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Study on translational and rotational motion of solids is important in a wide range of engineering
processes. However, rotational motion of solid particles in an opaque system has not been given much
attention due to the lack of appropriate measurement methods. This paper presents a new technique,
Multiple-Positron Emission Particle Tracking (Multiple-PEPT), to track both rotational and translational
motions of a solid simultaneously. The sample study presented here is to track the rotation and trans-
lation of a cubed potato in a food can for optimising the canned food process. The results have
demonstrated that the rotational and transitional motion of the cubed potato can be simultaneously
tracked through mounting three small (200 microns) radioactive tracers on the cube corners. The
rotation and translation of the cube can be reconstructed based on the trajectories of the three tracers.
The translational and rotational motions of the potato particle are related to each other, and both the
motions are greatly dependent on the solids fraction, the liquid viscosity and the density difference
between the solid and liquid; but follow specific patterns.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Solids motion can be classified into translational and rotational
motions, and both of them play an important role in heat and mass
transfer in a wide range of engineering processes. For example, a
number of food processing problems involve the transport and
thermal processing of solid—liquid mixtures that are of high solids
fraction (often >40%) and with carrier fluids that are viscous and
non-Newtonian (Barigou, Mankad, & Fryer, 1998; Lareo, Branch, &
Fryer, 1997; Lareo, Nedderman, & Fryer, 1997). The heat transfer
coefficient between solid and liquid is critical in determining pro-
cess times and overall product characteristics, and is greatly
dependent on both rotational and translational behaviours of the
solid. The translational motion controls the residence time of solids
in different position of the process (Fairhurs, Barigou, Fryer, Pain, &
Parker, 2001), while the rotational motion is significant in defining
the interphase heat transfer coefficients which may control the
particle heating and cooling rates (Mankad, Branch, & Fryer, 1995;
Mankad & Fryer, 1997; Mankad, Nixon, & Fryer, 1997).
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A number of studies have focused on fluid dynamics of food
flows and heat transfer in order to optimize thermal processes, and
to minimize the heat applied to ensure commercial sterility or
pasteurization without unacceptable quality loss (Kiziltas, Erdogdu,
& Palazoglu, 2010; Legrand, Berthou, & Fillaudeau, 2007), such as
quantifying solid rotation by using high-speed photography to
capture the marked solids (such as Kale, Ramezan, & Anderson,
1989; Lee & Hsu, 1996; Tsuji, Morkawa, & Mizumo, 1985; White,
1982; White & Schulz, 1977). However, optical tracking tech-
niques are limited to transparent systems and suffer a low resolu-
tion due to refraction of light. A significant amount of food is
processed after packing into cans or pouches, and the solid and
liquid motions cannot be tracked through optical technique. A
number of models have been developed for such systems, such as
Chen and Ramaswamy (2002), Garcia, Balsa-Canto, Alonso, Banga
(2006), Miri et al. (2008), Abdul Ghani and Farid (2006), Jun and
Sastry (2007), Kannan and Sandaka (2008).

Positron Emission Particle Tracking (PEPT) was developed at the
University of Birmingham for tracking a single particle accurately
and non-invasively (Bakalis, Cox, Russell, Parker, & Fryer, 2006; Cox
et al.,, 2003; Parker, Broadbent, Fowles, Hawkesworth, & McNeil,
1993; Yang, Fan, Bakalis, Parker, & Fryer, 2008a). The significant
advantage of the method is that PEPT can track particles accurately
through 20—30 mm of metal. The equipment used thus need not be
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transparent as with particle imagery velocimetry (PIV) (Duursma,
Glass, Rix, & Yorquez-Ramirez, 2001) or be metal free as with
magnetic resonance imaging (MRI) experiments (Reyes, Lafi, &
Saloner, 1998). The technique has been recently further improved
to track three particles simultaneously (Yang, Parker, Fryer, Bakalis,
& Fan, 2006). This makes it possible to track both translational and
rotational motions of a particle simultaneously. Yang, Fan, Bakalis,
Parker, and Fryer (2008b) presented the algorithm, and have
demonstrated the use of the method for one simple case.

In this study the solids behaviours in a rotating can system are
investigated systematically using our newly developed technique
called Multiple-PEPT. The translational motion gives the solids
velocity profile, whilst from the rotational motion the distribution
of rotational speed is constructed. The aim of the work is to
demonstrate the method and to give data which can be incorpo-
rated into future models of food flows.

2. Experimental methods and materials

Experimental methods consist of Multiple-PEPT and recon-
struction of the translational and rotational motions by three
tracked tracers, described as follows.

2.1. Multiple-PEPT technique

The technique involves a positron camera at the University of
Birmingham, radioactively labelled tracers (Fan, Parker, & Smith,
2006a, 2006b), and a location algorithm used for calculating the
tracer location and speed. The camera consists of two position-
sensitive detectors to detect pairs of 511 keV y-rays as shown in
Fig. 1. Each detector has an active area of 500 x 400 mm?. The tracer
particles are 200-micron resin beads which are labelled with
radionuclide '8F. Three of the labelled resins beads were mounted to
different corners of a potato cube. '®F has a short half-life of 109 min.
It will decay to oxygen next morning. The nuclear dose used in the
experiments is much less than the dose used in hospital for tumour
diagnosis. The '8F decays by p* decay with the emission of a posi-
tron. Each positron rapidly annihilates with an electron, giving rise
to a pair of 511 keV y-rays which are emitted almost exactly back-to-
back. The two y-rays are simultaneously detected in the two de-
tectors and define a trajectory passing close to the source. The
location algorithm for tracking a single particle (Parker et al., 1993)
has been developed from the principle that all the uncorrupted
y-ray trajectories for a given set of events should meet (to within the
resolution of the camera) at a point in space where the tracer is
located as shown in Fig. 1. The point can be found by minimising
the sum of perpendicular distances to the various trajectories.
Theoretically, all of the y-rays emitted from a tracer should be back
to back, and joint at the tracer position. However, in practice, many

Detector 1 Detector 2
/
Ny vrays_—"
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1 v —
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Fig. 1. Schematic diagram of PEPT for single particle.

y-rays are corrupted and are not back to back. The location algo-
rithm is used to discard the corrupt events, whose trajectories are
broadcast randomly in space and do not in general pass close to the
true particle location. The location is then recalculated using just the
uncorrupted events. From successive locations, the velocity of the
labelled particle can be found as it passes through the view of the
camera (Parker, Allen, et al., 1997; Parker, Broadbent, Fowles,
Hawkesworth, & McNeil, 1996; Parker, Dijkstra, Martin, & Seville,
1997; Parker, Forster, Fowles, & Takhar, 2002).

To track multiple particles, the tracers are labelled at different
levels of radioactivity. For a given set of events, most y-rays origi-
nate from the tracer with the strongest radioactivity. Thus, the most
active tracer can be located by using the single particle tracking
technique while the trajectories from the remaining tracers are
regarded as corrupt trajectories. The first point which minimizes
the sum of perpendicular distances to the various trajectories will
be close to the strongest tracer. Those passing furthest away are
discarded and the minimum distance point recalculated using the
remaining subset. The iteration procedure continues until it is
believed that all corrupt trajectories have been discarded and the
location of the strongest tracer is calculated using just the uncor-
rupted events from the strongest tracer. Trajectories passing close
to the located tracer are then removed from the dataset. The lo-
cations of the second and the third tracers are calculated in a
similar way. The Multiple-PEPT technique is briefly described
below.

For a selected set S of sequential trajectories Ly,...Ly which
are recorded as data from the camera, the sum of distances
from any point (x, y, z) to the y-ray trajectories can be stated as
follows.

DS(X7y72) = Zéi(xayaz) (l)

where 0i(x, y, z) is the distance of the ith trajectory from the point
(x,y,2).

To get the minimum sum of distances, the minimum solution
must be obtained by

oDs(x.y.z)
sax =0

6Ds(a);~y,2) -0 (2)

0Ds(xy.2) _
7z =0
From Eq. (2), the minimum distance point (xo, Yo, Zo) can be
obtained as the first approximation. The mean deviation of these
trajectories from the minimum distance point is then

ds(X0,Y0,20) = Ds(X0,Y0,20)/N(S) (3)

where N(S) is the number of events in the set S.

The distance di(xo, Yo, zo) of the ith trajectory from the point (xo,
Yo, Zo) is calculated for a given set of trajectories. The trajectories for
which 6;(xo, Yo, o) is larger than kds(xo, yo, zo) are discarded, where k
is a fixed parameter. This leaves a subset S of events and a new
(smaller) mean deviation ds1(x1, y1, z1), from which an improved
location (x1, y1, z1) of the strongest tracer is calculated. The algo-
rithm proceeds until only a specified fraction f of the initial tra-
jectories remains, i.e. terminates at step n, where N(S,) = fN(S).

The parameter k determines the rate at which trajectories are
discarded. Values of k between 1 and 1.5 have been investigated.
The optimum lies somewhere between these two extremes (Parker
et al., 1993).

If the parameters fj, f> and f3 are defined as the first-, second-
and third-tracer fractions of the initial trajectories respectively and
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another parameter p as the fraction of the desired trajectories in the
entire original set S, the specified fraction f of the initial trajectories
is equal to pfj for the first strongest tracer. The parameter p has been
investigated, and its optimum value lies between 0.20 and 0.33
(Parker et al., 1993).

After the strongest tracer is located, trajectories passing close to
the located tracer are then removed from the dataset. In a similar
way, repeating the above procedure, the locations of the second and
the third tracers are then calculated.

And then the amount of y-rays is recalculated around each
located tracer for the entire original set S of trajectories to make
sure the first, second and third highest amount of y-rays around the
tracers correspond to the first, second and third strongest tracers
respectively.

The final outcome is that the subsets Sgj, Spp and Sg3 of trajec-
tories are selected from the original set, from which the locations of
tracers 1, 2 and 3 are calculated as their minimum distance points
(X1, YF1, 2ZF1), (XR2, VP2, ZR2) and (X3, Yr3, Zr3) respectively during the
time interval covered by these subsets. Each event L; has its time of
measurement t; recorded, and the location thus arrived at is
considered to represent the tracers’ position at time

1
t =+ E ti 4
NF < 1 ( )

where Ng = N(Sf) is the number of trajectories in the final subset,
and SF=5r1 U Sp U Sg.

Having located the tracers once, the new set starts immediately
after trajectories have been discarded in the previous set.

2.2. Reconstruction of translational and rotational motions

Translational and rotational motions of any regular shape solid
can be reconstructed by tracking three tracer particles if the posi-
tions of the particle are well designed. This paper uses cubed potato
as an example to demonstrate the reconstructions. The best way to
reconstruct the solid translational and rotational motions easily in a
three-dimensional space is

(i) to place two tracers at the ends (a + b) of any side
(ii) and the third at any opposite corner (c),

so that the line ac goes through the centre of mass m as shown in
Fig. 2A. This is shown in Fig. 2A. (Yang et al., 2008b). The recon-
struction consists of three steps: (i) reconstruction of the centre of
the solid using the three tracked locations on the solid to obtain
solids translational motion, (ii) reconstruction of the three tracked

a b

A

Fig. 2. Geometry of the labelled solid in three-dimensional space (A: the reconstruc-
tion of the centre of the cube, B: coordinate scheme for the solid rotation of a rigid
body).

locations on the solid by using the known size of the cubed solid to
improve the accuracy of the three tracked locations, and (iii)
reconstruction of solids rotational motion using the three improved
locations and the centre of cubed solid. Details of the reconstruc-
tion of solids rotational and translation motions can be found in
Yang et al. (2008b).

2.3. Reconstruction of the centre of cubed potato

If the length of a side of the cube is S, the following equations
can be obtained from Fig. 2A.

V3

jam| = [bm| = fam] = %°s (5)

Thus the function
2 2 2
(’ﬁ“fs) + <|ﬁ|‘2@s> + <|€n"fs> (6)

will equal zero if the distances are correctly found by the algorithm.
Therefore, a function of m is defined,

2 2

y =f(m)= (‘ﬁ] —§s> + (m J?s)
2
+ (cTrﬂ?S)

so by minimization of the f(m), the centre of the cube can be
identified. By tracking the three tracer positions at the corners a, b
and c respectively, the motion of the centre of the cube m can be
found. This represents the solid translational motion.

(7)

2.4. Reconstruction of solid rotational motion in a three-
dimensional space

From Fig. 2B, the velocity of “a” relative to “m” (Smith & Smith,
2000, pp. 254—269) is

Iy = Uy XTI, (8)

where u, is angular velocity, and u; = (wy, Wy, V7).
The actual velocity of “a” will therefore be

Ry = Ry +u, xr, 9)

Thus

Vi = V4 u, x (@ —m) (10)
In a similar way,

Vb:Verubx(B)fﬁ‘i) (11)

Ve = Vin+uc x (C —m) (12)

where the velocity is calculated by three successive locations as
follows.

X(ti1) — x(t)
tii1—§

Va(ti) = %( LX) _X(ti‘1)> (13)

ti—tiq
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In a similar way, the velocity in y and z directions can be obtained.
For a rigid body, the angular velocity of any point in the rigid

body round the mass-centre should be same, and described by w.
If a function of w is defined as

— =2
)|

Yy =f(W)=Va = Vp —wx (a3 —m
2

+ Vo~V -0 x (b - )| (14)
+[Ve—Vm — 0 x (T —m)?

the w can be calculated by the minimization of (14).
Then the observed internal spin rate of the cube can be calcu-
lated as in Eq. (15).

_ @l

27T
To find how the cube spin varies with their position, the can was
divided by several 2 mm x 2 mm x 119 mm cuboids, the solid spin
was calculated by using the average for the cube which the centre
of the cube was captured by the cuboid, as described in (Yang et al.,
2008Db). Thus, the average cube spin rate N was given by

N (15)

N, =

N

> NG, ) (16)

[
i=1

where N(j, i) denoted the instantaneous spin rate for the ith posi-
tion of the cube in the jth cuboid.

The statistic internal spin rate of the cube, (i) average of internal
spin rate (1) and (ii) the standard deviation of internal spin rate (7),
were obtained by the following equations:

k
2@ (17)
j=

=
Il
x| =

k N. _ 2
g = Zj:l (;:JJ Iu) (18)

2.5. Cans and liquids

The experiments similar to those in Yang et al. (2008a), tracking 3
tracers in three liquids, were performed. The cans throughout this
study were supplied by Stratford Foods Ltd, Stratford UK and
measured 119 mm high with a diameter of 100 mm. The experi-
ments were designed for the observation of the effect of solids
fraction and liquid viscosity on solids rotational and translational
motions. The liquids used were water, dilute golden syrup and
golden syrup with viscosities 0of 0.001, 2 and 27 Pa s, respectively. For
each liquid, the experiments were carried out at four solids fractions,
which were 10, 20, 40 and 50% (v/v). The dilute golden syrup was a
solution of the golden syrup in 23% water. The solids used were
cubed potatoes with a dimension of approximate 12 mm. The
density of potato was 1080 kg/m?, the density of the dilute golden
syrup 1319 kg/m>, and the density of the golden syrup 1423 kg/m?>.
In each run, the headspace used was 10% (v/v). The cans were rotated
on a horizontal tube roller at 12 rpm anticlockwise, as shown in
Fig. 3. The three tracers had iso-density with respect to the cubed
potato, were initially labelled with radioactivity: 3.1 MBq, 15.5 MBq
and 8.8 MBq. To reconstruct the rotation of the cubed potato and the
centre of the cube easily, two tracers were placed at the corners
(labelled a and b in Fig. 2A) of any side and the third tracer at any
opposite corner of the cubed potato (labelled c in Fig. 2A). All ex-
periments were performed at the ambient temperature.

Detector 1 Detector2

d /

| |

Fig. 3. Geometry of the rotating can in three-dimensional space.

3. Results and discussion

3.1. Effect of liquid viscosity and solids fraction on solids
translational speed

Since the results are very similar for the solids fractions of 40%
and 50%, this paper only gives the details for the solids fractions of
10%, 20% and 40%. Fig. 4 shows the speed of can body. Figs. 5—7
present translational speed of solids in the can over a 20-min
period from the side view of YOZ plane.

In Fig. 4, the speed of can body was given by Eq. (19) at a given
radius.

u(r) = 2mNr (19)

where u is a speed of can body, and N is rotational speed of the can
(revolutions per second).

In Figs. 5—7, solids speed was calculated by combining the ve-
locities in y and z directions, as formulated in Eq. (20), because the
velocity in the x direction is too small and negligible, compared to
these in the y and z directions.

V= /V}+V? (20)

where V), and V, are solids velocities in y and z directions
respectively.

From Figs. 5—7, it can be seen that the translational speed of
solids in the can is related to the flow pattern of the bulk solids, and
depends greatly on the liquid viscosity, the solids fraction, and the
density difference between the solids and liquid as described in
Yang et al. (2008b). The white space in the figures means that the
tracer potato never reached the space. It is either head space in the
can or the solids deposit on the can wall.

50 120
100
80
50
40
20

-50
Translational speed (new's)

Y(mm)
o

-50 0 50
Z(mm)

Fig. 4. Translational speed of the can examined as a solid body.
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120

100

-50 0 50 Translational speed (mm/s)

120

100

-50 0 50

Translational speed (mm/s)

120

100

Y(mm)

-50
-50 0 50

Z(mm)

Translational speed (mm/s)

Fig. 5. Translational speed of solids in water (A: 10% solids, B: 20% solids, C: 40%
solids).

In water, solids in the can can be divided into two layers, namely,
a ‘passive’ layer where solids are carried up by the can wall, and an
‘active’ layer where solids cascade down, as described in Yang et al.,
(2008a, 2008b). The passive layer was located at the region adja-
cent to the right-side wall, where solids moved almost as a packed
rigid body and followed the can’s rotation with a slightly slow
speed. When solids were lifted to the top of the dynamic repose
angle, the gravitation of the solids became a dominant drag force by
comparing the density of potato with water. The solids slumped
downwards over the passive layer, forming an active layer, where
solids moved faster than the rotating can. Solids speed in the active
layer was also dependent on the solids fraction within the can. It
varied from 40 mm/s to 120 mm/s when the solids fractions were

50 120

100

Y(mm)

50 Translational speed (mm/s)

120

100

Y(mm)

Translational speed (mm/s)

120

Y(mm)

Translational speed (mm/s)

Fig. 6. Translational speed of solids in the golden syrup (A: 10% solids, B: 20% solids, C:
40% solids).

10% (w/w) and 20% (w/w). The variation of solids speed in the active
layer might give a good contribution to the agitation of the solid—
liquid mixture in the can, therefore enhancing convective heat
transfer. However, when the solids fraction increased to 40% (w/w),
the solids speed was very close to that of solid body (Figs. 4 and 5C).
Solids nearly followed a concentric flow and moved, more or less, as
a rigid body, and acted as scraper to the surface reducing the
boundary layer at the inner wall and enhancing heat transfer in the
low viscosity liquid.

When the water was replaced by the golden syrup, the solids
suspended in the golden syrup or stayed by the can wall due to the
increased density and viscosity of the liquid. Solids were dragged
upwards by the rotating can, fell down when they reached the
headspace, the solids speed was relatively uniform (Fig. 6) and very
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120

100

Y(mm)

-50
-50 0 50

Translational speed (non's)

50 120

100

Y(mm)

50 Translational speed (nuws)

C
50 120

100

Y(gm)

-50 0
Z(mm)

S0 Translational speed (nans)

Fig. 7. Translational speed of solids in the diluted golden syrup (A: 10% solids, B: 20%
solids, C: 40% solids).

similar to the speed of the can body (Fig. 4). It means that the solids
for any fraction moved, more or less, as a nearly rigid body within
the entire can, giving little contribution to the convective heat
transfer from the wall to the centre.

In the diluted golden syrup, the solid flow pattern was different.
The solids floated over the central region of the can. On the right side
of the can, solids tended to move straight upwards, rather than (i)
reposed on the wall of the can as observed in water or (ii) suspended
in the golden syrup as observed in the undiluted golden syrup. On
the left side of the can, solids tended to move close to the can wall.
The upward speed was higher than the speed of solid body,
particularly in the central region. The downward speed was less
than the speed of solid body (Figs. 4 and 7). The speed distribution

from the side view of YOZ plane was non-uniform. This non-uniform
motion of the solids in the can will agitate the mixture and this
might enhance the convective heat transfer. Through comparing the
solids motion in the diluted and undiluted golden syrup, it can be
seen that a slight dilution of the golden syrup might significantly
change the solids motion, therefore the heat and mass transfer in
the can.

3.2. Effect of liquid viscosity and solids fraction on solids spin

Figs. 8—10 present internal spin rate of solids over a 20-min
period from the side view of YOZ plane. Fig. 11 shows the range of
internal spin rate of solids over a 20 min period. Table 1 shows

50
25
20
Eg 0 15
>
10
5

-50

-50 0 50 Internal spin rate (rpm)
Z(mm)

25
20

€

£ 15

>
10
5

Internal spin rate (rpm)

Y(mm)

-50

-50 0 50 Internal spin rate (rpm)
Z(mm) ’ "

Fig. 8. Internal spin rate of solids in water (A: 10% solids, B: 20% solids, C: 40% solids).
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Y(mm)

-50 0 50

Internal spin rate (rpm)

Fig. 9. Internal spin rate of solids in the golden syrup for the solids fraction of 20%.

internal spin rate of solids in the three liquids, calculated from Egs.
(17) and (18).

It is very interesting to note that the solids spin is related to the
translational motion, and is dependent on the solids fraction, the
liquid viscosity and the solids position within the rotating can.

3.2.1. Internal spin rate of solids in water

When the can was rotated in an anticlockwise direction, solids
in water reposed on the right-side wall, and rotated upwards. The
right-side wall applied a drag force to the solids near the can wall.
The passive layer was located adjacent to the right-side wall, where
solids moved almost as a packed rigid body. Within this layer, the
solids spin was limited. The spin rate was therefore much more
uniform and lower than that in the active layer as shown in Fig. 8.
The active layer was at the left-side of the can, as shown in Fig. 5A
and B. The collision and fast motion of solids resulted in the violent
spin in the active regimes as shown in Fig. 8A and B. With increase
in the solid fraction, the active regime was shrinking, and close to
the headspace. The spin rate became much uniform within most of
the can, except the region close to the headspace (Fig. 8C). The
range of internal spin rate significantly decreased (Fig. 11A). It lay
somewhere between (i) 3 and 30 rpm for the solids fraction of 10%
(w/w), (ii) 1.8 and 24 rpm for the solids fraction of 20% (w/w), and
(iii) 1.8 and 14.4 rpm for the solids fraction of 40% (w/w), and the
average was 9.08, 9.94 and 7.36 rpm, respectively. The uniformity of
the spin increased with the solids fraction (Table 1).

3.2.2. Internal spin rate in golden syrup

When the water was replaced by the golden syrup, the solids
was suspended or stayed by the can wall due to the high liquid
viscosity (27 Pa s) and liquid density (1422.5 kg/m?). The solids
moved more or less as a rigid body. The solids spin was slightly high
in the region close to the can wall while it was slightly low at the
central region of the can, as shown in Fig. 9. With increase in the
solid fraction, a large stagnant core zone can be seen in the central
region of the can (Fig. 6C), where the solid concentration was too
high and limited the solids motion. The maximum internal spin rate
almost kept a constant (Fig. 11B), the internal spin rate was between
(i) 3 and 16.8 rpm for the solid fraction of 10% (w/w), (ii) 0.6 and
16.8 rpm for the solids fraction of 20% (w/w), and (iii) 1.2 and
17.4 rpm for the solids fraction of 40% (w/w), and the average was
8.12, 7.54 and 8.54 rpm, respectively. The solids spin was quite low.
This further demonstrates that the rotation is determined by the
flow pattern of the bulk solids, the solids concentration, the liquids
viscosity, and the density difference between the solids and liquid.
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Fig. 10. Internal spin rate of solids in the diluted golden syrup (A: 10% solids, B: 20%
solids, C: 40% solids).

3.2.3. Internal spin rate in the diluted golden syrup

When the solids were in the diluted golden syrup, the internal
spin rate was changed significantly with the solids fraction. It was
much higher at the solid fraction of 20% (w/w) than that at the solids
fractions of 10% (w/w) and 40% (w/w ). The solids spin was also much
less uniform than that in water and in golden syrup as shown in
Fig. 10. As well expected, in the diluted golden syrup, the buoyancy
was dominated the solids motions, by comparing the densities be-
tween potato (1080 kg/m?>) and the dilute golden syrup (1318.6 kg/
m?). Solids floated in the can and tended to stay close to the head-
space, leaving much more space in the region close to the right-side
of the can. The solids tended to move straight upwards with a higher
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Fig. 11. The range of internal spin rate of solids over a 20 min period in the three liquids (A: water, B: golden syrup, C: diluted golden syrup).

speed, and no longer travelled as a rigid body following the can’s
rotation (Fig. 7). The space in the right-side of the can gave a high
opportunity for solids collision, resulting in a much violent spin
(Fig. 10). The internal spin rate was therefore higher in the region
close to the head space due to the less limitation.

The internal spin rate of solids took a much wider distribution
than that in golden syrup (Fig. 11B and C). The internal spin rate was
between (i) 1.2 and 21 rpm, (ii) 1.8 and 29.4 rpm, and (iii) 1.2 and
18.6 rpm when the solid fractions were 10, 20 and 40% (w/w),
respectively. The average value varied with the solids fraction. It was
7.69, 9.20 and 7.87 rpm for the solids fractions of 10, 20 and 40% (w/
w) respectively. When the solid fraction increased from 10% to 20%
(w/w), the average spin rate increased by 15%, and the uniformity of
the spin decreased, as shown in Table 1. As described above, the
solids no longer moved as rigid body as that in golden syrup, the
internal spin rate increased by 19%, compared to the solids golden
syrup at a solids fraction of 20% (w/w). This indicates that the solids
spin in the diluted golden syrup might give a good convective heat
transfer from the wall to the centre region of the can.

To demonstrate the solids spin, the three-dimensional cube at
any time can be reconstructed by tracking multiple tracer particles.
Part of the trajectories of solids spin in the three liquids is shown in
Fig. 12, where the solids fraction was 20% (w/w). The cubes were
pictured 7 times at regular intervals over a circulation period.

4. Conclusions

Solids translational and rotational motions within a food can be
monitored simultaneously through non-invasively tracking three
radioactively labelled tracers mounted at the corners of the solid.

The results indicate that translational motion and rotational
motion are related to each other, both are dependent on the solids
fraction, the liquid viscosity, and the solids location. In water
(viscosity = 0.001 Pa s), solids spin was generally slow in the pas-
sive layer where particles were packed and reposed on the rising
wall, but fast in the active layer where the space between solids is
large. The uniformity of the spin rate within the entire can
increased with the solids fraction as the distribution of

Table 1
Internal spin rate of solids in the three liquids.
Liquids Solids Max internal Min internal w a
fraction (%) spin rate (rpm) spin rate (rpm) Average of internal Standard deviation of
spin rate (rpm) internal spin rate (rpm)
Water 10 30 3 9.08 3.86
20 24 1.8 9.94 3.12
40 14.4 1.8 7.36 1.31
Dilute golden 10 21 1.2 7.69 1.81
syrup 20 294 1.8 9.20 2.97
40 18.6 1.2 7.87 2.15
Golden syrup 10 16.8 3 8.12 1.55
20 16.8 0.6 7.54 2.03
40 174 1.2 8.54 2.53
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Fig. 12. Part of the trajectories of solids spin for the solids fraction of 20% (A: water, B: golden syrup, C: diluted golden syrup).

translational motion was closer to that of solid body. In the golden
syrup (viscosity = 27 Pa s), the solids suspended in the golden syrup
or stayed by the can wall. The internal spin rate and translational
speeds were quite low, and slightly changed with the solids frac-
tion. However, when the golden syrup was diluted by adding 23% of
water (viscosity = 2 Pa s), the solids floated in the can. Due to the
high buoyancy and low viscous drag force, solids tended to move
straight upwards, rather than reposed on the wall of the can as
observed in water or in the golden syrup. The internal spin and
translational speeds were much higher and their distributions were
much wider than that in golden syrup. Because of the violent and
non-uniform distributed spin, the solids no longer travelled as a
rigid body even though the solids fraction increased up to 40% (w/
w). When a canned food is processed under these conditions, the
solid motion might give a better convective heat transfer from the
wall to the centre region of the can.

The results further demonstrated that Multiple-PEPT can be
used to provide a deep insight into the heat mass transfer phe-
nomena in food processing through the translational and rotational
motion of solids.
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