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Analytical model for the composite effect of coupled
beams with discrete shear connectors

Tianxin Zheng *, Yong Lu " and Asif Usmani 2

! Department of Civil Engineering, University of Nottingham Ningbo, Ningbo, China
? Institute for Infrastructure and Environment, School of Engineering, The University of Edinburgh, The
King’s Buildings, Edinburgh EH9 3JL, UK

Abstract. Two-layer coupled or composite beams with discstiear connectors of finite dimensions
are commonly encountered in pre-fabricated contstmuc This paper presents the development of
simplified closed-form solutions for such type afupled beams for practical applications. A new
coupled beam element is proposed to represent ribenunected segments in the beam. General
solutions are then developed by an inductive methased on the results from the finite element
analysis. A modification is subsequently considacedccount for the effect of local deformationer F
typical cases where the local deformation is prilpaoncerned about its distribution over the degith
the coupled beam, empirical modification factors @eveloped based on parametric calculations using
finite element models. The developed analyticalhmétfor the coupled beams in question is simple,
sufficiently accurate, and suitable for quick c#dtion in engineering practice.

Keywords: Prefabricationmodular structuressoupled beam; discrete shear connection; composite
effect; simplified solution.

1. Introduction

Pre-fabricated steel structures are increasingdd us modern building construction. In such
structures, the occurrence of parallel beams siduame above another with a certain gap
in-between are often encountered as a result a@naddsg pre-fabricated building units. Fig. 1
shows a typical corner-supported module structueavéon 2007). Such modular structures are
often designed to provide fully open sides and doack transferred to the corner columns. The
modules are transported and assembled onsitettsaichdjacent modules are connected by weld or
bolts near the top and the bottom of the cornanrook, creating a situation with parallel-running
beams separated by a sizeable gap.

Coupling such two-layer beams to enable effectwapmosite action is obviously beneficial in
terms of structural efficiency, saving of structuraterials, and increasing the clear internal spac
of the building. Clearly the best composite perfance would be achieved by rigidly bonding the
two beams continuously over the entire beam lengibhwever, this is inefficient and labour
intensive for on-site assembling of the buildingvbuld be more practical to connect the beams in a
discrete manner using shear connectors of apptemhimensions. This produces a special type of
two-layer coupled beam with discrete shear conaecegions of finite dimensions, both in length
and depth.

Conventional composite beams have been widely edfudii the last few decades, arguably
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starting from the well-known Newmark model (NewmatR51) which was formulated in
accordance with the Euler beam theory. The modsltvan extended to Timoshenko beam with
the consideration of the shear effect. The defotenabear connection between laminated layers
was firstly considered as continuous, and subselyueiscrete shear connections were also
involved. Differing from these configurations, howee, the present two-layer coupled beam
problem involves a sizable gap between the tworsags well as shear connectors of a finite
length, which cannot be simply treated as poinhegtions as assumed in some existing two-layer
beam models with discrete shear connection (Ngeyexh 2011, Nguyen et al. 2010, Nie and Cai
2003). In this respect, the present two-layer cetifdeam is called herein as “coupled beam with
discrete shear connection regions”, or CBDSCR.
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(a) A typical primary steel frame b) Twargllel steel beams separated by a gap
Fig. 1 Corner supported module and connectionr(afig'son (2007))

In this paper, an analytical method is developedHhe evaluation of the composite effect and
calculation of the stiffness and deflection in CBIFKSbeams. The method is firstly formulated on
the basis of simplified plane-section assumptidesding to a simplified solution for the
estimation of the stiffness, as well as the composifect, of a CBDSCR. The above basic
formulation involves only the rigidityH]) of the two beam layers and thus is applicablebfuih
single- and two-material scenarios. The margin soarces of potential errors are subsequently
investigated with the aid of refined finite elemembdels. A modification scheme is then
introduced to account for the effect of local defations around the connection regions; and for
single-material coupled beams, detailed modificatiactors are proposed based on numerical
parametric calculations using finite element modd@lse method proposed is simple and yet
effective and thus is suitable for quick calculatidn practice. Apart from the application in the
module building construction, the method can als@pplied in cases where stiffer and stronger
beams may need to be created by coupling two smatiendard section beams in an efficient
manner.

2. Background Theory

Early study of composite beams with flexible sheamnection dated back from the



well-known Newmark’'s model (Newmark 1951) for a caete slab and steel beam composite.
Two Euler-Bernoulli beams were used to represemntdp slab and the bottom beam, respectively.
The model was extended to using Timoshenko beanelmimdwhich the shear deformation of the
slab and the beam is taken into account simultasigaoiBerczyiski and Wrdblewski 2005).
However, considering the relatively small shealodeation of the concrete slab, a hybrid model
(Ranzi and Zona 2007) was subsequently proposed that the steel beam is represented by
Timoshenko beam while Euler-Bernoulli beam is emgtbfor the concrete slab.

The “slip”, or in general the relative axial (lohgdinal) displacement between the top and
bottom beams due to the deformation of the sheanexdion plays an important role in
determining the composite stiffness. The shear ection in Newmark's model allows
longitudinal deformation but prevents vertical seian between the beams. In the hybrid model
used by Ranzi and Zona (2007), the relative sligeisved from a displacement field considering
the axial displacement, rotation and shear defaomafhe principle of virtual work is utilized to
obtain the weak form of the balance conditions. Tih&egral-type linear viscous-elastic
constitutive model is used in the concrete slabjentme steel beam, reinforced bars and shear
connectors are considered as linear elastic. Tollgm is then solved numerically by the finite
element method due to the complexity of the goverrsystem of differential equations. Such a
solution approach is however difficult to apply farquick estimation of the stiffness of the
composite beam in a design analysis situation. Retred. (2006) extended the displacement field
formulation slightly to involve the separation,.irelative transverse displacement between the
beams. A bi-linear constitutive law was used tousate the contact behaviour between the beams,
with a large normal stiffness being used for peat&n penalty.

It is noted that the shear connection in the altarenated beam models is continuous, which
may be applicable to welding or gluing (by ideahesive) throughout the length, or when the
spacing between connectors, such as shear stul$s,rivaets, etc, is small. For composite beams
with large spacing (sparse) connectors, a disaetmection model is necessary. Nguyen et al.
(2011) simulated the sparse shear connector byeotrated spring elements along the axial
direction, while transverse separation is prevenide spring element is a 4-degree of freedom
(DOF) element. The unconnected beam segments adellex by a 10-DOF element, which
allows interaction between the two layers, suchttmanormal force and friction can be taken into
account. The plane cross-section assumption iseapph both layers, which however need not be
normal to the neutral axis of the composite. Ttseilte show that the discrete connection model is
more accurate comparing to continuous model ifspaonnection is involved.

A number of other studies have also been conduitethe past dealing with extended
properties of composite beams, including time-ddpeh properties of the concrete slab in a
discrete connection model (Nguyen et al. 2010, éd+d et al. 2011), stiffness reduction due to
cracking concrete slab in the hogging moment re@iguyen et al. 2009), vertical uplifting from
intermediate supports (Ranzi et al. 2010), muijtelad beams (Gianluca 2008), geometric and
material nonlinearities (Liang et al. 2004), anfined connector behaviour between the beams
(Liang et al. 2004, Razaqpur and Nofal 1989, Salaail. 1998, Wright 1990).

In spite of the availability of a variety of comtesbeam models, the essential features of the
present CBDSCR beams cannot be properly represestad the existing models. The discrete
shear connection regions with sizable dimensionis imothe depth (gap) and the length can not be
simplified either as continuous shear connectiomliscrete connection with point connectors as
studied before. The formulation of sophisticated &dels, as presented in some previous
publications (Berczyski and Wroblewski 2005, Ranzi and Zona 2007),aseasy to implement



for a practical design analysis. Therefore develmmof a sufficiently accurate but also
easy-to-apply solution for the analysis of CBDS@&Rdimes necessary.

3. Basic Formulation of CBDSCR
3.1 Basic Assumptions

The main features of a CBDSCR beam are schematstadiwn in Fig. 2. The gap between the
two layers of the beam may vary, and the conneatgpon is not continuous. Furthermore, the
shear connectors can be of significant length. Eguently, the effect of the dimensions of the
connection regions, as well as their stiffnessughbe appropriately considered in the analysis of
the beam.
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Fig. 2 Atypical CBDSCR

Three basic assumptions are made firstly in omielevelop a basic theoretical model:

1) No relative slip and separation occurs within th@nection regions — this assumption
will be compensated by an empirical correctiondatd account for the influences of the shear
deformation in the connectors as well as local mhe&tion in the vicinity of these regions,
which will be presented in the next section;

2) The top and bottom beams and the connection regiande described by three Euler
beams, respectively;

3) The top and bottom beams and the connection rediane the same rotation and
deflection at their junctions. The cross-sectiothef junction between a connection region and
an unconnected beam segment remains plane durindinge Thus, the compatibility
relationship, as shown in Fig. 3, may be written as

Vi =Vg =V (1a)
r =rg =I¢ (1b)
W =We Iy (1c)
W =W + Tcdg (1d)

where w is the axial displacement of the neutral axialtteé beam,v is the transverse
deflection, d is the distance between the neutral axis of theposite section to that of the



top/bottom beam, and subscriptC, B denotes the top, connection and bottom beam, cegely.
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Fig. 3 Compatibility relations at the junction

As shown in Fig. 2, the reference axis for the ¢edipeam element is at the neutral axis of the
unconnected segment and this is also used fordheected region. It should be noted that in
reality the neutral axes of the connected and umected regions are not actually co-linear. This
may cause a difference in the axial deformatiomben the connected and unconnected regions at
the junction, but since the rotation and deflectiave been assumed to maintain the same at the
junction, the derived flexural stiffness (rigidityf the coupled beam would not be affected
significantly by the simplification in the referemaxis. The influence becomes further negligible
by the fact that the depth of the shear connectarsually much smaller than the depths of the top
and bottom beams in practice, therefore the twdrakaxes are effectively quite close to each
other.

3.2 Stiffness Matrix of Unconnected Beam Segments

According to the compatibility relations describadeq. (1), the unconnected two-layer beam
segments (see Fig. 2b) can be simplified into glesuelement whose stiffness can be derived
from the basic beam element formulation, as follows

The general constitutive equation of the origimad-beam segments may be written as:

Ké=F (2)

in which the displacement vector has 12 elementdding 3 DOFs (transverse displacement,

axial displacement and rotation) at each of the émas of the top and bottom beam:

_ T
5‘{Wr1 Vin frn Wy Voo Iy Wep Ve fer Wz Vg rsz} ()
The stiffness matrix of the coupled element is @spnted by the assembly of the element
stiffness matrix of the two beams,

Ky O
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EA 0 o -EA 0
Le Le
12E), 6E,, 12E), 6E,,
0 L L2 0 - L’ L’
0 GEJ.  E)  , _GEL
_EA 0 o EA 0 0
Le Le
12E, 6E,, 1B, 6E,,
o - L L2 0 LS L
0 6EJ. 2E) _6EL 4E
L Le Le Le Le i (5)

The subscripe stands forT or B for the top and bottom beam, respectively. Thestamt
equations from the compatibility relationship in.Et) are expressed by:

Wy = Wey — 0l (6a)
Vi1 = Ve (6b)
Ity =Tex (6¢)
Wrp = We, — el (6d)
Vra2 =Ve2 (6e)
r2 =Tc2 (69)
Wgy = Wey +dgley (69)
Va1 = Ve (6h)
g1 = fca (61)

Wg, = Wep +dgle, (6)

VB2 = Ve2 (6k)

g2 = Ic2 (6)

With these coupling equations, the 12-DOF displaa@nwector reduces to a 6-DOF vector, as
illustrated in Fig. 4,

& :{Wc1 Ver Ter Weo Vo2 rcz}T (7)
The corresponding constitutive relations for thB®@F element is
K's =F (8a)
8=T0 (8Db)
F=T'F (8c)
K'=T,/KT, (8d)

in which T, is the transform matrix determined by the coupagations:
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Fig. 4 A new combined element for a two-layer umagted beam segment

For generality the Young's modulus of the top anttdm beams is assumed to BeandEg,
respectively, thus allowing for applications wheliferent materials are used. Subsequently, the
stiffness matrix of the combined element is reduoeal 6-DOF stiffness matrix as:

[ EA+EA 0 EAd— B Ad, _EA+EA o E Ad - EsAd,
L L L L
o 12(E, 1, +Egl,) 6(E I +Eglg) 0 C12E 1, +Eglg) 6(E I, +Eglg)
3 2 3 LZ
E; Ads — Er Ady 6(E7|T+E5|a) ETATdT2+EEABdBZ+4(ETIT+EEIE) E Ad - EAd, 76(ETIT+EEIE) _E’TATdTZ_EBAEdBZZ(ETIT+EBIB)
K = L L2 L L L2 L
_EA+EA 0 E A d - B Al ErA +ExA o EsAds— B Ad,
L L L L
O 712(ETIT+EEIB) 76(ETIT+EBIB) 0 12(ETIT+EBIB) 76(ETIT+EBIB)
3 2 3 LZ
EAG-EAd, 6l +Esls) -EAd’-EAdS +2E I +Eply) EAd-EAd _6El;+Eol) E A’ +EAdy’ +4E I +E,l,)
L L2 L L L2 L

(10)



Since d; and dg is the distance between the neutral axis of tipe aond bottom beam,
respectively, to the neutral axis of the compos#etion, it has the following relation:

EgAgds = ErArdy (11)
Therefore, K™ in Eq. (10) is simplified into:

[ EA +EA 0 0 _EA+EA 0 0
L L
0 12(E 11 +Egls) 6(E; |1 +Egls) o _12Eql; +Egle) 6(E; |1 +Eglg)
L3 2 Lz L3 2 Lz 2
0 6(E'r|'r :Esls) E-Ad” + EsAdy +4(E'r|'r +EB|B) 0 _ 6(ETIT :Esls) - EAd” - EAds 2(ETI'r +EBIB)
K' = L L L L
_ EA +EA 0 0 EA+ EBAA 0 0
L L
0 _12(ETIT+EBIB) _B(ETIT +EBIB) 0 lZ(ETIT+EBIB) _G(ETIT+EBIB)
IS L2 L L2
O 6(ETIT +EBIB) — ETAdeZ_ EB%dBZ-'—Z(ETIT +EBIB) O _B(ETIT +EBIB) ETAde2+ EBABdBZ+4(ETIT +EBIB)
L L L2 L

(12a)

Elements inK " indicate that the coupled beam element can beidemesl as the summation
of the stiffness of the two individual beams plus additional (composite) stiffness term
A(El)/L=(E;Ad; > + EgAgds®)/L, with (EI) denoting an equivalent flexural rigidity<”
can be further written as:

00 O 00 O
00 O 00 O
* 0 o AED o _BED
K'=K;+Kg+ o o ('5 0 0 0'— (12b)
00 O 00 O
0 o0 _AED o AED
i L L

Any distributed load applied over an unconnectegirant is converted to point loads applied
at the ends of the coupled beam element, as pestéinelard procedure for a conventional beam
element.

3.3 Solution of Deflection Using the Coupled Beam Element

With the above formulated coupled beam elementtlier unconnected beam segments, a
CBDSCR beam can be modelled as a combination ofctlupled elements (for unconnected
segments) and the conventional beam elementsH&ircdnnection regions). Subsequently, it is
possible to derive a closed-form solution for a GEIR beam under a standard loading condition.
Details of the solutions will be given later in tBection 4. An example is shown in what follows.

Consider a simply-supported CBDSCR with 5 evenbtributed connection regions dividing
the beam into 4 segments (refer to Fig. 2a). Thegtke of each unconnected segment is thus
(L-9)/4, with L being the total length of the beam drttie length of a connection region. It is

noted that the depth of the shear connectors iallysnuch smaller than the depths of the top and
bottom beams, therefore the flexible rigidity obss-section in the connection region may be



approximated asE; A d;” + EgAgdg” + E;l; +Eglg . After assembling the stiffness matrix of the

overall beam with 5 conventional beam elementgterconnection regions and 4 coupled beam
elements for the unconnected beam segments, aytiaabsolution can be obtained. The solution
for the maximum deflection when the beam is subjktd a mid-span point loddis as follows:

FL3{16(ETIT+EB'B) ( ) (s +EBABd§)}

76E(ETIT +Egl B)(ETlT +Eglg + ETATde + EBABdtf)

(13a)

max —

If the length of the connection region of the CBIFS(S negligible, the solution reduces to:

5 FULB(E, Iy + Eql )+ (ErAdZ + EgAgd?)
" 763ET|T + Egl B)(ETIT +Eglg + Er Adr + EBABdb)

(13b)

4. Generalised Stiffness of CBDSCR and Parametric Analysis
4.1 Equivalent Sectional Rigidity and Derivation

The stiffness of a CBDSCR with a specific boundamydition, force and connection region
configurations can be obtained theoretically usingimilar procedure as described earlier in
Section 3.2. Consider the solution in Eq. (13), th@ximum deflectiond,,, of an equivalent

uniform beam with an equivalent flexural rigiditfEl)., subjected to a mid-span concentrated
force is calculated as:

3
5max :L (14)
48(El),
Substitute Eq. (13b)(El),, is obtained as
1 2 2
El)e = E;l; +Eglg + E;Ad; " + EgAgd 15a
= e v Eymay [Erte + Bl + B ” + EA?)  (159)
i +1
16  E;l; +Eglg
Let:
(El)o =Eqly +Eglg (15b)
(EDc =Eqly +Eglg + ErAdy” + EgAgdy” (15¢)
A(El) = El. - Ely = E;Ad;” + EgAgdy” (15d)

where (El)p is the summation of the flexural rigidity of thep and the bottom beams,

(El)¢ is the bending rigidity of the ideal compositeabe A(EI ) is the increase of the flexural
rigidity of section due to the ideal composite effdhus:
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(EDeq —m(a)c

16 (El)g

Eqg. (15e) may be written in a general form as:

_ 1 _
(EDeq _,B’ATI)H(EI)C =a(El)c
(EDo
1
AGED)
PlEn,

a=

(15e)

(151)

(159)

wherea is the coefficient of the composite effect of BBDSCR,S is a factor related to the

boundary condition, loading condition and numbethef segments of a CBDSCR.

For the example CBDSCR with 4 evenly divided segmand a negligible connection region
length, 5 =1/16. Conducting a similar analysis on CBDSCRthwlifferent boundary and loading
conditions and number of segmen(&l),,for a variety of CBDSCRs can be determined and the

results in terms of the coefficiepftare shown in Table 1. It can be observed thafabir 5 can

be expressed as a function of the number of thenmexted beam segmentsas follows:
a) For simply- supportedSS) beams under a mid-span concentrated |@dg:(

18:

IB:

ﬂ:

ﬁ:

1
— n =evennumber
n
4n—33 n=oddnumber
4n
b) For simply-supported beams under a uniformly disted load DL ):
iz n = evennumber
oan
2 _
an 2 3 n=oddnumber
on
c¢) For fixed-supportkS) beams under a mid-span concentrated load:
4
— n =evennumber
n
4n-3 n=oddnumber
n
d) For fixed-support beams under a uniformly distrialkoad:
4
— n =evennumber
n
2 _
4nn4 3 n=oddnumber

10

(16a)

(16b)

(16c)

(16d)



Eq. (16) indicate thgf reduces exponentially with the increasenolThe maximum difference
in the B values between the two loading patterns is ab84i ih simply supported beams, whereas
the difference is less significant in the fixedgsapg beams. The variation of the composite

coefficient a with n is dependent upofi as well as the specific sectional propertiealculated
from Eq. (159) increases with the increase.of

Table 15 values for a CBDSCR with evenly distributed unconnected segments, assuaninggligible

connection region length

Number of unconnected Bvaluesin (El),,
segments SSand CL | FSand CL [ SSand UDL | FSand UDL
1 1

2 2 1 < 1

3 1 1 11 11

12 3 13 27

4 1 1 ' L

16 4 20 4

5 17 17 97 97

50C 12t 312¢ 625

6 H 1 ES ;

36 9 45 9
. 25 25 193 193
1372 34z 1200¢ 2401

8 1 1 1 1

64 16 80 16
9 11 1 321 321
972 24z 3280¢ 6561

1 1 1 1

10 10C 25 12F 25

SS: simple-support, FS: fixed-support,
CL: concentrated loading at mid-span, UDL: umifty distributed loading

If the length of the connection region is consider€El),, in Table 1 is modified as shown in

Table 2. Correspondingly, the composite coefficientnay be expressed similarly as Eqg. (15g)

with the introduction of a factgr, as:
g=— L (17a)
——+1
By £l
where

for concentrated load (17b)
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3
y= [1— (n +1)| } (1—IJ for uniformly distributed load (17¢)

Table 2 qu of a CBDSCR witin evenly distributed unconnected segments, assunaingnegligible
connection region length

SSand CL FSand CL SSand UDL FSand UDL

IC lC IC IC

3 3 3 3
2t | 263 | 2phge | 2D
41, L lo L 51, L L Io L

I I le I

3 3 3 3
CRRET A[l-ﬂ] a | Ay, | Ay e,
121, L 3l, L 139, L 1 271, L 11

3 3
NN §| b | O (1_5ij
16, L 4,0 L 20,0 L

o | &6
|

(1]
L
IC Ic lC
3
1l (6l | 7Al [1_g|) 4| 9 [1 6|j 1021)+1 97 [1_g|j (1 102] ‘1
5001, L 125, L 31289, L 97L 625, L 97L

“Note: For coupled beam with two different mates;ialll “I” terms in the table are changed to “(El)”
e.9.l¢q to Elgg, I to (El)¢, and the same formulas apply.

4.2 Verification with Refined Finite Element Model

In order to verify the accuracy of the theoretisalution, a number of CBDSCR beams are
constructed and calculated using both the the@alesiclution and refined finite element models.
The beams are assumed to be made of steel withuag¥omodulus of 210 GPa and a Poisson’s
ratio of 0.3, and have the same overall length ®m5 The top and bottom beams are of
rectangular cross-section with a uniform width dfrf, and the depth of the bottom beam is fixed
at 100mm. Totally 12 CBDSCR beam scenarios aretagied for comparison, with variations in
the loading patterns, boundary conditions, numbeunzonnected segments, height of the gap,
length of the connection region, and the heighthef top beam, as summarised in Table 3. A
refined finite element model is employed to model CBDSCRs. Element PLANE42 in ANSYS
is used to construct the FE model. The mesh oFthenodel is made sufficiently fine such that at
least 6 plane elements are used over the heigetdi component beam, which proved to be
adequate after a mesh convergence check.

12



Table 3 List of CBDSCRs used in comparison

I h; g Bonding _
Beam n Loading
(mm) | (mm) | (mm) conditions
1 200 100 20 4 SS CL: 1000N at mid span
2 200 100 20 4 SS UDL: 1000N/m
3 200 100 20 4 FS CL: 1000N at mid span
4 200 100 20 4 FS UDL: 1000N/m
5 200 100 20 5 SS CL: 1000N at mid span
6 200 100 20 6 SS CL: 1000N at mid span
7 200 100 30 4 SS CL: 1000N at mid span
8 200 100 50 4 SS CL: 1000N at mid span
9 400 100 20 4 SS CL: 1000N at mid span
10 600 100 20 4 SS CL: 1000N at mid span
11 200 150 20 4 SS CL: 1000N at mid span
12 200 200 20 4 SS CL: 1000N at mid span

Table 4 Comparison of maximum deflections predictsithg the proposed beam model
with FE results

Eq. (15) Eq. (17)
Beam ;E model (without connection length) (with connection length)
max (MM) a Opax (MM) Error a Orax (MM) Error
1 0.164 0.79 0.178 8.1% 0.88 0.159 -3.1%
2 0.495 0.82 0.531 7.2% 0.90 0.483 -2.5%
3 0.059 0.48 0.073 22.9% 0.64 0.054 -8.3%
4 0.015 0.48 0.018 25.3% 0.65 0.013 -7.8%
5 0.152 0.85 0.164 7.7% 0.93 0.150 -1.2%
6 0.149 0.89 0.157 4.9% 0.96 0.146 -2.2%
7 0.148 0.76 0.161 8.9% 0.86 0.142 -3.9%
8 0.123 0.70 0.136 10.3% 0.82 0.116 -5.8%
9 0.151 0.79 0.178 17.4% 0.94 0.148 -2.1%
10 0.144 0.79 0.178 23.2% 0.98 0.142 -1.4%
11 0.088 0.82 0.092 4.6% 0.90 0.084 -4.6%
12 0.052 0.86 0.053 1.2% 0.92 0.049 -5.8%

Table 4 compares the mid-span deflections of thEBRSCRs calculated by Egs. (15) and (17)
and the results obtained using the refined plaemeht models. As the length of each connection
region in all the cases is substantial comparintpéototal depth of the composite beam, ignoring
the connection length (i.e. assuming point conpastiand using Eq. (15)) results in larger errors,
and in some cases the error is up to about 26%th®wther hand, with the consideration of the
connection length, i.e., using Eg. (17), the thgomé predictions match the FE results

satisfactorily and the maximum error is less thém 9

13



4.3 Factors Influencing the Composite Effect of CBDSCR

It can be generally understood that the compo#igeten a CBDSCR is affected by the following
main factors, i) the differential bending stiffndsgtween that of the full composite section and tha
of the uncoupled section, which effectively definke overall demand on the connectors and is
closely associated with the gap size between thetal bottom parts of the beam, ii) spacing or
the number of the shear connectors, iii) the lemftbach connector, and iv) the shear stiffness of
the connectors themselves. Herein we assume &isuffy large stiffness in the connectors. The
influences of the remaining factors can be evatlbtesed on the theoretical solution given in Egs.
(15) and (17). For simplicity, we shall first exameithe situation where the top and bottom parts of
the CBDSCR have identical section properties.

a) The differential flexural rigidityA(EI) /(El)

From Egs. (15) and (17) it can be understood thatstiffness of a CBDSCR, and hence the
composite coefficient, will decrease with the irage of the differential bending rigidity
A(El)/(El), . For the case of beam-1 described in Sectionwh2n the gap depth increases
from 0.01 m to 0.10 mA(EI)/(El), increases from 3.6 to 12.5. Fig. 5 shows a persist
decrease of the theoretical ; the FEA results agree reasonably well with treothtical solution
with slightly increasing discrepancy aA(El)/(El), increases. The discrepancy will be
discussed in the next section.
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Fig. 5 Effect of AEI /El, on a

b) Number of unconnected segments n

Increasing the number of the shear connectorstseisuan increase of the number of unconnected
segments, denoted hy, and is expected to enhance the overall compefieet, and hence
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increasing the composite ratio of a CBDSCR. Fig. 6 shows the variation efwith n in both
simply-support and fixed-support conditions. Theattetical curves agree reasonably well with the
FEA results. a increases and eventually approaches 1.0 with ttueease ofn. In the
simple-support caseg; increases from 0.58 in the 2-segment case to i6.82 3-segment and
0.94 in the 5-segment cases. In the fixed-suppases, where the two end supports serve as
connectors themselveg,increase from 0.25 in 2-segment case to 0.80drbthonnector case and
0.91 in the 7-segments case.
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Fig. 7 Effect of length ratitL of the connection region

0.16

¢) Relative length of the shear connection region

Similar to increasing the number of connectorgrgdr connector length) (is expected to lead to
a better coupling effect between the top and bottmams. Eqg. (17) shows that increasing
reducesy, and as a resultr increases. Fig. 7 shows the influencing trendl 6£ on the
composite effect in a simply supported CBSDCR lith number of shear connecton ifeing 4
and 6, respectively. It can observed that for tieen = 4, with | /L increasing from 0.01 to 0.19,
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a increases from 0.82 to 1.0; for the case 6, with |/L increasing from 0.01 to 0.14y
increases from 0.92 to 1.0.

5. Modification to Basic Formulation Considering Local Deformation
5.1 Local Deformation and Stress Distribution around Connection Regions

The basic formulation for CBDSCR presented above dssumed that the cross-section at the
junction between the connectors and the unconnegigohents remain plane during bending. This
assumption is apparently a source of errors irptedicted beam responses. To illustrate this, we
create a modified FE model in which rigid beam edata are inserted vertically at all junction
sections, as shown in Fig. 8(a), such that thestogs are artificially constrained to deform as
plane sections. Fig. 8(b) shows a comparison ofékalting composite ratia between the two
FE models as well as that predicted using the daesien formulation. It can be observed that the
results from the modified FE model match closelg #implified beam formulation, and both
results exhibit similar overestimation of the comip® effect as compared with the original FE
model. This indicates that the plane cross-sea&sumption at the junctions is indeed the major
source of the discrepancy in the predicted beaporese with the proposed beam formulation.

Rigid beams on the two sides connection region

(a) FE model with artificial plane section (rigittments) inserted at the junction interfaces
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Fig. 8 Evaluation of effect of the plane sectioawusption on prediction accuracy
The deviation from the plane section assumption rbay attributed to the following

mechanisms of local deformation around the conoectgions:
1) Local deformation within the main beam sectionthe vicinity of the shear connectors,
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i.e., the Saint-Venant’s effect, as can be obseinaed the stress distribution from a FE analysis
shown in Fig. 9(a);

2) The deformation within the connectors, as degicin Fig. 9(b), causing a relative
displacement between the top and bottom of a cdonemr “shear slide” in a generic sense.
The effect due to the shear slide of the conneatotdd be significant in a CBDSCR with
slender connectors (i.e. largg/l ratio) and when the number of connectors is small

(b) XY shear stress dlstrlbunon near the conneatagion

Fig. 9 Stress concentration around a connectioiomeg
5.2 Modification to the Basic Beam Formulation

To take into account the above mentioned deviatfoo® the idealised beam formulation, a
modification is considered herein. If the relatidesplacement mainly comes from the shear
deformation of the connectors, i.e., the “sheades|i a theoretical solution of the additional
deflection in the beam due to such an effect has lokerived previously for a simply supported
composite beam (Nie and Cai 2003), as follows:

a) Concentrated load at mid span:

PLZABATd (15a)
a
4hKr{ABArd +(Ag t A )(lg +17)]
b) Uniformly distributed load:
A, A d
i= ACAAd, a5

8K AgALd.” + (A + A )(Ig +17)]

where d. =d; +dg, h=h; +hg.Kis the shear stiffness of the connector.
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2(1+v)
Fig. 10 Calculation of the basic shear stiffnel€s; .,

In a CBDSCR, the overall effect of the local defatimn causes a further increase of the beam
deflection, and hence a further reduction of thanbestiffness. In this respect, Eq. (18 ) may be
adopted in an extended manner, with changesloEh, /2+h;/2+g and h=h; +hy +g,

whereas the shear stiffness of the connelétes modified to K,,, which denotes an equivalent

stiffness of the shear connection region in a CBR&®d accounts for all local effects around a
connector, including the shear slide. The basicastsiffness of the connection region, as
schematically shown in Fig. 10, may be calculated a

K Ebl

shear — 2(1+—v)dc (19)

The equivalentK,, is related to K., by a reduction factog,

shear

Keq = ¢Kshear (20)
The approximation ofg may be obtained by an empirical method. As farthes strain

distribution along the section depth is conceriitecin be envisaged thgtis primarily a function
of the parameters relating to the local deformatiomamely h;, hg, g andl, or in a more general

sense the normalised parametersgf/h, , g/h; and |/h;. Thus,

_4he 9 I
’ “{m’hr'hrj )

The actual function may be established numerigaligugh finite element calculations. For the
FE analysis, the top beam is assumed to have eenefe depth ofh, = 0.Im, while all the other
dimensions are assigned subsequently in accordaititcghe specified ratios, and the material is
assumed to be the sami, /h; is assumed to vary from 1 to 3/h; from 0.0 to 1.0,1/h;
from 0.2 to 8.0. These ranges are chosen to cowst of practical CBDSCR cases. Totally 75
CBDSCR models are constructed and analysed usinédel to derive the empiricg. The
results are summarised in Table 5.

The modified composite ratig can be calculated by the following simple steps:

1) Use the composite ratioc in Eq. (17) to calculate the deflection of the CBCR
without considering the local deformation;
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2) Use Eqgs. (18), (20), (21) and Table 5 to calcuta¢eadditional deflection of a CBDSCR.
3) Use the summation of the two deflections aboveaicutate the modified composite
ratio a.

Table 5 ¢ as a function ofhg /hy, g/h; and I/h;

hy _, g/hr [ g/h,
hr 000 | 025 | 050 | 0.75 | 1.00 hr 000 | 025 | 050 | 075 | 1.00
02 | 5643 | 1.520| 0.606 0.324 0.208 02 | 4474 | 1.678| 0811 0.488 0.344
05 | 3321 | 1.507| 0.897 0591 0.422 05 | 2463 | 1.219| 0.802 0577 0.439
|| 10| 1964 1.053] 0744 0566 0452 | | 10 | 1728 | 0.903| 0653 0517 0428
he 720 [ 1106 ] 0661 0477 0372 0.306 he 720 | 1211 0650 0494 0413 0360
40 | 0.879 | 0518 0.374 0288 0.235 40 | 0.845| 0470 0365 0313 0.279
80 | 0.940 | 0.767| 0.603 0.477 0.388 80 | 0.714 | 0504| 0.416 0.367 0.335
he _4 g/hy
hr 000 | 025 | 050 | 0.75 | 1.00
02 | 5080 | 2168 0599 0.214 0.114
05 | 2613 | 1.357| 0.373 0.16p 0.090
| | 10 [ 1760| 0.942| 0230 0111 0.068
he | 20 | 1216 0665 0.14d 0078 0.051
40 | 0.795| 0.332| 0.107 0.06p 0.040
80 | 0543 | 0.269| 0.114 0.06f 0.046

Table 6 Comparison of maximum deflections of 12 (GBIR beams

FE model Basic beam formulation With local deformation caotien
Beam S (mm)

max a Omax (MmM) Error a Onax  (MmM) Error
1 0.164 0.88 0.159 -3.1% 0.73 0.164 -0.1%
2 0.495 0.90 0.483 -2.5% 0.73 0.495 0.0%
3 0.059 0.64 0.054 -8.3% - - -
4 0.015 0.65 0.013 -7.8% - - -
5 0.152 0.93 0.150 -1.2% 0.73 0.153 0.3%
6 0.149 0.96 0.146 -2.2% 0.73 0.149 0.0%
7 0.148 0.86 0.142 -3.9% 0.60 0.148 0.0%
8 0.123 0.82 0.116 -5.8% 0.48 0.123 -0.1%
9 0.151 0.94 0.148 -2.1% 0.57 0.151 -0.1%
10 0.144 0.98 0.142 -1.4% 0.81 0.144 -0.3%
11 0.088 0.90 0.084 -4.6% 0.72 0.088 -0.2%
12 0.052 0.92 0.049 -5.8% 0.72 0.052 -0.0%

It should be noted that Table 5 has been genefiatadFE analysis for coupled beams with the
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same material, but it is not restricted to singletenial coupled beams and is applicable to
different material cases as far as the effect adlldeformation concerned is along the depth of the
coupled beam. For beams with wide flanges wheral ldeformation over the width of the flange
may become a factor, the exact modification peirigito the local deformation should be treated
accordingly and this is not covered in Table 5.

The modified composite ratia for the cases described in Section 4.3 is providdelg. 11. It
can be observed that the results match the FEtsesldsely, as can be expected due to the
empirical modification, and comparing with the umwdified results the accuracy is markedly
improved. Finally, the 12 CBDSCR beams studied etti®n 4.2 (shown in Table 4) are
re-calculated and the results are summarised ieTéb Note that these beam cases are not
involved in the generation of the modification farstin Table 5. Again, a marked improvement of
the accuracy is achieved. The maximum error whighplkens in beam-12 is reduced to 0.8% from
5.8% when the local deformation was not considered.

11
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6. Conclusions

This paper presents an analytical approach forc#heulation of the composite effect and the
bending stiffness of a special class of composganis, called CBDSCR, where discrete shear
connectors are employed as the coupling mechamistoupled beam element is established for
the unconnected segments in accordance with theatiblity relations at the junctions between
an unconnected segment and the connection reglonthis basis, the deflection and the stiffness
of the entire beam are constructed, and an analyg@ution for CBDSCR with evenly distributed
connectors is deduced from assembling the globainb&tiffness matrix for a broad range of the
CBDSCR configurations.

Comparison of the basic analytical solution witlsules from refined finite element models
shows a reasonably good agreement. Results also thlad when a significant connector length,
e.g. around or above the total beam depth, is veehlthe influence of the connector length can be
significant, and the analytical solution with thensideration of the connector length is capable of
handling well this factor.

To further improve the accuracy of the analyticdlison, a modification factor is introduced to
compensate for the local deformations around tinetion areas that lead to the relative axial
displacements (or in a general sense “shear slipstjveen the top and bottom beams. The
modification factor is related to three dimensiagsi@arameters, and the detailed relationships are
established by means of an empirical method usatg denerated from FE models. With the
incorporation of the modification factor the anatgt solutions are found to match very well the
FEA results.

The proposed general solution of CBDSCR providesngple and yet sufficiently accurate
means for modular building designers to determiggreble coupling configurations and calculate
the stiffness and deformations of this type of beaihe basic formulation and the modification
scheme are readily applicable to coupled beamsdifttrent materials as well as single material.
The specific modification factors may also be aggplfor different material cases as long as the
local deformation effect is primarily concerned abthe distribution over the depth of the coupled
beam. For coupled beams involving wide flanges whiee local deformation across the width of
the flange may also have an influence on the behavif the coupled beam, extended finite
element analysis may be required to generate #gfgpmodification data.
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