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ABSTRACT
Manual tuning of applications for heterogeneous parallel sys-
tems is tedious and complex. Optimizations are often not
portable, and the whole process must be repeated when mov-
ing to a new system, or sometimes even to a different prob-
lem size. Pattern-based programming models provide struc-
ture which can assist in the creation of autotuners for such
problems. We present a machine learning based auto-tuning
framework which partitions the work created by applications
which follow the wavefront pattern across systems compris-
ing multicore CPUs and multiple GPU accelerators. The
use of a pattern facilitates training on synthetically gen-
erated instances. Exhaustive search space exploration on
real applications indicates that correct setting of the tun-
ing factors leads to a maximum of 20x speedup over an op-
timized sequential baseline, with an average of 7.8x. Our
machine learned heuristics obtain 98% of this speed-up, av-
eraged across range of applications and architectures.

Categories and Subject Descriptors
C.4 [Performance of Systems]: Design Studies; D.1.3
[Programming Techniques]: Concurrent Programming-
Parallel programming

Keywords
wavefront pattern, auto-tuning, multi-GPU

1. INTRODUCTION AND BACKGROUND
The advent of heterogeneous systems comprising multi-

core CPUs and manycore accelerators such as GPUs, has
increased the computational power available to everyday
users, but has come at a price to the application developer
and programming toolchains. The developer now has to
navigate diverse languages and libraries, and integrate these
within single applications. Performance tuning of such ap-
plications is more complicated than tuning essentially ho-
mogeneous systems. Finding a programming methodology
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and toolchain which can address these challenges is widely
recognized as being of major importance, both academically
and industrially [5].

Pattern-oriented parallel programming [12] offers a promis-
ing approach to the heterogeneous parallelism challenge, by
encapsulating parallel decomposition and distribution be-
hind an API which requires the programmer to code only
application specific aspects. This approach not only sim-
plifies the programmer’s task but also presents the system
with a constrained optimization challenge of choosing be-
tween and tuning parameters of a set of candidate, hetero-
geneous parallelizations. This can provide a basis for perfor-
mance portability. We present a case study in the applica-
tion of this approach. Our selected pattern is the wavefront.
Our implementation strategy distributes wavefront applica-
tions across systems which incorporate a multicore CPU and
multiple GPU accelerators. In order to better understand
the tuning tradeoffs, and to assist in the evaluation of our
heuristics, we have performed an exhaustive exploration of
an interesting fragment of the tuning space, across a col-
lection of systems comprising a CPU and single or multiple
GPUs. Since such an exhaustive search would be impracti-
cal in a production system, we have investigated the applica-
tion of machine-learning strategies to reduce the search time.
We have experimented across a range of wavefront applica-
tions and heterogeneous systems. The wavefront pattern
[6] abstracts computations which evaluate a class of multi-
dimensional recurrence relations. Figure 1 gives a graphical
representation of a two-dimensional wavefront. The values
of the relation are computed into a multidimensional ar-
ray. Computation starts at position (0,0) and propagates
to neighboring elements in a series of diagonal bands, re-
sulting from the dependencies inherent in the pattern. This
wave-like sweep of computation gives the pattern its name.

For our purposes, the key characteristics of a wavefront
instance are as described in table 1. dim is the number of

Parameter Description

dim width of the array
tsize granularity of the element computation
dsize element data size

Table 1: Input Parameters

rows in the array. For simplicity we assume square arrays,
but this restriction could be lifted straightforwardly. tsize
captures the granularity of the computation at each point
in the array, which we assume to be regular as typically the



Figure 1: (a) Waveflow for a two dimensional in-
stance of size 4 x 6 (b) The number of concurrently
computable elements increases from iteration 0 un-
til maximum parallelism is achieved at iterations 3,4
and 5. Part (b) of the figure is inspired by [1].

case. dsize refers to the number of floating point data items
at each point in the array, providing a measure of data gran-
ularity. These characteristics will form the input parameters
to our autotuning framework. Their experimental values will
be discussed in section 3.1.1.

The remainder of this paper is organized as follows. Sec-
tion 2 presents our implementation strategy, its tuning points
and the trade-offs these create. Section 3 discusses our
experimental programme, covering the applications consid-
ered, implementation space and overall autotuning strategy.
Section 4 discusses the results of our exhaustive evaluation
of the tuning space. Section 4.2 evaluates our machine learn-
ing strategies used for autotuning. We review related work
in section 5 and present our conclusions and future work in
section 6.

2. IMPLEMENTATION STRATEGY
Our parallel wavefront execution strategy extends previ-

ous work [3] with support for GPU tiling and the use of
multiple GPUs.

In a wavefront, data point computation time is roughly
homogeneous so maximum parallelism occurs at the diag-
onal. Within a diagonal, computation of each data point
is independent, hence overall diagonal computation is data
parallel. The Single Instruction Multiple Thread (SIMT)
constraints of the GPU architecture are thus satisfied by the
diagonal major representation of data and successive diago-
nals can be offloaded onto a GPU. However, it is intuitively
clear that this is only beneficial for diagonals of sufficient
size and/or computational granularity to amortize the costs
of transferring data to and from the device and of initial-
izing execution. Determining these diagonals is a machine
and application dependent tuning criterion. For the remain-
ing data points, CPU computation is preferable and it is a
common optimization to partition this space into rectangu-
lar tiles, computing all points in a tile sequentially in order

to benefit from cache re-use. Optimal selection of tile size is
also machine and problem dependent [10, 13].

Tiling within a GPU [1], reduces global memory access
within the GPU and leads to local cache reuse, besides in-
voking fewer kernel calls from the host CPU. GPU tiles map
to work-groups in OpenCL and the elements within the tile
map to work-items or GPU threads. Within a work group,
the work items have to be synchronized to follow the wave-
front pattern. This introduces an overhead. The GPU tile
size (our ‘gpu-tile’) tunable parameter is restricted by hard-
ware and problem size.

Our single-GPU parallel implementation strategy there-
fore has three phases and three tunable parameters - number
of diagonals to offload onto a GPU (or ‘band’) and the tile
size of CPU and GPU(‘cpu-tile’ and ‘gpu-tile’). In the first
phase, tiled parallel computation proceeds using all cores of
the CPU. In the second phase, execution switches to the
GPU where it proceeds, possibly tiled, diagonal by diago-
nal. In the third phase, computation reverts to the CPU
and is completed in tiled parallel fashion. This implementa-
tion strategy is illustrated in the figure 2. The second phase,

Figure 2: Implementation strategy showing three
phase computation for 20 x 20 grid. Phase 1 and
3 have CPU tiles of size 4x4 and phase 2 is GPU
consisting of its 1D work groups, with each kernel
call corresponding to one diagonal

or in principle the first and third phases, may be null. In
the latter case, computation is carried out entirely within
the GPU.

The presence of multiple GPUs introduces two further
tuning parameters. We must decide how many GPUs to ex-
ploit (tuning parameter gpu-count). Furthermore, partition-
ing data among multiple GPUs is non trivial and communi-
cation among GPUs is expensive. Wavefront dependencies
force data in the border regions (or ‘halo’) of partitioned
diagonals to be shared among the GPUs. This is shown for
two GPUs in figure 3. As successive partitioned diagonals
within each GPU get computed, their border data becomes
stale. This necessitates halo exchanges (or ‘swaps’) between
the neighbouring GPUs, depending on the extent of overlap
or halo size. Each time this happens, data elements have
to be first transferred to the host (CPU) memory and then
transferred to respective destination GPUs. The overhead



from data communication mandates minimising communi-
cation between GPUs. However increasing halo size causes
more redundant computation. Thus halo size is our fifth tun-
able parameter. To summarise, the tunable parameters in

Parameter Description

cpu-tile side length of the square tiles for CPU tiling
band number of diagonals on each side of the main

diagonal, to be computed on the GPU
gpu-count number of GPU devices to use
gpu-tile the GPU equivalent of CPU tiling
halo size of the halo for dual GPUs

Table 2: Tunable Parameters

Figure 3: The partitioning of three diagonals among
two GPUs with subsequent halo regions

our implementation strategy are as listed in table 2. These
will be the targets of our autotuning framework. In the next
subsection we discuss tuning trade-offs. The tunable three
phase strategy itself is captured in our library code, using
threads to control CPU phases and our own OpenCL har-
ness to control communication with and execution upon the
GPU.

2.1 Performance tuning trade-offs
For the wavefront pattern, GPU computation becomes

feasible when there is enough parallelism to be exploited.
Thus a) the problem size (dim) should be large enough, since
smaller sized problems can be computed quicker in the faster
CPU cores and b) the granularity of task (tsize) should be
high so that computation dominates over the cost of start-
ing a GPU and the communication overhead of transferring
data between GPU and CPU. This communication cost nat-
urally increases when data size (dsize) being transferred in-
creases. Another factor that increases communication cost
is the number of GPUs employed. While with a single GPU
data is transferred from/to CPU only twice, dual GPUs have
the additional overhead of exchanging neighbouring data be-
tween themselves every few iterations (halo swapping). This
overhead becomes more expensive if the data size is large
as more time is spent in swapping halos. A reduction in
halo swaps is obtained by increasing the halo size. The
diagonal major structure of the problem grid in the GPU
restricts this halo size to a maximum of the length of the
start/end diagonal. Even at maximum size, the advantage
gained from fewer swaps has to be traded against redun-
dant computation, which starts affecting performance with
increasing granularity of task.

Communication cost is also affected by tiling (gpu-tile)
the GPU since this reduces the number of kernel calls re-

quired but incurs the additional cost of synchronizing work
items within each work group. If computation dominates
over communication anyway, time spent in kernel calls no
longer matters and tiling would then prove to be counter
productive.

Finally, the type of system affects the performance - a
fast GPU coupled to a slow CPU means data will mostly be
offloaded to the GPU (unless bandwidth is the bottleneck)
leading to higher values of band. In such a system, CPU
tiling will have negligible effect as most of computation is
carried out in the GPU. Likewise, in fast CPU-fast GPU
systems, good band values will be correspondingly lower.

3. EXPERIMENTAL PROGRAMME
We now describe our experimental programme. Our over-

all strategy is presented in figure 4, and is line with standard
applications of machine learning to the tuning of computer
systems [11]. Our goals are to understand the relationship
between settings of the internally tunable implementation
parameters and performance, and to use machine learning
techniques to control the automatic setting of these param-
eters. The first phase of our experimental programme deals
with training our model, using the synthetic wavefront ap-
plication. The second phase applies the learned model to
real, previously unseen wavefront applications.

Training Set Generation   Model Building Deployment

Synthetic 
Application Evaluate

Re-Parameterise

Training 
Set

Model 
Construction

Cross-
Validation

Model

Real 
Application

Features

Execute

Tuned
 Parameters

Figure 4: Machine Learning Strategy : The training
set is created by selecting high performing instances
from an exhaustive parameterized search of the syn-
thetic wavefront application. Decision tree models
are built from the training set and cross validated.
In deployment, the model is passed features of the
previously unseen application and returns appropri-
ate tuning parameter settings.

3.1 Training Phase
Training is conducted with a synthetically generated wave-

front application. This is parameterizable across a wide
range of size and granularities. It is a strength of the pattern-
oriented approach that such an approach is feasible, remov-
ing the need to find real applications for the training phase.

3.1.1 Parameter Space
In order to gain insights into the shape of the performance

space and trade-offs, we first conduct an exhaustive evalua-
tion of our synthetic application, across a range of settings
for the input and output parameters, as listed in table 3.

dim is straightforward. tsize is measured in units of the
execution time of a single iteration of the synthetic kernel
function on a single CPU core. The data structure for each
element in our synthetic application consists of two int vari-



Parameter Range

dim 500 to 3100
tsize 10 to 12000
dsize 1, 3, 5
cpu-tile 1, 2, 4, 8, 10
band -1 to 2*dim-1
gpu-count 0, 1, 2
halo -1 to 0.5*(length of first offloaded diagonal)
gpu-tile 1, 4, 8, 11, 16, 21, 25

Table 3: Parameter Ranges

ables and a varying number of floats, controlled by dsize. For
example, dsize=5 means size of each element is 8+5∗8=48
bytes and so on.

Values of parameters like dim, tsize, band, halo are spaced
irregularly to avoid any cyclic pattern and incorporate a
degree of randomness as later the best performing values
are used in training our learning models.

To simplify modelling, we have overloaded the band and
halo parameters to encode gpu-count. Thus, since a band of
n means that 2n + 1 diagonals in total are assigned to the
GPU, a band of -1 means that the GPU is not to be used.
Larger band values mean that at least one GPU is used,
with a non-negative halo size meaning that the gpu-count is
2.

To enable us to explore the parameter space within a rea-
sonable time, we set a threshold limit of 90 seconds on the
runtime rtime for any execution. This has no impact on
our tuning since any point that exceeds this threshold limit
is already a very bad configuration which would not be se-
lected as a training example. We removed the threshold in
collecting points for our serial baseline in order to correctly
compute performance improvement.

3.1.2 Autotuning Strategies
We used decision trees to derive our learning model, using

training data drawn from the synthetic application. Train-
ing sets are created by subsetting the exhaustive search data
as follows: firstly a subset of the problem instances (i.e., by
dim, tsize and dsize) are selected by regular sampling; then
the best five performance points for these instances (by tun-
able parameter values) are added to the training set. The
intuition is that these should be representative of the good
decisions we wish to embed in our models. Initial evalua-
tion is done through cross-validation, meaning evaluation is
conducted on instances of synthetic application which were
omitted from the training set at the first step, to avoid over-
fitting. We explored different configurations of the learning
model to obtain test results that were at least 90% accurate.
This model was then applied to the real applications. This
procedure is repeated independently for each system, in line
with a scenario which would see the software trained “in the
factory”.

During training, we first build a binary SVM based pre-
dictor to decide whether or not to exploit parallelism. For
those cases in which parallelism is predicted to be beneficial
we then apply and evaluate two machine learning heuristics,
based on M5P Decision Tree and REP Tree [9]. Previous
work [3] found simple Linear Regression models lacking, and
upon exploring different learning models we found the deci-
sion trees to be most accurate in predicting optimal values

for our tunable parameters.

3.2 Evaluation Phase
We evaluated the performance of our learned model on two

real world wavefront applications. These two applications
are summarized below.

3.2.1 Evaluation Application Suite
Nash Equilibrium [15] : A game-theoretic problem in
economics, characterized by small instances but a very com-
putationally demanding kernel. The internal granularity pa-
rameter controls the iteration count of a nested loop.
Biological Sequence Comparison [2] : A string align-
ment problem from Bioinformatics, characterized by very
large instances and very fine-grained kernels, varying with
detailed comparisons made.

The input parameter values of these real world applica-
tions map to our synthetic scale as follows: one iteration of
Nash corresponds to a tsize=750 with data granularity of
dsize=4, while the Biological Sequence Comparison applica-
tion has tsize=0.5 and dsize=0.

3.3 Platforms
Our three experimental systems are described in a table 4.

‘HT’ stands for hyper-threaded CPU cores and ‘CU’ refers
to the GPU compute units.

SystemFreq
(Mhz)

Cores
(HT)

Mem
(GB)

GPU Freq
(Mhz)

CU Mem
(GB)

i3-
540

1200 4 4 GTX
480

1401 15 1.6

i7-
2600K

1600 8 8 4x(GTX
590)

1215 16 1.6

i7-
3820

3601 8 16 Tesla
C2070,
C2075

1147 14 6.4

Table 4: Experimental Systems

We measure runtime of the whole program execution using
wall clock timers in the host program, averaging across three
runs (which exhibited low variance of less than .01).

4. RESULTS AND ANALYSIS
In section 4.1 we investigate the characteristics of the

search space created by our synthetic training application,
and explore the resulting model. In section 4.2 we evaluate
the model on real world applications.

4.1 Training : Exhaustive Search Results
We now present the results of our exhaustive search space

exploration of the synthetic application across all three sys-
tems.

4.1.1 Optimal performance points
Figure 5 presents a set of four heatmaps for the two mul-

tiple GPU systems and two heatmaps for the single GPU
system, with all maps having tsize and dim as axes, and plot-
ting the values of band and halo (for multi GPU systems)
that result in the fastest execution time. The upper half
heat maps correspond to dsize=1 (element size=16 bytes)
and lower half with dsize=5 (element size=48 bytes). From



Figure 5: Heatmaps illustrate the band and halo values at the best performing points from our exhaustive
search across three systems and element size of 16 bytes (dsize=1; 1 float and 2 ints) and 48 bytes (dsize=5;
5 floats and 2 ints). The i3 system is a single GPU system, hence no halo heat map is shown. In all maps
the x-axis is tsize, indicating kernel task granularity and the y-axis is dim, indicating problem size.

the maps it is clear that computing on the GPU becomes
favourable (band>0) when task granularity exceeds a cer-
tain threshold and that this threshold varies depending on
the problem size, data size and the hardware. Consider the
case of dsize=1 (element size=16 bytes) for the i7 systems
with fast CPU cores, where the GPU is used from tsize≥500
and dim≥1900 onwards. This differs from the i3 system
with its slower CPU cores where GPU use becomes feasible
at a lower threshold of tsize ≥ 100 and dim≥1100. Apart
from the hardware affecting performance parameters, the
effect of dsize can be seen in all three systems, where the
48 bytes sized elements make GPU use costly as previously
discussed, leading to higher thresholds values of tsize≥2000
for dim≥1900 and tsize≥700 for dim≥1100 in the i7 and
i3 systems respectively. Note that halo sizes for the multi-
GPU systems are higher when tsize values are lower owing
to the trade-off between redundant computation cost and
lesser communication cost, as discussed in 2.1.

We conclude the heatmap observations by noting that
GPU tiling was not beneficial in our search space. This was
because tiled GPU performed better than the untiled GPU
implementation in cases where the communication costs dom-
inated over computation costs, tsize < 50. However in these
situations, the CPU only parallel implementation dominated
over any GPU based implementation due to the additional
overhead incurred from starting the GPU.

4.1.2 Comparison with simple schemes
Next we investigate the quality of these heatmap points,

by comparing the average speed-up obtained from using
these optimal points against the three simple schemes of
carrying out computation a) serially in the CPU, b) in par-
allel across all CPU cores with no GPU phase and c) entirely
in the GPU (figure 6).

Figure 6: Bars illustrate the speedup of the heat-
map points from figure 5 over serial, parallel CPU
and single GPU baselines.
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Figure 7: Average case comparison for the Synthetic Application. The x-axis is dim-tsize, indicating groups
of problem sizes whose kernel task granularity varies from 10 to 12K and the y-axis is rtime, indicating actual
runtime. Best is the best exhaustive rtime (ber), AVG is the average rtime from all configurations, S.D. is
the standard deviation from average. dsize refers to the number of floats in our synthetic data structure
containing 2 int variables. Total element size = 16 bytes (dsize=1; 1 float and 2 ints) and 48 bytes (dsize=5;
5 floats and 2 ints)

We note that in case of the i7 systems, on average, doing
everything on the GPU, is worse than doing everything on
the CPU. This is because the fast CPU outperforms the
GPU by a large margin for low task granularity points (up
to 10x for tsize≤100, dim ≤ 1100 ).

4.1.3 Average case comparison
The next comparison evaluates optimal heatmap points

against average behaviour. This is seen in detail in figure
7, which representing the best exhaustive runtime (abbre-
viated to ber) and the runtime (rtime) averaged across all
possible combinations of tunable parameters. The figure in-
cludes corresponding standard deviations. The x-axis shows
groups of dim-tsize with dim varying 500 to 2700 with each
dim grouping tsize varying from 10 to 12000. The y-axis
is the rtime in seconds. Both halves show the performance
across all three systems when element size=16 bytes and 48
bytes respectively. For dsize=1 (element size=16 bytes), the
ber is 1.5-2 times faster than the average. The standard de-
viation steadily increases from dim=500 to dim=1900 due
to the widening gap between the best performing and worst

performing points. At dim=2700 there is a sharp drop as
the rtime values exceeded our 90 second threshold. These
points were excluded from the average. In case of dsize=5
(element size=48 bytes), the gap between ber and average
rtime for dim=2700 at tsize=8K,10K and 12K narrows down
to being just 20%. With higher dsize, the GPU overheads
become larger and more points get excluded for exceeding
the threshold.

4.1.4 Sensitivity analysis
We now explore how sensitive the best points are to changes

in parameter values. Higher sensitivity would indicate that
finding these points is challenging, whereas low sensitivity
would indicate that simple random methods might suffice.
Owing to space limitations we restrict our discussion of the
exact distribution of points to two samples of dim=700 and
dim=2700 belonging to the i7-2600K system. Figure 8 shows
violin plots (a combination of box-plots and kernel densi-
ties) for these examples. We picked these two samples for
dsize={1,5} as they are close to the boundary cases in our
search space and they conclusively highlight how difference



Figure 8: Violin plots showing dispersion of all configurations. The best points are at the base and the white
spots are the medians. The x-axis is tsize, indicating kernel task granularity and the y-axis is rtime, indicating
actual execution time.

in problem size and data granularity (and corresponding
variation in kernel task granularity within them) impacts
the search space. For dim=700 we note that most of the
points in tsize=100 to 1K are dispersed around the median
value (represented as the white dot) with the best and worst
points at the extreme ends. This is due to the best configura-
tion in these cases being all CPU (see the heatmap in figure
5 showing band=-1 for i7-2600K where dim=700,tsize≤2K).
In that case the tunable parameters are only cpu-tile and
dsize resulting in configurations numbering in tens instead
of thousands. Contrast this with tsize≥2K and for all points
in dim=2700 where there are many points less than the me-
dian value, as seen from the flat base of each violin. These
cases correspond to various combinations of the tunable pa-
rameters band, halo and gpu-tile in addition to cpu-tile. We
also observe that in case of dim=2700, dsize=5 variations
in the former three parameters do not affect performance as
much as for dim=700. This is also confirmed by the lower
gap between average rtime and ber (see figure 7). However
selecting the worst points in these cases, such as computing
on the CPU only with band=-1 when dim=2700, dsize=1
and tsize≥4K, is quite costly (up to 8 times slower). The
worst case in these cases are the best points for dim=700,
tsize≤2K. Thus, while variation in tunable parameter values
from the best values within a subset of input configurations
may not affect performance, it can affect performance in
other subsets.

We note that the best points in some subsets were the
worst ones in others and vice versa, meaning that any at-
tempt to hand code heuristics for each case quickly becomes
impractical. The exhaustive search results vindicate our
choice to pursue auto-tuning strategies based on machine
learning.

4.1.5 The learned model
A fragment of the learned model which predicts the opti-

mum halo values for the i7-2600K system is shown in figure
9. The regression equation (LM1) shows that halo depends
on other tunable parameters like band and cpu-tile. This
agrees with our intuition as halo values are a measure of

band<=160

LM1 tsize<=6000

dim<=2300
...

tsize<=1500

LM2 band<=670

LM3 tsize<=3000

band<=1440LM4

...

LM7dsize<=4

LM5 LM6

LM1 : 
halo = 0 * tsize – 0.1598 * dsize 

+ 0.0546 * cpu-tile + 0.003 * band
– 0.381

 

TRUE FALSE

Figure 9: i7-2600K system : The M5 pruned model
tree for predicting halo values with one linear model
(out of 22) shown . As seen, halo depends on band
and cpu-tile values, apart from the input parameters
of task granularity and data granularity.

the extent of overlap among partitioned diagonals offloaded
onto GPUs. Hence, halo values depend on band values. cpu-
tile values were predicted using input parameters only (dim,
tsize and dsize). This was because on removing other tun-
able parameters from the regression equations that predicted
cpu-tile values, accuracy of prediction increased. This also
makes intuitive sense since an all CPU configuration has cpu
tiling as its only tunable parameter, so other tunable pa-
rameters are not needed. band values depended on gpu-tile
values in addition to input parameters. From our exhaustive



search we found gpu-tile values corresponded to either 1 or 0
(meaning a GPU was not employed), so it was a binary deci-
sion that was accurately predicted using REP Tree. cpu-tile
and band values, like halo values, were predicted using the
M5 pruned tree model.

Figure 10: Speedup over sequential baseline from
auto-tuning is within 5% of exhaustive search.

4.2 Evaluation : Autotuning Results
For the fine grained Smith-Waterman string compare ap-

plication autotuning was trivial as the band prediction were
100% accurate, i.e. do everything on the CPU. Our learn-
ing model had predicted band=-1 for all tsize<100, across
our search space of dim≤3100. Thus in the context of our
search space only the predicted cpu-tile values differed and
selecting the best points was trivial.

A summary of our auto-tuner’s performance for the Nash
application is shown in figure 10. This figure describes for
each system, the average optimal speed-up against a sequen-
tial baseline found during exhaustive search of Nash, and the
speed-up obtained by our auto-tuner.

The super-optimal performance in the case of the i3-540 is
explained by the fact that our regression model based tuner
is free to select parameter values which lie outside the set
of cases explored in the (necessarily finite) full search. The
better quality predictions for the i3-540 can be explained
by considering a) it is a single GPU system with only two
tunable parameters band and cpu-tile, i.e. less parameter
values to predict as compared to the multi-GPU systems
and b) its four CPU cores are slow relative to its GPU,
meaning most of the data is often offloaded onto the GPU,
easing prediction as compared to the i7 systems with fast
CPU cores.

We conclude this section with a detailed visualization of
how our auto-tuning fares against the best exhaustive run-
time or ‘ber’ (figure 11). The rtime after autotuning is
slightly lower than the ber for the i3-540 at many points
(as discussed above), while it is slightly higher for the i7
systems as prediction is harder.

5. RELATED WORK
CO2P3S [4] is a wavefront framework that generates par-

allel programs from user supplied methods and data. How-
ever, it is restricted to shared memory architectures and does
not employ any optimization techniques for any combination
of its application dependent properties. The wavefront ab-

Figure 11: The bars represent runtime of optimal
points found from exhaustive search and the line
represents runtime from auto-tuning. The x-axis is
dim-tsize, indicating groups of problem sizes whose
task size varies from 10 to 12000 and y-axis is run-
time.

straction in [15] targets multicore and distributed systems.
However, its tunable parameters are specific to distributed
systems. It also employs processes instead of threads as
they are more adaptable to distributed systems but over-
head from processes can impact performance.

Stencils have similar issues, but a different dependency
pattern to wavefront. Autotuning for the stencil pattern
has been widely investigated (e.g. [10, 14, 16]). A multi-
GPU framework to handle stencils is covered in [18]. A key
difference with our implementation is the absence of depen-
dence between elements in a stencil pattern, which means
halo swapping is less frequent for stencils distributed over
multiple GPUs than for wavefronts. Dynamic autotuning of
multi-GPU/multicore CPU systems can also be based on an-
alytical models [17]. However the problem class considered
doesn’t belong to the dynamic programming class of prob-
lems and auto-tuning is done without resorting to machine
learning. Among dynamic auto tuning frameworks, the Ac-
tive Harmony framework [8] uses the greedy or Nelder Mead
algorithm to search a high dimensional space and the tuning
results are then treated as a new experience to update the



data characteristics database for future reference. Perfor-
mance models for wavefront applications on GPU-enhanced
HPC systems are presented in [7]. Machine learning tech-
niques have been successfully employed to efficiently explore
the CPU-GPU optimization space in [11], though here the
decision tree models were used to select either multi-core
CPU or GPU implementation and not a hybrid CPU +
multi-GPU setup.

6. CONCLUSIONS AND FUTURE WORK
We have presented a framework that successfully encap-

sulates decomposition and distribution of wavefront com-
putations across CPU cores and GPUs while automatically
selecting high quality configurations with respect to problem
size, data size and kernel task granularity. We demonstrated
that well chosen settings for the number of diagonals to be
offloaded (band) and length of overlap of computation be-
tween GPUs (halo) can produce significant improvements
in the performance, while tiling inside the GPUs (gpu-tile)
did not affect performance within our simple search space.
Correspondingly, poorly chosen settings resulted in perfor-
mance which was far from optimal. Our decision tree based
auto-tuners were modelled on training data from instances
of a synthetic application. This successfully predicted the
optimal values for various tunable parameters for the fine
grained Biological Sequence Comparison and coarse grained
Nash wavefront applications, across three different systems,
finding an average of 98% of the performance achieved by an
exhaustive search. In future we plan to extend our frame-
work to incorporate other dynamic programming problems,
beyond simple wavefronts, such as the 0/1 knapsack prob-
lem [19]. We aim to enhance our tiled multi-GPU strategy
by incorporating more than two GPUs and plan to upgrade
our offline auto-tuner to tune at runtime.
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[2] C. Alves, E. Cáceres, F. Dehne, and S. Song. A
parallel wavefront algorithm for efficient biological
sequence comparison. ICCSA’03, pages 249–258, 2003,
Springer-Verlag.

[3] S. Mohanty and M. Cole. Autotuning wavefront
abstractions for heterogeneous architectures. In Third
Workshop on Applications for Multi-Core
Architectures, 2012, WAMCA ’03 pages 42–47, New
York, NY, USA, 2012. IEEE.

[4] J. Anvik, S. Macdonald, D. Szafron, J. Schaeffer,
S. Bromling, and K. Tan. Generating parallel
programs from the wavefront design pattern. In 7th
International Workshop on High-Level Parallel
Programming Models and Supportive Environments,
pages 1–8. Society Press, 2002.

[5] K. Asanovic, R. Bodik, J. Demmel, T. Keaveny,
K. Keutzer, J. Kubiatowicz, N. Morgan, D. Patterson,
K. Sen, J. Wawrzynek, D. Wessel, and K. Yelick. A
view of the parallel computing landscape. CACM,
52(10):56–67, 2009.

[6] The Wavefront pattern.
www.cs.uiuc.edu/homes/snir/PPP/

patterns/wavefront.pdf.

[7] S. D. Hammond, G. R. Mudalige, J. A. Smith, and
S. A. Jarvis. Performance prediction and procurement
in practice: Assessing the suitability of commodity
cluster components for wavefront codes. IET
SOFTW., 3(6):509–521, 2009.

[8] J. K. Hollingsworth and P. J. Keleher. Prediction and
adaptation in active harmony. Cluster Computing,
2:195–205, July 1999.

[9] E. F. Ian H. Witten. Data Mining: Practical Machine
Learning Tools and Techniques. Morgan Kaufmann,
2005.

[10] S. Kamil, C. Chan, S. Williams, L. Oliker, J. Shalf,
M. Howison, and E. W. Bethel. A generalized
framework for auto-tuning stencil computations. In
Proceedings of the Cray User Group Conference, 2009.

[11] D. Grewe, Z. Wang, and M. O’Boyle. Portable
Mapping of Data Parallel Programs to OpenCL for
Heterogeneous Systems. In Proceedings of the 11th
International Symposium on Code Generation and
Optimization, CGO’13, 2013.

[12] M. McCool, J. Reinders, and A. Robison. Structured
Parallel Programming: Patterns for Efficient
Computation. Morgan Kaufmann, 2012.

[13] G. Rivera and C.-W. Tseng. Tiling optimizations for
3d scientific computations. In 2000 ACM/IEEE
conference on Supercomputing , Supercomputing ’00,
Washington, DC, USA, 2000. IEEE Computer Society.

[14] M. Christen, O. Schenk and H. Burkhart. PATUS: A
Code Generation and Autotuning Framework for
Parallel Iterative Stencil Computations on Modern
Microarchitectures, Proceedings of IPDPS 2011, pages
676-687, IEEE Press, 2011.

[15] L. Yu, C. Moretti, A. Thrasher, S. Emrich, K. Judd,
and D. Thain. Harnessing parallelism in multicore
clusters with the all-pairs, wavefront, and makeflow
abstractions. Cluster Computing, 13:243–256,
September 2010.

[16] Y. Zhang and F. Müller. Auto-generation and
auto-tuning of 3D stencil codes on GPU clusters.
Proceedings of the Tenth International Symposium on
Code Generation and Optimization, pages 155-164,
ACM Press, 2012.

[17] M. Boratto, P. Alonso, D. Giménez, M. Barreto, and
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