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Abstract

Gene regulatory network inference uses genome-wide transcriptome measurements
in response to genetic, environmental or dynamic perturbations to predict causal regu-
latory influences between genes. We hypothesized that evolution also acts as a suitable
network perturbation and that integration of data from multiple closely related species
can lead to improved reconstruction of gene regulatory networks. To test this hypoth-
esis, we predicted networks from temporal gene expression data for 3,610 genes mea-
sured during early embryonic development in six Drosophila species and compared pre-
dicted networks to gold standard networks of ChIP-chip and ChIP-seq interactions for
developmental transcription factors in five species. We found that (i) the performance
of single-species networks was independent of the species where the gold standard was
measured; (ii) differences between predicted networks reflected the known phylogeny
and differences in biology between the species; (iii) an integrative consensus network
which minimized the total number of edge gains and losses with respect to all single-
species networks performed better than any individual network. Our results show that
in an evolutionarily conserved system, integration of data from comparable experiments
in multiple species improves the inference of gene regulatory networks. They provide a
basis for future studies on the numerous multi-species gene expression datasets for other
biological processes available in the literature.
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1 Introduction

In systems biology it is hypothesized that causal regulatory influences between transcrip-
tion factors (TFs) and their target genes can be reconstructed by observing changes in gene
expression levels during dynamic processes or in response to perturbing the cell by gene mu-
tations or extra-cellular signals [1, 2]. As increasing amounts of gene expression data have
become available, numerous computational and statistical methods have been developed to
address the gene network inference problem (reviewed in [3–8]). Spurred by the observa-
tion that different methods applied to the same dataset can uncover complementary aspects
of the underlying regulatory network [9, 10], it is now firmly established that community-
based methods which integrate predictions from multiple methods perform better than in-
dividual methods [8]. A dimension that has remained unexplored in gene regulatory net-
work inference is evolution: Does the integration of data from multiple related species lead
to improved network inference performance? Numerous comparative analyses of gene ex-
pression data from multiple species have been performed [11–26], but invariably these have
studied conservation and divergence of individual gene expression profiles or co-expression
modules. However, it is known that (co-)expression can be conserved despite divergence
of upstream cis-regulatory sequences, and although shuffling of TF-binding sites does not
necessarily alter the topology of the TF–target network, cases have been documented where
conserved co-expression modules are regulated by different TFs in different species (“TF
switching”) (reviewed in [27]). It is therefore not a priori obvious if and how multi-species
expression data can be harnessed for gene regulatory network inference.

To address this question we decided to focus on a regulatory model system that is well char-
acterized and conserved across multiple species. We were therefore particularly interested in
a study where gene expression was measured at several time points during early embryonic
development in six Drosophila species, including the model organism D. melanogaster [18].
Early development of the animal body plan is a highly conserved process, controlled by
gene regulatory network components resistant to evolutionary change [28]. Furthermore,
the binding sites of around half of all sequence-specific regulators controlling transcrip-
tion in the blastoderm in D. melanogaster have been mapped on a genome-wide scale by
ChIP-chip [29] and for several of these factors additional binding profiles mapped by ChIP-
sequencing are available in other Drosophila species [30–32]. In this study we took advantage
of these unique gold standard networks of regulatory interactions across multiple species
to predict and evaluate gene regulatory networks from gene expression data in six species,
study their phylogeny and biology, and analyze how an integrated multi-species approach
improves network inference performance.

2 Results

2.1 Evolutionary and developmental dynamics have comparable effects on gene
expression

We collected gene expression data for 3,610 genes in six Drosophila species measured at 9–
13 time points during early embryonic development with 3–8 replicates per time point (200
samples in total) [18]. To obtain a global view on the similarities and differences between

2



samples, we performed multi-dimensional scaling using Sammon’s nonlinear mapping cri-
terion on the 3,610-dimensional sample vectors (cf. Methods and Figure 1). The first (hori-
zontal) axis of variation corresponded to developmental time, with samples ordered along
this dimension according to increasing developmental time points, while the second (ver-
tical) axis of variation corresponded to evolutionary distance, with samples ordered along
this dimension according to species. By expanding these two axes of variation into princi-
pal components, we found that the “developmental” dimension explained 34% of the total
variation in the data, while the “evolutionary” dimension explained 11% (cf. Methods). This
result confirms that variations in gene expression levels across Drosophila species at the same
developmental time point are not greater than variations across time points within the same
species. In this study we were interested whether this additional layer of inter-species ex-
pression variation can be harnessed in the reconstruction of gene regulatory networks.

2.2 Single-species network reconstruction recovers known transcriptional regu-
latory interactions in early Drosophila development

We used the context-likelihood of relatedness (CLR) algorithm [33] with Pearson correlation
as a similarity measure to predict regulatory interactions in each species separately from the
developmental gene expression data. As candidate regulators we used a set of 14 sequence-
specific transcription factors (TFs) present on the expression array whose binding sites have
been mapped by ChIP-chip in D. melanogaster at developmental time points relevant for the
present study [29]. A gold standard network of known transcriptional regulatory interac-
tions in D. melanogaster development was constructed by assigning binding sites of these
TFs to their closest gene (cf. Methods). The gold standard network was dense (25% of all
possible edges were present) consistent with the fact that genes on the expression array were
selected from genes known to be expressed during embryonic development [18] and that the
14 TFs comprise one-third of all sequence-specific regulators controlling transcription in the
D. melanogaster blastoderm embryo [29].

We compared the predicted regulatory networks in all six species to the D. melanogaster gold
standard network using standard recall and precision measurements [34]. Without exception
all six predicted networks showed percentages of true positives close to or in excess of 50%
at a recall level of 10%, corresponding to networks with 1,300–1,400 predicted interactions
(Table 1 and Figure 2a). Any differences in performance between species were found to
be small (nearly identical areas under the curve (AUC), Figure 2a). The recall cut-off of
10% in Table 1 was chosen because it was closest for most species to the inflection point
where precision starts to drop more rapidly with increasing recall (Figure 2a). The levels
of accuracy in network prediction obtained here have previously only been observed for
bacteria [8, 9] and demonstrate the importance of using a gold standard network measured
in an appropriate experimental condition. Indeed, when we used the more heterogeneous
modENCODE [35] or Flynet [36] D. melanogaster reference networks, performance dropped
dramatically (data not shown).
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2.3 Chip-sequencing data confirms similar network reconstruction performance
independent of species

Although the gold standard network reconstructed from ChIP-chip data was in D. melanogaster,
perhaps surprisingly the D. melanogaster predicted network did not perform better over-
all than the networks predicted for the other species (Figure 2a). To get confidence in this
observation, we downloaded ChIP-sequencing data for three TFs (BCD, KR, HB) in three
Drosophila species (melanogaster, pseudoobscura and virilis) [32] and one TF (TWI) in four
species (melanogaster, simulans, ananassae and pseudoobscura) [31], and created ChIP-seq gold
standard networks for five species (cf. Methods). The recall-precision curves generated from
the D. melanogaster ChIP-seq gold standard network (Figure 2b) were in good agreement
with the ChIP-chip data, demonstrating again that the D. melanogaster predicted network
performed no better than other Drosophila species. We also calculated recall-precision curves
using the D. ananassae, D. pseudobscura, D. simulans and D. virilis ChIP-seq gold standard
networks. Again, the regulatory network in that species did not perform better compared to
the other species (Figure 2c–f).

2.4 Reconstructed regulatory networks are enriched for ubiquitous interactions

The result that network reconstruction performance is similar across species regardless of
the species-origin of the gold standard network suggests that each species-specific dataset
represents a different perturbation of an underlying conserved regulatory network. To better
understand how the predicted networks in each species relate to each other, we analysed the
reconstructed regulatory networks at the 10% recall level (Table 1) in greater detail. Taken
together, these networks contained 3,329 regulatory interactions between 14 TFs and 1098
genes. About 10% of these interactions (382) were predicted in all species. To systematically
evaluate if this overlap can occur by chance, we randomized independently each interaction
network keeping its in- and out-degree distribution constant and calculated the frequencies
of having one to six edges overlap in 100 randomized networks. Figure 3a shows that the
predicted networks were significantly enriched for interactions ubiquitous to all species (Z-
score= 37.7) and depleted for species-specific interactions (Z-score= −39.5).

We then calculated if individual TFs were biased towards species-specific or ubiquitous in-
teractions. Zygotic factors such as SNA (P = 9.8 × 10−60) shared statistically significant
predicted targets among all six species whereas maternal factors such as CAD did not share
a single target across the six species. This together with the observation that early zygotic
genes at sequence level evolved much slower [37] leads to the hypothesis that not only the
sequences of early zygotic lineage genes but also the transcriptional program controlling
their expression has evolved slower. The early zygotic genes are indeed overrepresented in
the targets with conserved interactions across all species (P = 1.2× 10−5).

The observation that prediction performance is independent of species (Figure 2) could be
explained if only ubiquitous interactions (predicted in all species) were true positives. Al-
though interactions predicted only in one species have a lower precision compared to inter-
actions predicted in four or more species (Figure 3b), about a third of all true positives come
from species-specific interactions. Another possible explanation for the species-independent
performance could be that binding events are highly conserved across species. Although it
has been noted that more than 90% of TF binding sites overlapped between D. melanogaster
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and the closely related D. yakuba [30], less than 30% of those binding sites were also con-
served in the more distant D. pseudoobscura [32]. Furthermore it is also not true that con-
served gold standard interactions for these TFs (BCD, HB and KR) are more likely to be
inferred. Indeed, the recall for species-specific gold standard interactions or those conserved
in two or three species for these factors in the 10% recall networks did not differ from the
overall recall value (Figure 3c). In contrast, for the factor TWI, gold standard interactions
conserved in three or four species were more likely to be included in the 10% recall net-
works (recall values resp. 19% and 36%, Figure 3c). This is consistent with a higher degree
of binding site conservation for this factor with up to 60% conserved binding sites across six
species [31].

2.5 Differences between predicted transcriptional regulatory networks reflect
known phylogeny and biology

Since also the species-specific predicted interactions contain known gold standard interac-
tions, we hypothesized that the differences between these networks are not solely due to
random variations in the expression data. To analyse these differences, we constructed a
phylogenetic tree between the species based on the gain or loss of predicted interactions
using the principle of maximum parsimony. This method minimises the number of state
changes in all transitions in a tree and has been used previously to reconstruct the evolution-
ary history of species based on gene content [38] and to reconstruct and predict transition
states of developmental lineage trees based on gene expression data [39]. Using a binary
matrix representing the presence or absence of all 3,329 predicted TF-target interactions in
each of the 10% recall networks, a rooted tree was reconstructed which split the species in
three groups - melanogaster (top), obscura (middle), virilis (bottom) (cf. Methods and Figure
3d). This tree is in full agreement with the tree reconstructed based on gene content [40].
To ensure the robustness of the tree, we applied a standard bootstrap procedure which pre-
dicted 100% bootstrap confidence on all branches of the tree (Figure 3d). The parsimony
tree, moreover, predicts the network state transitions at each branch in terms of interactions
gained or lost at a given transition. The transitions show a bias towards gain of interactions
at most branch points over the loss. This is probably due to the presence of a large number
of species-specific interactions (Figure 3a).

We further explored whether the nine branch points (numbered 1–9 in Figure 3d) reflect the
biology behind the evolution of the Drosophila species. We created gene lists at each branch
point containing target genes which gained or lost transcriptional interactions at that branch
point. The maximum number of genes (361) gained interactions from branch point ‘A’ to D.
virilis and were enriched for neuron differentiation (P = 1.2× 10−6) and embryonic morpho-
genesis (P = 3.1× 10−8). Genes gaining interactions from branch point ‘D’ to D. simulans
were enriched for response to organic substances (P = 3.4× 10−2), in line with the fact that
D. simulans, unlike D. melanogaster, lives on diverse rotting, non-sweet substrates throughout
the year [41]. Gene ontology analysis of all target sets revealed that many gene sets were en-
riched for transcription regulation (Supplementary Table S1), i.e. transcriptional regulators
were more likely to gain or lose interactions in the network rewiring. At each branch point,
we found TFs losing or gaining interactions more than expected by chance (Supplementary
TableS2). For instance, SLP1 is predicted to lose its interactions with genes involved in wing
disc formation only in D. ananassae while Dorsal (DL) is predicted to regulate mitochondrial
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genes only in the melanogaster subgroup. Taken together, a biologically relevant evolutionary
network history can be reconstructed using the individual predicted regulatory networks in
six Drosophila species.

2.6 Multi-species analysis improves network reconstruction

It has been observed that different network inference algorithms applied to the same data
uncover complementary aspects of the true underlying regulatory network [9, 10] and this
has formed the basis for integrative approaches which combine the predictions from multi-
ple algorithms [8]. In our case, since the networks predicted from different species equally
well recover known transcriptional interactions while their differences reflect known phy-
logeny and biology, we reasoned that a multi-species analysis which combines predictions
across species should also lead to a better network reconstruction. To test this hypothe-
sis we considered several integrative approaches. Firstly, we combined the expression data
from all species into one dataset to which we again applied the CLR algorithm (“merged
data” method). Secondly, we kept CLR scores from the individual species and applied rank-
aggregation methods to derive a consensus ranking of predicted interactions. More pre-
cisely, sorting interactions from high to low confidence, we defined a consensus rank as (i)
the maximum rank over all species (“intersection” method, a prediction has low consensus
rank (i.e. high confidence) if it has low rank in all species), (ii) the minimum rank over all
species (“union” method, a prediction has low consensus rank if it has low rank in at least
one species) and (iii) the average rank over all species (“average” method, also used in [8]).
Finally, motivated by the phylogenetic tree reconstruction, we also constructed a consensus
ranking as the centroid of the six species-specific rankings for the cityblock distance, which
for discrete networks corresponds to counting total number of edge gains and losses be-
tween two networks (“centroid” method). Figure 4 shows the recall vs. precision curves for
the five consensus networks against the six ChIP-chip and ChIP-seq gold standard networks.

To quantitatively compare different methods across different gold standard networks we
considered the area under the recall–precision curve (AUC) and the precision at 10% recall
(PREC10) as performance measures and converted them to Z-scores by comparison to AUCs
and PREC10s of networks generated by randomly assigning ranks to all possible edges in the
corresponding gold standard network. While the AUC assesses the overall performance of a
predicted network, PREC10 measures the quality of the top-ranked predictions, a property
that may be of greater practical relevance. As the overall score, we considered the average Z-
scores over the six ChIP-chip and ChIP-seq gold standard networks (similar to the procedure
of [8]). As expected, this analysis showed that no predicted network performs best for either
measure across all gold standards (Table 2). The single-species virilis networks performed
best for 5 out of 12 AUC-Z and PREC10-Z scores, albeit not for the ChIP-seq network mea-
sured in its own species, and achieves highest average PREC10-Z score of all single-species
networks. This overall good performance is consistent with virilis having the highest num-
ber of measured time points in the data (Supplementary Table S3). D. melanogaster also had
more data points available than the other four species, but its time series were less complete
(Supplementary Table S3). Among the integrative methods, the centroid method performed
best for 5 out of 12 AUC-Z and PREC10-Z scores. Overall, the union, average and centroid
methods all had higher average AUC-Z score than the best single-species network, but only
the centroid method had higher average PREC10-Z score than the best single-species net-
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work. The centroid method had the highest average AUC-Z and PREC10-Z scores of all
single- and multi-species methods and should be considered the optimal network integra-
tion method, at least on this dataset.

2.7 The centroid regulatory network is clustered according to temporal expres-
sion

Finally we investigated the topology and biology of the centroid network at the 50% preci-
sion level (corresponding to 12% recall) with respect to the D. melanogaster ChIP-chip net-
work. This centroid network consists of two disconnected components with regulators in
each component organized according to their temporal expression profile (Figure 5). The
first (left) component predominantly consists of shared targets of the TFs D, KR, HKB, PRD,
RUN, SLP1 and TWI whose expression profiles have a characteristic peak at the second
time point. This component is enriched for the functional categories developmental protein
(P = 4.3× 10−32) and cell fate determination (P = 2.5× 10−13). The second (right) component
mainly consists of targets of the TF DL and is enriched for mitochondrion (P = 3.6× 10−17)
and cofactor metabolic process (P = 8.9× 10−7). The functional enrichment of the first compo-
nent is not surprising since the genes selected for the gene expression study were known to
be expressed during embryonic development [18]. The functional enrichment of the second
component however, together with the fact that many targets of DL (Dorsal) are validated
by ChIP-chip data (Figure 5) suggests a new biological hypothesis that DL might regulate
cellular energy metabolism processes.

3 Discussion

Here we predicted and evaluated developmental gene regulatory networks from temporal
gene expression data in six Drosophila species, studied their phylogeny and biology, and an-
alyzed how an integrated multi-species analysis improved network inference performance
using gold standard networks of regulatory interactions measured by ChIP-chip and ChIP-
seq in five species.

We unexpectedly found that network prediction performance of the single-species networks
was independent of the species where the gold standard was measured. With precision val-
ues around or greater than 50% at a recall level of 10% for all predicted networks, this result
was clearly not due to poor overall prediction performance. Although there was a trend that
interactions predicted in all species had higher precision than interactions predicted in only
one species and that conserved interactions in the gold standard networks for at least one
of the TFs had higher chance to be correctly predicted, neither trend was sufficiently strong
to account for the observed performance similarities. An alternative or additional expla-
nation could be that the “true” gene expression and binding profiles are highly conserved
between these six species but the observed profiles show species-dependent variation due to
the inherent noisyness of high-throughput data. Because such random fluctuations in gene
expression and binding data would be unrelated, one would then indeed expect similar per-
formance independent of species. This explanation however conflicts with the published
findings that binding divergence for these TFs increases with evolutionary distance and our
observation that the differences between the predicted regulatory networks are consistent
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with the known phylogeny and differences in biology between these six Drosophila species.
Future work in other species will have to elucidate if the observed species-independent per-
formance is an artefact of this particular dataset, a consequence of the highly conserved
nature of the underlying biological process or a more general feature of this type of analysis.

Motivated by the result that all species-specific networks showed good inference perfor-
mance and that their differences reflected true phylogenetic relations, we pursued integra-
tive approaches whereby predicted networks from all species were combined into consen-
sus networks. In addition to established aggregation methods such as taking the intersec-
tion, union or rank average of individual predictions, we also considered a novel centroid
method which minimizes the total sum of edge gains and losses with respect to all individual
networks. The union, rank average and centroid method, but not the intersection method,
showed better overall performance than the single-species networks, consistent with the ob-
servation that correct predictions are not restricted to interactions predicted in all species.
The centroid method performed best overall and had the additional advantage of having a
higher rate of true positives among the top-ranked predictions.

Our work has shown that in an evolutionarily conserved system such as early embryonic de-
velopment, integration of data from comparable experiments in multiple species improves
the inference of gene regulatory networks. Future challenges will be to investigate if these
results also hold for other biological processes, when more heterogeneous data are used or
when data from more distantly related species are combined, in order to cover the entire
spectrum of available multi-species gene expression datasets.

4 Methods

4.1 Gene expression data

Embryonic developmental time-course expression data in 6 Drosophila species (D. melanogaster
(“amel”), D. ananassae (“ana”), D. persimilis (“per”), D. pseudoobscura (“pse”), D. simulans
(“sim”) and D. virilis (“vir”)) was obtained from [18] (ArrayExpress accession code E-MTAB-
404). The data consists of 10 (amel), 13 (vir) or 9 (ana, per, pse, sim) developmental time
points with several replicates per time point resulting in a total of 56 (amel), 36 (vir) or 27
(ana, per, pse, sim) arrays per species (Supplementary Table S3). The downloaded data was
processed by averaging for each of 3610 genes on the array absolute expression levels over
all reporters for that gene followed by taking the log2 transform.

4.2 Multi-dimensional scaling and variance explained

We used two-dimensional scaling using the Eucledian distance and Sammon’s nonlinear
mapping criterion on the 3,610-dimensional sample vectors using the built-in mdscale func-
tion of Matlab. To estimate the variance explained by each of the two dimensions, we first
calculated the principal components of the data matrix. These are a set of 200 mutually
orthogonal (200× 1)-dimensional vectors, each explaining a proportion σ2

i of the total vari-
ance, i.e. ∑200

i=1 σ2
i = 1. Each dimension in Figure 1 also corresponds to a (200× 1) vector Y

and the proportion of variance explained by Y is found by expansion into principal compo-
nents, σ2

Y = ∑200
i=1 σ2

i (Y
TVi)

2, where it is assumed that Y and all Vi have unit norm. To correct
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for systematic biases in the data, genes were standardized to have mean zero and standard
deviation one over all 200 samples.

4.3 ChIP-chip data

ChiP-chip data for 21 sequence-specific Drosophila transcription factors (TFs) measured in
D. melanogaster embryos was obtained from [29]. We considered the 1% FDR bound regions
and defined target genes for each TF by assigning to each bound region its closest gene, if the
distance between the region and the gene was less than 5,000 base pairs. For TFs with repeat
measurements, target lists were defined by taking the union over replicates. Fourteen of the
TFs were present on the array and used to construct a gold standard regulatory network.

4.4 ChIP-sequencing data

The peaks for three transcription factors present on the array (BCD, HB and KR) for three
species (D. melanogaster, D. pseudoobscura and D. virilis) were obtained from [32]. Genes with
normalized peak height greater than 0 were selected as the gold standard targets of a given
transcription factor. The peaks for one factor (TWI) for four species (D. melanogaster, D.
ananassae, D. pseudoobscura and D. simulans) were obtained from [31]. Peaks were mapped
to the nearest transcription start site of genes by using the gene annotation from FlyBase
(FB2013 03). Genes with peak height greater than 10 were selected as the gold standard
targets for each species.

4.5 Transcriptional regulatory network reconstruction

We used the CLR (Context Likelihood of Relatedness) algorithm [33] using Pearson correla-
tion as a similarity measure to predict transcriptional regulatory networks in each species,
using the aforementioned 14 TFs as candidate regulators. Because the CLR algorithm only
considers the right-hand tail of similarity values for every TF–gene combination, in theory
the absolute values of the Pearson correlations should be provided to the CLR software.
However, we observed improved performance with respect to all gold standard networks
when the Pearson correlations were not transformed to absolute values before calling the
CLR algorithm (effectively ignoring negative correlations) and therefore used this approach
for all reported results. Pearson correlation followed by CLR also performed better than the
default mutual information similarity measure followed by CLR as well as using Pearson
correlation or mutual information without CLR (data not shown).

4.6 Phylogenetic tree construction

We created a binary matrix of 3,329 rows and 6 columns representing predicted TF–target
interactions in each species at a CLR Z-score cutoff corresponding to 10% recall with respect
to the D. melanogaster ChIP-chip network. In this matrix, the (i, j)th element denotes whether
the interaction i is present in the species j or not. Network states and state changes were
mapped onto the branches of inferred phylogenetic trees using the PARS program from the
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PHYLIP package [42] by defining D. virilis as the root of the tree. Bootstrapping was per-
formed using the SEQBOOT program from the PHYLIP package where 100 datasets were
generated by randomly replacing a given six species network matrix. A consensus tree with
a bootstrap confidence on each branch of the tree was reconstructed using the CONSENSE
program from the PHYLIP package.

4.7 Enrichment analyses

Gene set enrichment for each phylogenetic tree state change was calculated using the DAVID
suite of programs [43]. For each transcription factor, enrichment of overlap of the candidate
target gene set with each transition state gene set was calculated using a hypergeometric
test. Early zygotic, late zygotic, maternal and adult gene lists were downloaded from [37]
and enrichment was calculated using a hypergeometric test.
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Figure 1: Two-dimensional scaling plot of the gene expression data using Sammon’s non-
linear mapping criterion. Each dot represents one sample (200 samples total) positioned
such that the two-dimensional distances reflect the Euclidean distances between the 3610-
dimensional data vectors. Samples are colored by species and the number in each dot is the
developmental time point of the sample.
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Figure 2: Recall vs. precision curves for predicted regulatory networks in six Drosophila
species. The gold standard networks were the ChIP-chip network for 14 TFs in D.
melanogaster (a) and the ChIP-seq networks for D. melanogaster (b, 4 TFs), D. ananassae (c,
1 TF), D. pseudoobscura (d, 4 TFs), D. simulans (e, 1 TF) and D. virilis (f, 4 TFs). In panel a, the
numbers in the legend are the area under the curve for each species. In panel b–f, the curve
for the reference species is in red while the other species are in black.
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Figure 4: Recall vs. precision curves for predicted regulatory networks for five multi-species
meta-analysis methods. The gold standard networks were the ChIP-chip network for 14 TFs
in D. melanogaster (a) and the ChIP-seq networks for D. melanogaster (b, 4 TFs), D. ananassae
(c, 1 TF), D. pseudoobscura (d, 4 TFs), D. simulans (e, 1 TF) and D. virilis (f, 4 TFs). The numbers
in each legend are the area under the curve for each method.
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Figure 5: Centroid regulatory network inferred by combining predicted networks across
six species. Red edges indicate interactions confirmed by ChIP-chip data in D. melanogaster.
The insets show the temporal expression profiles in D. melanogaster for the regulator(s) in the
corresponding subnetworks, clockwise from top left: D, KR, HKB, PRD, RUN, SLP1, TWI;
DL; MAD, BCD, CAD; HB.
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Tables

TF ChIP Amel Ana Per Pse Sim Vir
D 1166 158 (129) 145 (122) 171 (137) 154 (124) 163 (132) 132 (102)
kr 518 125 (86) 128 (86) 196 (125) 176 (109) 127 (80) 207 (143)
mad 40 11 (0) 0 (0) 1 (0) 4 (0) 0 (0) 0 (0)
bcd 157 13 (0) 4 (0) 0 (0) 0 (0) 0 (0) 0 (0)
cad 274 8 (0) 0 (0) 40 (7) 0 (0) 133 (7) 85 (13)
da 795 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)
dl 1503 216 (163) 234 (183) 67 (52) 137 (110) 289 (216) 111 (83)
hb 358 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)
hkb 206 131 (49) 181 (61) 167 (45) 172 (48) 135 (43) 122 (34)
prd 313 44 (21) 38 (15) 65 (28) 58 (27) 41 (10) 55 (22)
run 158 134 (52) 117 (49) 186 (56) 154 (56) 127 (47) 167 (62)
slp1 212 178 (57) 155 (45) 221 (62) 192 (57) 154 (47) 192 (54)
sna 291 170 (78) 169 (73) 207 (83) 191 (76) 174 (72) 197 (81)
twi 1163 98 (80) 96 (81) 177 (120) 153 (108) 74 (61) 149 (121)
Total 7154 1286 1267 1498 1391 1417 1417
Precision 0.56 0.56 0.48 0.51 0.50 0.50

Table 1: Transcription factors and their number of target genes in the D. melanogaster ChIP-
chip gold standard network and in the predicted networks for six Drosophila species at the
10% recall level (in brackets for each TF the number of true positive predictions). The bottom
two rows are the total number of interactions in each network and the overall precision
(percentage of true positives) of the predicted networks.
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A Supplementary tables

Transition Functional category P-value
A→ B loss post-embyonic organ development 5.8× 10−5

regulation of transcription 1.2× 10−4

A→ B gain cell fate commitment 1.0× 10−9

regulation of transcription 4.4× 10−8

A→ C loss cell–cell adhesion 2.0× 10−4

exocrine system development 5.9× 10−4

A→ C gain cell fate commitment 1.1× 10−12

regulation of transcription 2.2× 10−7

A→ vir loss regulation of transcription 2.1× 10−5

ectoderm development 4.2× 10−5

A→ vir gain neuron differentiation 1.2× 10−6

B→ per loss positive regulation of apoptosis 6.6× 10−3

B→ per gain translation factor activity 2.3× 10−5

regulation of transcription 2.4× 10−4

B→ pse loss sensory organ development 4.6× 10−3

transcription factor activity 8.2× 10−3

B→ pse gain intracellular organelle lumen 1.3× 10−3

C→ ana loss appendage development 4.0× 10−6

C→ ana gain regulation of transcription 7.2× 10−6

C→ D loss gastrulation 9.7× 10−7

C→ D gain mitochondrion 9.5× 10−5

D→ amel loss positive regulation of apoptosis 1.1× 10−2

D→ amel gain tissue morphogenesis 7.2× 10−3

D→ sim loss rRNA processing 1.2× 10−4

response to organic substances 3.4× 10−2

D→ sim gain regulation of transcription 4.5× 10−6

Table S1: Functional enrichment for the gene sets gaining or losing interactions at each tran-
sition state in the phylogenetic tree in Figure 3d.
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TF Transition Functional category P-value
BCD A→ B loss
BCD A→ vir loss
BCD, HKB C→ ana gain
BCD, MAD D→ amel gain
DL B→ per loss oxidation reduction 4.9× 10−2

DL C→ D gain mitochondrion 1.2× 10−8

MAD B→ pse gain
SLP1 C→ ana loss wing disc development 3.5× 10−5

appendages development 1.8× 10−5

leg disc pattern formation 2.8× 10−4

TWI B→ pse loss
TWI C→ D loss gastrulation 5.8× 10−5

gland development 6.5× 10−4

tube development 5.2× 10−3

Table S2: Transcription factors significantly enriched (P < 0.05) for targets in gene sets gain-
ing or losing interactions at transition states in the phylogenetic tree in Figure 3d and the
functional enrichment of these target sets.

Species Time points Series Samples Completeness
Amel 10 8 56 0.7
Ana 9 3 27 1
Per 9 3 27 1
Pse 9 3 27 1
Sim 9 3 27 1
Vir 13 3 39 0.92

Table S3: Expression data summary, listing for each species the number of time points, the
number of replicate series, the total number of samples, and the completeness of the data
(number of samples divided by number of time points times number of series).
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