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Cross-conjugated hydrocarbons have traditionally been considered chemical curiosities: 

substances exhibiting inadequate stability, with unpredictable behaviour and of dubious value. 

The absence of total synthesis applications involving cross-conjugated hydrocarbons attests to 

the fact that the synthetic community dismisses them. Herein we demonstrate that a 

reappraisal is warranted. We report a concise chemical synthesis of a chiral cross-conjugated 

hydrocarbon in enantiomerically-enriched form, and engage the substance in the shortest 

total synthesis of a pseudopterosin diterpene natural product. This chemical synthesis, 

involving four discrete acyclic precursors, is highly unorthodox compared to previous 

approaches, which employ starting materials with much closer structural homogeneity to the 

target natural product. Nevertheless, our unconventional transform-based approach has 

significantly lowered the step count required to access these tricyclic natural products. This 

work demonstrates, for the first time, that a cross-conjugated hydrocarbon can be a building 

block for chemical synthesis of a natural product. 
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The pseudopterosins (Fig. 1) represent the largest family of amphilectane diterpenes, with 

31 members isolated to date, all of which are derived from one of three stereoisomeric aglycones1. 

The remaining structural diversity arises from the nature of the sugar, the site of glycosylation, and 

the extent of sugar acetylation. The pseudopterosin family has been shown to exhibit a wide range 

of biological activities including anticancer2, antimalarial2 and perhaps most notably, anti-

inflammatory properties that exceed the potencies of existing drugs such as indomethacin3,4. 

The pseudopterosins have been the focus of a large volume of synthetic work over the past 

25 years, due to their challenging structures and pronounced biological activities. To date, 14 total 

and formal syntheses of pseudopterosin aglycones have been published (Fig. 1)5–18. This substantial 

archive of outstanding synthetic contributions pinpoints the pseudopterosin family as an ideal 

vehicle for the development of a progressively original chemical synthesis. All previous syntheses 

of these chiral tricyclic hexahydro-phenalenes deploy either chiral mono-terpenes or substituted 

benzenes as starting materials that are converted into pseudopterosins through sequences of chain 

extensions and annulations. These earlier approaches are examples of structure-goal strategiesref: 

specifically, a commercially available terpene or aromatic precursor has been identified which maps 

onto a section of the pseudopterosin target structure. Herein we disclose the successful synthetic 

realisation of a transform-based strategyref to a pseudopterosin: an approach which does not 

commence with a “mappable” commercial precursor and instead employs a powerful, triple 

cycloaddition sequence of a highly reactive cross-conjugated precursor to generate the natural 

product framework in very short order. 
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Figure 1. Previous starting material goal-based approaches to the pseudopterosins and the present, 

transform-based strategy, involving cross-conjugated hydrocarbon 1. aSynthesis of a protected 

derivative. bFormal synthesis. Step counts are reported as the longest linear sequence. 

 

Our retrosynthetic analysis is presented in Figure 2. Viewing the catechol A-ring of 

pseudopterosin (–)-G-J aglycone as its 1,2-diketone tautomer 2 unveils the possibility of a Diels–

Alder (DA) disconnection back to conjugated diene 3 and ethylene dione 4 as dienophile. The 

cyclohexene B-ring of diene 3 can be disconnected further, through a second DA transform, to 

provide cyclic [3]dendralene 5 and ethylene as a dienophile. A final DA disconnection of the 

cyclohexene C-ring of cyclic [3]dendralene 5 reveals substituted 1,1-divinylallene 1, along with 4-

methyl-1,3-pentadiene 6 as dienophile.  
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Figure 2: Strategic bond disconnections pursued in this study. 

 

Thus, the tricyclic framework of the natural product is exploded into four acyclic precursors 

through the consecutive disconnection of three pairs of covalent bonds. In the synthetic direction, 

issues of chemoselectivity, regioselectivity and stereoselectivity in each of the three cycloadditions 

would need to be overcome, in addition to the potentially problematic preparation and handling of 

cross-conjugated hydrocarbon 1. The presence of both E- and Z-configured propenyl-substituents in 

substituted divinylallene 1 confers axial chirality upon the structure, hence the possibility of a 

substrate-controlled stereoselective synthesis. 

The preparation of chiral 1,1-divinylallene 1 in enantiomerically enriched form represented 
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propargylic alcohol 10. Thus, Sonogashira cross-coupling between (S)-3-butyn-2-ol 10 and (E)-1-

bromo-1-propene 11 worked extremely well, furnishing enyne 9 in 94% yield. Alcohol 9, accessed 

either through the two step enantioselective synthesis or through the one step “chiral pool” pathway, 

was converted into the corresponding methanesulfonate derivative 12 as a prelude to the critical 

C−C bond forming step, which would result in the preparation of chiral cross-conjugated 

hydrocarbon 1, and a switch from a substance with point chirality into one with axial chirality. 

 

 

Figure 3: Synthesis of chiral cross-conjugated hydrocarbon 1. 

 

After extensive experimentation, we unearthed conditions to generate hydrocarbon 1 by 

cross-coupling electrophile 12 with Grignard reagent 13. Our Ni(0)–catalysed Kumada cross-

coupling proceeded with a high level of formal anti-SN2' selectivity, thereby furnishing a highly 

enantiomerically enriched product and, moreover, one that can be readily produced on multi-gram 

scale. The absolute configuration of hydrocarbon 1 was deduced through its conversion into more 

stable derivatives (vide infra). 
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Scouting experiments in the laboratory uncovered the need to both replace the isobutenyl-

substituent of dienophile 6 with an ester function and to include a formyl activating group at the 

other dienophilic carbon. Of the 43 transition structures (TSs) located for the DA addition of E-

(carboxymethyl)acrolein 14-Me to the 1-E-methylbutadiene component of 1, the lowest energy TS, 

TS-1 predicted the formation of cycloadduct 15 and set the scene for the successful completion of 

the total synthesis (Fig. 4). 

 

 

 

Figure 4: Total synthesis of pseudopterosin (–)-G–J aglycone by way of cross-conjugated 

hydrocarbon 1. CCDC1004909 contains the supplementary crystallographic data for compound 19. 

These data can be obtained free of charge from The Cambridge Crystallographic Centre via 

www.ccdc.cam.ac.uk/data_request/cif. 

 

2.13Å

2.66Å

(Me 
anti)

(H 
syn)

(CO2Me
endo)(CHO

exo) Me

Me

Me
H

allenic
carbon

•

OHC CO2Et

61% 
(2 steps, 9→15) OHC

CO2Et

OHC

CO2Et

CHO

CH2Cl2, 19 kbar

15% 
(71% recovered 15)

RhCl(PPh3)3
(2.4 mol equiv)

n–PrCN
119 °C

CO2Et

DIBAL, THF, –78 °C
then MeOH
then n-BuLi,NO2

t–BuOK, THF
then H2O

then 
DMDO, –78 °C O O

OH

H H H H H

15

2120

19 18 17 16

1

CHO

NO2

CH2Cl2,
19 kbar

HH

10 gram scale

62%

i–PrPPh3 I

75%

1.25 g prepared

KHMDS,
THF, –78 °C

66%

O
TsN Ph

(COCl)2
DMSO, NEt3

CH2Cl2, –78 °C OH

OH

(–)-G–J

H

82%

then

X-ray

H

lowest energy B3LYP transition structure

‡

14-Et

TS-1

19

9

H H

dienophile
14-Me

diene
1

d.r. = 5:1:1
e.r. = 98.5:1.5

(from 9, e.r. > 99.5:0.5)

3

57% 78%



 7 

A control of both orientational regioselectivity and stereoselectivity in the first cycloaddition 

(1→15) were needed. TS-1 (Fig. 4) displays significant bond-forming asynchronicity, with forming 

bond lengths of 2.131 and 2.661 Å (Δr = 0.53 Å). This asynchronicity confers a degree of 

biradicaloid character to TS-1 and this is best stabilised by making the forming bond involving the 

allenic carbon the shorter of the two, thereby conferring pentadienyl radicaloid character to the 

divinylallene. The dienophile component acquires radicaloid character at the longer bond-forming 

carbon centre and, because the formyl group is a more potent radical stabiliser than the 

methoxycarbonyl group, the observed orientational preference follows. Our calculations reveal the 

TS with the opposite orientation to TS-1 lies 4.9 kJ/mol higher in energy. The endo-CO2Me mode 

of dienophile addition is favoured over the alternative exo mode by 1.1 kJ/mol and the allenic 

methyl group's preference for anti over syn is 8.5 kJ/mol. Both of these preferences, together with 

the finding that the latter is stronger than the former, may be understood by noting that the 

combination of the forming bond at the allenic centre and the allenic C=C–H group in TS-1 and the 

other TSs form a quasi-allylic system with an exo-H–C1–C2–C3 dihedral angle of 12° (cf. 0° in 

propene) and a C1–C3 distance of 2.86 Å (cf. 2.51 Å in propene). This quasi-allylic unit should thus 

be sensitive to the presence 1,3-allylic strain, which explains the allenic methyl group’s anti 

preference and the favoured endo-CO2Me disposition in TS-1. 

In the laboratory, the optimised first DA reaction was carried out on decagram scale and, 

most conveniently, in tandem with the synthesis of hydrocarbon 1. Thus, when the Kumada cross-

coupling reaction was deemed complete, excess Grignard reagent 13 was quenched by the addition 

of methanol then commercially available dienophile 14-Et was injected into the reaction flask. The 

one-pot cross-coupling/DA sequence delivers adduct 15 in 61% overall yield (d.r. = 5:1:1) from 

alcohol 9 (a distinctly lower yield was obtained by conducting this sequence in two separate flasks) 

while maintaining a high level of enantiopurity over the point-to-axial-to-point chirality transfer.  

The clean conversion of hydrocarbon 1 into DA adduct 15 not only reflects the unusually 

high reactivity of 1,1-divinylallenes as 4π cycloaddition partners but also, the low reactivity of the 
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s-cis diene component of 15 towards further reaction. Indeed, the lack of reactivity of the 1,3-

butadiene component of 15, coupled with its similar reactivity to the diene group of adduct 16, 

almost undermined the synthesis. This problem was ultimately solved by halting the high-pressure 

reaction between triene 15 and the chosen dienophile, acrolein, at low levels of conversion, thereby 

minimising the amount of unwanted, acrolein double cycloaddition product. Unreacted precursor 

was easily re-isolated and recycled, thereby furnishing an acceptable overall yield of product 16. 

This reaction exhibits high regio- and stereoselectivity, with the acrolein dienophile approaching the 

diene from the face opposite to that in which the C3-methyl group resides. The two – now 

superfluous – dienophile activating groups were removed by deformylation with Wilkinson’s 

complex25. Ester 17 was then subjected to a one-pot selective reduction/olefination sequence to 

provide hydrocarbon 18 in 75% yield, thus setting the scene for the final cycloaddition.  

Both strategically and conceptually, the third cycloaddition is perhaps the most interesting 

of the three. To our knowledge, catechol synthesis by way of a DA reaction has not been previously 

reported. Since ethylene dione 4 (Figure 2) has a fleeting existence under normal working 

conditions26, a synthetic equivalent was required. Following extensive testing involving several 

potential candidates, we ultimately elected to employ a synthetic equivalent of ketene and introduce 

the second ketone through oxidation. Thus, following a cycloaddition between hydrocarbon 18 and 

nitroethylene at 19 kbar and ambient temperature to give tricycle 19, a Nef reaction gave ketone 

2027. Kinetic enolate formation and electrophilic oxygenation with Davis’ oxaziridine gave the 

resulting α-hydroxy ketone 21, which was oxidised to the pseudopterosin (–)-G–J aglycone under 

Swern conditions. Analytical chiral HPLC analysis of synthetic pseudopterosin G–J aglycone 

prepared in this manner against an authentic natural sample allowed for the assignment of absolute 

configuration as the (−)-G–J enantiomer (see the SI for details). 

The synthesis described here should be readily amenable to the preparation of the two other 

naturally occurring pseudopterosin aglycones. Thus, epimerization of ester 17 followed by a repeat 

of the same 5 step sequence shown in Figure 4 will allow the formation of pseudopterosin K-L 
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aglycone (Figure 1). Pseudopterosin A-F aglycone (Figure 1) will be accessible by simply 

employing either the enantiomeric Noyori catalyst or the enantiomer of the chiral pool precursor 

employed in this study (Figure 3). 

In summary, the pursuit of a transform-based strategy has culminated in the shortest 

catalytic enantioselective (11 steps) and chiral pool (10 steps) total syntheses of a pseudopterosin 

natural product. The synthesis constructs all three rings of the tricyclic natural product via a triple 

DA reaction sequence commencing with an axially chiral, substituted 1,1-divinylallene. Novel and 

notable features of this highly unorthodox approach, which will find wider application, include (a) a 

new variation on the cross-coupling theme to prepare hydrocarbon 1; (b) stereoselective 

cycloadditions of axially chiral divinylallene 1; (c) a point-to-axial-to-point chirality manoeuver 

with retention of enantiopurity; and (d) a novel DA reaction-based catechol synthesis. This work is 

perhaps the most extreme incarnation yet of the potency of the DA reaction in natural product 

synthesis, and one that signals the coming of age of cross-conjugated hydrocarbons in this domain. 
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