) informa-
tion. For each image, luminance was then mapped
linearly to the interval [0, 1]. This scaled version will
be referred to as luminance throughout (Fig. 1B).
The feature value of each grid cell was defined as
mean luminance over all 100 × 100 pixels in the
cell. Greater luminance is associated with a higher
degree of subjectively perceived brightness.

Luminance contrast. Based on the luminance
map (Fig. 1B), each local image patch was labeled
with its local contrast value. The contrast for each
grid cell was defined as a version of root-mean-
square contrast:26 the standard deviation of lumi-
nance values of all pixels in the grid cell divided by
the mean luminance of the image.8,15 In general,
more uniform patches have less contrast.

Edges. Edges were defined as boundaries between
regions of distinctly different mean luminance. The
locations of edges in an image were determined by
applying a Sobel operator to the luminance map,
which extracts an approximation to the luminance
gradient at each point in the image.7,17 Thresholds
were applied using the adaptive procedure imple-
mented in the edge function in the Image Processing
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Toolbox for MATLAB, resulting in a binary image
with 1’s where the function finds edges in the image
and 0’s elsewhere. Thus, the procedure produced a
black and white image, with white representing the
edges (see Fig. 1C). Edge density was then defined
as the mean over all pixels in a grid cell for this
binary image; that is, the proportion of edges in
the cell. These proportions ranged from 0 to 0.339
(mean: 0.043, standard deviation: 0.034). To “stretch
out” proportions that are close to 0, edge densities
were submitted to a logit transformation (logit(p) =
0.5 × ln(p/(1 – p))),27 after regularizing 0 to the
smallest possible nonzero value in the data (10−4)
for numerical reasons.

Clutter. A feature congestion map of visual
clutter was computed for each scene, using the
algorithms described by Rosenholtz et al.18 and
MATLAB code provided at http://dspace.mit.edu/
handle/1721.1/37593. For each such feature map,
the range of feature values was normalized linearly
to [0, 1]. Figure 1D depicts the feature congestion
map of visual clutter for the example scene shown
in Figure 1A. Local feature values for clutter were
defined as the mean over this feature map’s values
within each grid cell.

Synergistic image segmentation. The goal of
image segmentation is to break up the image into
meaningful or perceptually similar regions. We
used the synergistic segmentation,19 which com-
bines mean shift based color image segmentation21

with edge confidence and gradient maps.22 The
algorithms, implemented in C++, are available
via the Edge Detection and Image Segmenta-
tiON (EDISON) System,19 as is a MEX wrapper
for MATLAB (http://www.wisdom.weizmann.ac.il/
�bagon/matlab.html). Each image was subjected to
the synergistic image segmentation by using the
default parameters (mean shift: spatial resolution
parameter hs = 7, range bandwidth parameter hr

= 6.5, minimum region size M = 20). On average,
2,947 segments per scene were obtained (see Fig. 1E
for an example). For each grid cell, the number of
homogenous segments was determined.

We did not analyze low-level color features since
neither the stimuli nor display used in this study
were designed to capture low-level chromatic
properties. By design, however, clutter and syner-
gistic image segmentation make use of chromatic
information; these composite features are rather

insensitive to the precise color space or color
representation.

Central bias. To explicitly model the central bias
of fixation in the GLMM framework, a central-bias
predictor was created as follows. For each cell of the
image grid, the distance between the center of the
grid cell and the center of the image was determined
(red vectors in Fig. 2A). This resulted in eight dis-
tinct distance categories; each of them comprised
either four or eight cells (Fig. 2C). By definition
of the grid, these categories are not equidistant. In
Figure 2B image grid cells are numbered according
to the distance category they belong to (from 1 =
proximal to 8 = distal), while absolute distance is
color-coded such that the color of more distant cells
becomes progressively brighter. Statistical models
included the central-bias predictor as distance from
scene center in degrees of visual angle.

Generalized linear mixed models. Our response
variable is binary—for a given observer and image
a given grid cell was either fixated (1) or not (0).
The observation matrix comprised 155,520 entries
of zeros and ones (45 images × 72 subjects × 48
grid cells). GLMM28–30 were used to determine
the impact of various image features on fixation
probability in scenes. An advantage of GLMM
is that they do not require any form of data
reduction; hence we can model the data at the level
of individual observations, that is, the zeros and
ones. The probabilities are modeled through a link
function. For binary data, this link function is the
logit transformation of the probability.28–30 For our
analyses, we used the glmer program of the lme4
package31 supplied in R, with the bobyqa optimizer.
For the GLMMs, we report regression coefficients
(bs), standard errors (SEs), and z-values (z = b/SE).
Predictors were centered to have mean 0 and scaled
to have standard deviation 1.

Mixed models are statistical models that incor-
porate both fixed-effects parameters and random
effects. Our models included subjects (subject ID)
and scenes (scenes ID) as random effects to capture
variance attributed to the randomness of subject
and item sampling. All models included random
intercepts for subjects and items. To determine
whether random slopes should be included, we pur-
sued a data-driven approach. For each predictor,
four models that differed in their random effects
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Figure 2. Central bias analysis. (A) Image grid with vectors (in red) connecting the center of the grid cell with the center of
the image. (B) Assignment of the resulting eight distinct distance categories to image grid cells. Absolute distance is color-coded
such that the color of more distant cells becomes progressively brighter. (C) Frequency of occurrence of categorical distances. (D)
Mean fixation probability as a function of distance from scene center. Error bars are 95% binomial proportion confidence intervals,
obtained using the score confidence interval.51 In panels (C) and (D) the spacing on the x-axis preserves relative distances between
distance categories.

structure were compared. The first model included
random intercepts for subjects and items only. The
second model added random slopes for subjects;
the third model added random slopes for items.
The fourth model included random intercepts and
slopes for subjects and items, that is, the maximal
random effects structure. The models were com-
pared using likelihood ratio tests to identify the best
random effects structure by taking both goodness
of fit and model parsimony into account.

Results

The first valid fixation in each trial was defined as
the first fixation that began after the onset of the

scene image. In a given trial, the fixation on the
pretrial fixation marker fell on one of the centrally
located image patches, and this patch was excluded
from analysis for this image and observer, irrespec-
tive of whether it was revisited or not. This was done
because the fixation on the fixation marker typically
extended into the period of scene presentation.

Across scenes and participants, 28.3% of image
patches were selected for fixation; 16.2% received
exactly one fixation, and 12.1% were fixated more
than once during the course of the 8-s viewing. Here,
we modeled the probability of fixation, not distin-
guishing between single and multiple fixations.

To explore the empirical data, for each image fea-
ture we calculated fixation probability as a function
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Figure 3. Five main effects of local image statistics on fixation probability in a scene memorization task. Predictors are (A)
luminance, (B) luminance contrast, (C) edge density, (D) clutter, and (E) synergistic segmentation. Error bars are 95% binomial
proportion confidence intervals. Data are from right eye.

of the respective feature. The panels in Figure 3,
one for each feature, display observed mean fix-
ation probabilities over suitably binned category
means. For each feature, categories were created
using quantiles of the continuous variable, result-
ing into approximately equal-sized data subsets. The
data are suggestive of a negative quadratic rela-
tionship between luminance and fixation probabil-
ity (Fig. 3A) and a monotonically increasing rela-
tionship between luminance contrast and fixation
probability (Fig. 3B). Furthermore, as the number
of edges in a patch increases, fixation probability
increases (Fig. 3C). Likewise, as the visual clutter in a
patch increases, fixation probability increases as well
(Fig. 3D). Finally, the more meaningful “chunks”
there are in a patch, the higher fixation probability
(Fig. 3E). With regard to the central bias of fixa-
tion, the averaged empirical data suggest that fix-
ation probability linearly decreases with increasing
distance from scene center (Fig. 2D).

In sum, the averaged empirical data depicted in
Figure 3 suggest that all tested visual features predict
whether image patches are fixated or not. However,

to be of interest any effects need to be (1) above and
beyond what can be accounted for by other features
and (2) above and beyond a general preference for
fixating the center of the image.

Before embarking on the statistical model build-
ing, we consider the distribution of features within
images (Fig. S1) and the correlations between image
features (Fig. S2). Our composed scenes tended
to show the common bias toward having more
visual features in their center.13 The only excep-
tion was luminance, for which there was a slight
increase/decrease in mean luminance for image
patches in upper/lower scene regions, respectively
(Fig. S1). The feature bias toward the center of the
image also shows in significant negative correlations
between the cells’ local feature values and their dis-
tance from scene center. The strength of the corre-
lation between local image statistics and central bias
ranged between −0.31 (for edge density, P < 0.001)
and −0.03 (for luminance, P < 0.05). As noted
earlier, in natural images different visual features
tend to be correlated for a particular location.11 For
the images and features considered here, the largest
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correlations involve edge density, which correlates
both with luminance contrast (r = 0.60), clutter (r =
0.62), and the number of homogenous segments
(r = 0.61). Further, the correlation between clut-
ter and number of homogenous segments is 0.58;
the matrix of pairwise scatter plots in Figure S2
provides a full account. The purpose of linear mixed
models is to factor in the correlations between
predictors.

We pursued an incremental model building strat-
egy. Luminance and luminance contrast are funda-
mental stimulus dimensions encoded by the visual
system. Therefore, we first modeled the effects of
luminance (luminance-only model) and contrast
(contrast-only model) separately, before assessing
their unique effects in a model including them both
(LumCon model). A final model in this series adds
the central-bias predictor. We conclude by report-
ing the results for the full model, which included
all image features along with the central-bias
predictor.

Luminance-only model
The averaged empirical data suggest that fixa-
tion probability is highest for medium-luminance
patches (Fig. 3A). As local luminance moves toward
extreme values, fixation probability decreases, while
this drop is not linear but shows negative accel-
eration. Accordingly, the luminance-only GLMM
included an intercept and a quadratic term for
luminance (lum2)a as fixed effects. In addition, the
model included random intercepts for subjects and
items, and random slopes for items. The fixed effect
of lum2 was significant (b = −0.31, SE = 0.03,
z = −9.87, P < .001). The corresponding partial
GLMM effect is displayed in Figure 4B. Parame-
ter estimates are obtained on the log-odds or logit
scale, which is symmetric around zero, correspond-
ing to a probability of 0.5, and ranges from negative
to positive infinity. Thus, negative log-odds corre-
spond to probabilities P < 0.5. For computation of
the partial GLMM effect, random factors variance
was removed using the remef function provided by
Hohenstein and Kliegl.32

aFor the mean-centered luminance predictor, the x-
coordinate of the parabola’s vertex coincides with 0 such
that the linear term vanishes.

Contrast-only model
According to Figure 3B, fixation probability
increases as local luminance contrast increases. The
contrast-only GLMM included contrast as the only
fixed effect (in addition to the intercept), and
by-item random intercepts and slopes along with
by-subject intercepts. The effect of contrast was
significant (b = 0.71, SE = 0.04, z = 17.83, P <

0.001), and the corresponding partial GLMM effect
is displayed in Figure 4C.

Luminance-and-contrast model
For our complex color scenes, local luminance and
contrast are not independent, but show a nonlinear
relation. Patches with medium luminance are asso-
ciated with a large variability in local contrast, but
they tend to have higher contrast (Fig. 4A). Con-
versely, darker and brighter patches tend to have
lower contrast, with minimal/maximal luminance
leaving little room for variability in local contrast.
For comparison, we also fit a linear regression to the
data (Fig. 4A). The linear correlation between local
luminance and contrast is −0.18 (P < 0.001); the
correlation is larger for outdoor scenes (r = −0.3,
P < 0.001) than for indoor scenes (r = −0.12, P <

0.001), probably owing to the fact that sky regions
tend to be both bright and low in contrast.33 The
LumCon GLMM included both a quadratic term
for luminance and a linear term for contrast as fixed
effects. In addition to the random intercepts, the
model included by-item random slopes for lum2

and contrast. Both fixed effects remained signifi-
cant (lum2: b = −0.13, SE = 0.03, z = −4.17, P <

0.001; contrast: b = 0.68, SE = 0.05, z = 14.94, P <

0.001), and their partial GLMM effects are displayed
in Figure 4B (luminance) and Figure 4C (contrast).
Comparing the results from the three models, it
becomes clear that the addition of contrast to the
luminance model diminishes the quadratic effect of
luminance.

In the next step, the central-bias predictor was
added to the LumCon model. The significant
negative estimate for the central-bias predictor
(b = −0.60, SE = 0.03, z = −21.84, P < 0.001)
confirmed that fixation probability decreases with
increasing distance from image center. Importantly,
the effects of both luminance (lum2: b=−0.07, SE=
0.03, z = −2.44, P < 0.05) and contrast (b = 0.59,
SE = 0.04, z = 13.95, P < 0.001) continued to be
reliable.
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Table 1. Final generalized linear mixed model fitting fixation probability for a scene memorization task, fit by Laplace
approximation: means, standard errors, and z-values of fixed effects on fixation probability; variances of the random
effects

Fixed effects Random effects, variance

Predictor b SE z By-items By-subjects

Intercept −1.217 0.059 −20.51 0.349 0.046

Luminance quadratic −0.012 0.027 −0.46 0.084 –

Luminance contrast 0.033 0.052 0.62 0.334 –

Edge density 0.609 0.065 9.38 0.492 –

Clutter 0.184 0.043 4.31 0.217 –

Number of segments 0.389 0.046 8.40 0.260 –

Central bias −0.490 0.030 −16.28 0.057 0.031

Note: Nonsignificant coefficients are set in bold (|z| < 1.96, P > 0.05).

Full model
The question arises whether these relationships
hold once additional image-feature predictors are
included in the model. The full model included the
central-bias predictor and all five image features as
fixed effects. The maximal random effect structure34

would require estimating 56 random effects param-
eters (28 by subject and 28 by item), and this
model failed to converge. Data-driven exploration of
random effects suggested that by-subject random
slopes for image features are not needed. Conse-
quently, the full model included 31 random effects
parameters (by subject: 2 random effects, 1 corre-
lation term; by item: 7 random effects, 21 corre-
lation terms). The results for the fixed effects and
the variances of the random effects are summarized

in Table 1. The central bias is the strongest predic-
tor of where observers fixate in a scene. Notably,
after taking central bias into account, edge density,
visual clutter, and the number of homogenous seg-
ments can still independently predict whether image
patches are fixated or not. The z-statistics are sug-
gestive of particularly strong effects of edge density
and the number of segments in a patch. Importantly,
neither luminance nor contrast have an independent
effect above and beyond what can be accounted for
by edge density and the two higher-level features
approximating local object density in the scene. To
illustrate this point, Figure 4 includes the partial
GLMM effects for luminance (panel 4B) and lumi-
nance contrast (panel 4C) in the full model (blue
long-dashed line).
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Figure 4. Statistical analysis of local luminance and luminance contrast. (A) Joint distribution of local luminance and contrast
values. Hexagonal binning was used to avoid overplotting of 6,480 data points (135 images × 48 grid cells). Frequency information
is displayed as variations in color, with colors ranging from blue (few data points) to red (many data points). The curved white
line is an approximation of the data by a polynomial spline, and the straight white line represents a linear regression fit. (B) Partial
quadratic effect of local luminance on fixation probability in log-odds scale for the luminance-only model (red solid line), the
LumCon model (green dashed line), and the full model (blue long-dashed line). (C) Same for local luminance contrast. Feature
values are z-scores. See text for more details.
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Additional analyses
To explore in more detail whether the results from
the full model converge with previously reported
findings,11 we tested which image features made
the effects of luminance and luminance contrast
disappear by incrementally extending the GLMM
that included lum2 and luminance contrast along
with the central-bias predictor. If only edge den-
sity was added to this model, the effect of contrast
was much reduced but remained just significant
(b = 0.09, SE = 0.05, z = 1.98, P = 0.048). However,
if both edge density and visual clutter were added,
the effect of luminance contrast was no longer sig-
nificant (b = 0.01, SE = 0.05, z = 0.12, P = 0.901). If
only edge density was added, the quadratic effect of
luminance was no longer significant (b = 0.01, SE =
0.03, z = 0.33, P = 0.741); the same was true when
only the number of homogenous segments was
added (b =−0.02, SE = 0.03, z =−0.89, P = 0.375).

Our central-bias predictor was calculated as the
Euclidean distance from image center (Fig. 2), which
is an isotropic measure. Clarke and Tatler35 recently
proposed that the central bias is best modeled by
an anisotropic two-dimensional Gaussian distri-
bution whose vertical variance is less than half
the horizontal variance. Therefore, for exploratory
purposes, we applied an alternative measure of
central bias for each grid cell based on a two-
dimensional Gaussian distribution centered over
the image center. Following Clarke and Tatler,35 the
horizontal variance of the Gaussian was set to 0.23
(in units of half the image width), and the vertical
variance to 0.10 (0.23 × 0.45). We then reran the
full GLMM with the anisotropic Gaussian central-
bias predictor rather than the isotropic Euclidean
distance-to-center predictor. To ease comparison,
the anisotropic predictor was entered with a nega-
tive sign, such that increasing values correspond to
more peripheral locations. The fixed-effect estimate
for the anisotropic predictor (b = −0.50, SE = 0.03,
z = −17.19, P < 0.001) was very similar to the esti-
mate for the isotropic predictor (b = −0.49, SE =
0.03, z = −16.28, P < 0.001, Table 1). We conclude
that the Euclidean distance-to-center predictor does
not substantially underestimate the contribution of
the central bias in our model.

Furthermore, it is important to confirm that the
results do not depend on the choice of grid-cell size.
Therefore, we repeated the analyses for a fine grid
that had four times as many grid cells as the original

grid. Compared to the original grid, the sides of the
squared patches were cut in half (50 × 50 pixels =
1.6°× 1.6°), leading to a 16 × 12 grid with 192 cells.
For all models reported in this paper, the qualitative
pattern of results was the same as for the 8 × 6 grid.
The results for the full GLMM are summarized in
Table S1. Significant effects for image features and
the central-bias predictor were somewhat stronger
than for the original 8 × 6 grid, most likely owing
to the finer resolution of the 16 × 12 grid. We also
tested a very coarse grid by doubling the sides of
the squared patches (200 × 200 pixels = 6.4° ×
6.4°), which led to a 4 × 3 grid with only 12 cells.
Not surprisingly, effects were weaker for the coarse
4 × 3 grid, but the overall pattern of results did not
change (Table S1).

Discussion

This paper introduces a new analysis approach
to assess quantitatively the extent to which image
features predict the probability with which scene
regions are selected for fixation. Specifically, we
combine a scene-patch analysis with a statistical
modeling approach that allows for directly describ-
ing the relationship between continuous feature val-
ues and fixation probability. The approach unites
four desirable properties by explicitly accounting
for (1) generic biases (e.g., central bias), (2) inter-
item and inter-subject variability, (3) nonmono-
tonic (e.g., quadratic) effects of feature values on
fixation probability, and (4) dependencies between
features (see Fig. 5 for a visual summary).

Our approach bears some similarities with anal-
ysis techniques for eye guidance in reading. In this
analogy, the image corresponds to a paragraph of
text, the grid cell to a word, the features within
the grid cell to word properties, and the probabil-
ity of fixating a cell to the probability of fixating a
word. In reading, such analysis techniques revealed,
for example, that the probability of fixating (i.e.,
not skipping) a word decreases linearly with word
frequency.36 Here, we asked whether such relation-
ships exist between local image statistics and fixation
selection in scenes.

Unit of analysis
Our approach allows and requires an a priori parcel-
lation of the scene (Fig. 5). We used a grid, which is
a natural choice whenever homogeneous, nonover-
lapping, and exhaustive image coverage is required
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Figure 5. A new approach to modeling the influence of image features on fixation selection in scenes—summary of its main
properties including a comparison to existing approaches. References are indicated in brackets.

or desirable. Provided the scale-invariance of
natural scenes,37,38 the precise choice of grid dimen-
sions is not critical as long as the scale is above the
eye-tracker’s precision and accuracy and as long as
a sufficient number of cells are available per image.
Here, we verified this by showing that a factor of 2

on the linear grid dimension (i.e., a factor of 4 with
regard to area) did not alter the qualitative pattern
of results. Rather, effects tended to be stronger with
increasing resolution of the grid.

We ourselves have argued that attentional
selection in scenes has a strong object-based
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component.24,25,39 Accordingly, an alternative par-
cellation may be based on object outlines. Unlike the
grid, such a parcellation is typically neither exhaus-
tive nor necessarily a tiling (i.e., gaps and overlap
between objects are acceptable), but this presents
no challenge to the proposed method. Objects
typically distinguish themselves from scene back-
ground in the visual features relevant for fixation
selection.39 For the present purposes, our higher-
level features were chosen as surrogate measures of
objects, rendering an object-based parcellation cir-
cular. An object-based parcellation would be appro-
priate if one, for example, wishes to investigate the
relative prioritization of objects by their features.40

This example illustrates how the parcellation of the
scene can be adapted depending on the experimen-
tal question asked.

Choice of baseline and generic biases
In particular in the context of salience map mod-
els, which aggregate multiple low-level features,41

there has been considerable debate regarding the
evaluation of the prediction performance of a given
feature or model.4,42 Typically, a positive (fixated)
and negative (control) set of locations is defined
and then feature values in these sets are com-
pared, either directly,8,43 after image-wise z-score
normalization44 or in terms of discriminability as
quantified by the area under the receiver-operating
characteristic (ROC) curve (AUC or A′)9 (Fig. 5).
The requirement to choose a negative set, how-
ever, is critical to all these approaches and the
choice of this baseline is prone to generic biases.
For example, when sampling values uniformly from
all locations, generic biases that are shared between
fixation selection and feature distributions across
all images yield an overestimation of prediction
performance.9,13 In simple designs, this issue can
be alleviated by a “shuffle” baseline, sampling map
values of one image at locations that were fix-
ated in different images (baseline set). In exper-
imental designs with multiple conditions (image
modifications, tasks, etc.), however, it is not clear
a priori which images should constitute the baseline
set, and recent suggestions involve using a generic
baseline across all stimuli, tasks, and conditions.35

In the present approach, the issue of choosing an
appropriate baseline is overcome by reversing the
traditional logic of fixation prediction: rather than
evaluating differences in scene statistics at fixated

and control locations, we distinguish between fix-
ated and nonfixated scene regions and directly
describe the relationship between image features
and fixation probability. As a consequence, generic
biases, such as the central bias, can be treated natu-
rally as a predictor akin to image features.

Advantages of GLMM
Binary response variables are oftentimes analyzed
using subject and item ANOVAs (F1 and F2) over
proportions or percentages. In the context of scene
perception, the proportion of fixations directed
to regions of interests has been analyzed in that
way (for example, see Ref. 45). However, applying
ANOVA to fixation probabilities is associated with
a number of serious problems, which can be over-
come by using GLMM.30 We would like to high-
light one specific advantage of using GLMM in the
present context. When using pictures of real-world
scenes as stimuli, it is conceivable that the extent to
which image features influence where people look
may depend on the selected images. We took this
into account by including by-item random slopes for
each image feature. Indeed, we consistently found
that including by-item random slopes significantly
improved the model fit. Images also varied consider-
ably in their intercept,b representing the overall fix-
ation probability. A larger by-item intercept means
that more scene patches were fixated, and this is of
course associated with a smaller central fixation bias
(by-item random slope for central-bias predictor).
As a general observation, item variances were much
larger than subject variances (Table 1).

Nonmonotonic relationships
Unlike previous approaches, the present approach
explicitly considers fixation probability as the
dependent variable and can deal with nonmono-
tonic relationships between fixation probability and
feature values. Nonmonotonic functions can, for
example, occur when medium levels of a feature
are preferred relative to either extreme (or vice
versa). For the case of luminance, our analyses
revealed a negative quadratic relationship between

bBy-item random effects describe items’ deviations from
the fixed-effect parameters. Thus, the intercept for a given
image is obtained as the sum of the fixed-effect estimate
for the intercept and the conditional mode of the random
effect for the intercept.
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luminance and fixation probability. The negative
quadratic coefficient in the luminance-only GLMM
suggested that fixation probability is maximal for
image patches with medium-luminance, and is con-
siderably reduced for both very dark and very bright
scene regions. This result qualifies the previously
reported finding that observers do not actively fix-
ate luminance extremes.10

Feature dependencies
When considered in isolation, the features selected
for our analyses have been found to predict where
people look in natural scenes (with the exception of
synergistic image segmentation, which has not been
previously assessed).7,8,20 The chosen set of features
exemplifies a major issue in identifying associations
between features and fixation: features are not inde-
pendent.

A key strength of the present approach is its
explicit handling of feature dependencies (Fig. 5).
The generalized linear mixed modeling approach
used here allows for assessing each feature’s unique
contribution to fixation selection, and its relative
importance. The LumCon model took the quadratic
dependency between luminance contrast and lumi-
nance in our stimulus set into account (Fig. 4A)
and demonstrated that, once contrast was added
to the luminance model, the nonmonotonic effect
of luminance was still significant but reduced in
size (Fig. 4B). However, neither luminance nor con-
trast had an independent effect on fixation probabil-
ity once the remaining image features edge density,
visual clutter, and the number of local segments were
included in the model (Table 1). Additional analyses
substantiated that this pattern of results is in princi-
ple agreement with findings from a Bayesian model
analysis, suggesting that high-frequency edges are
more predictive of fixation behavior than luminance
or contrast.11 The results from the full model suggest
that, when correlations between image features were
accounted for, edges provided the best ability to pre-
dict fixation selection, closely followed by the syn-
ergistic image-segmentation predictor.21 According
to the z-statistics, the independent effect of the
feature-congestion measure of visual clutter18 was
smaller in size (Table 1). Importantly, the effects
of image features were above and beyond a general
preference for fixating the center of the image. With
regard to the relative contributions of the different

sources of variability in the data, the central bias was
the strongest predictor.

Feature dependencies are unavoidable for at least
two reasons. First, dependencies can be a conse-
quence of the hierarchical definition of features:
luminance is a pixel property, contrast is its dif-
ference measure, edge density exploits gradient
information and is thus related to contrast, and
synergistic image segmentation incorporates edge
information. Second, feature dependencies often-
times arise from structural properties of nat-
ural scenes. For example, there is a negative
quadratic relationship between luminance and con-
trast (Fig. 4A) because brightness and darkness
extremes tend to be associated with uniform surfaces
(sky, walls, etc.) rather than being distributed as salt
and pepper sprinkles. The central-bias predictor is
correlated with local image features because of the
photographer’s bias in scene composition. Object
boundaries are likely to co-occur with luminance
edges.

The present results demonstrate that it would
be inadequate to consider the higher-level features
only. Notably, while the mid-level feature of edge
density almost completely explains away any influ-
ence of the low-level features,11 the higher-level fea-
tures do not render edge density redundant. These
results suggest that edges can attract attention even if
they are not object (or in our case segment) bound-
aries. We conclude that any method that seeks to
relate image features to fixation selection needs to
take feature dependencies into account, or it will
eventually fall short.

Features and objects
In research on both attention and memory, the
number of objects or items in a display (i.e., set
size) is an index of cognitive load. In a natural
scene, however, an “object” is a perceptual and
hierarchical construct that can change depending
on the task, context, and mindset of the observer.
This renders quantifying the number of items in a
natural scene difficult, and some even argue that the
problem of object segmentation is ill-conceived.46

There are two main strategies for experimentally
relating fixation patterns to objects in a scene.
First, one can ask observers to label the scene and
relate this ground truth to fixation patterns.24,25,39

Second, one can delineate preattentive objects
based on features that can be computed from the
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stimulus.46–48 The resulting entities, which can
potentially gain objecthood, are frequently identi-
fied as proto-objects.49 The conditions under which
such proto-objects behave like real objects for fix-
ation selection is an interesting issue in itself.24,46,47

In this study, we restricted ourselves to features that
can be computed from the current stimulus and
refrain from relating them to any semantic scene
content or context. However, we included features
that have been proposed as proxies or surrogates
of objects in the literature. Our data show that
all mid-level and higher-level features, though
tightly related by design, have independent effects
on fixation selection. We may speculate that they
indeed capture partially complementary aspects
of object presence: the feature congestion measure
has been explicitly introduced as a proxy for set
size,18 the synergistic segmentation measure19

counts the number of individuated parts, and edge
density counts the number of edges in a local
region. Therefore, the synergistic segmentation
may approximate the number of items weighted by
the number of their parts, and edge density may
approximate the number of items weighted by the
complexity of their boundaries. Hence, one possible
interpretation of the present results is that the three
features capture complementary aspects of object-
hood and that their independent effects on fixation
probability result from this complementarity. It
should be noted, however, that the present data do
not speak directly to what the relevant entities for
guiding attention in scenes are (objects or features).

Correlation versus causality
The profound effect of feature dependencies also
points to a deeper issue for any natural-scene anal-
ysis. Even if interfeature dependencies are mod-
eled, observational results on natural scenes will
remain correlational. There could be an unconsid-
ered feature with mutual dependencies, and corre-
lation of fixation probability to a feature does not
imply the feature’s causal effect. Even if features are
experimentally manipulated to test for causality,15

care must be taken to not introduce new feature
dependencies.50 Unlike earlier modeling attempts,
however, the proposed statistical approach will allow
quantitative predictions about the effects that tar-
geted manipulation of stimulus features should have
on fixation probability. Therefore, it will be able to
inform experimental designs that manipulate the

correlation structure among low-level features and
between low-level features and high-level content.
By fostering the interplay between observation on
large sets of natural scene fixation data, and experi-
mental designs that manipulate scene statistics, the
proposed approach has the potential to pave the way
from correlations between fixation probability and
feature values to the causal effect of features.

Future research
In this paper, we have considered the main effects
of a set of five image features on fixation selection
in a scene memorization task. Future research
may examine additional image features as well as
their interactions, and interactions with viewing
task. Previous research suggests that color is not
a strong correlate of fixation location.9 However,
since the features used here differ with respect to
how they capture color information, additional
research is needed to fully explore the role of
color. The approach taken here was to assess the
relative contribution of various image features to
fixation selection. Our method can thus be used
to single out features that may be combined into
a computational model of salience. However, the
proposed method may also be used to evaluate
the performance of salience models, simply by
including a measure of local salience—based on
a salience map—as a predictor in the GLMM. In
conclusion, the present approach might be a good
way forward in understanding scene exploration,
since it allows for assessing the interplay of image
features relevant for fixation selection in scenes in
a powerful and flexible manner.
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Figure S1. Average feature maps for grid cells across
images.
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Figure S2. Matrix of pairwise scatter plots given the
image features considered in the study. Panels above
the diagonal plot the actual data points, which are
mean feature values for a given scene and analy-
sis grid cell (135 scenes × 48 grid cells = 6,480
data points in each panel). Hexagonal binning was
used to avoid overplotting; the x–y plane is tiled
using hexagons which are then colored to indicate
the number of points that fall inside (see Ref. 1
in supplementary online file); darker colors indi-
cate a larger number of data points. Each feature
combination additionally shows a regression line
(in green) and a polynomial spline (red) that were
fit to the data. Panels below the diagonal display
the linear correlation coefficients (scaled according
to their absolute size) and corresponding P values.
The diagonal panels show the distributions of fea-
ture values.

Table S1. Generalized linear mixed models fitting
fixation probability for a scene memorization task
for a fine 16 × 12 grid and a coarse 4 × 3 grid: means,
standard errors, and z-values of fixed effects on fix-
ation probability; variances of the random effects.
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