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Abstract Classifiers based on sparse representations

have recently been shown to provide excellent results in

many visual recognition and classification tasks. How-

ever, the high cost of computing sparse representations

at test time is a major obstacle that limits the appli-

cability of these methods in large-scale problems, or

in scenarios where computational power is restricted.

We consider in this paper a simple yet efficient alterna-

tive to sparse coding for feature extraction. We study a

classification scheme that applies the soft-thresholding

nonlinear mapping in a dictionary, followed by a lin-

ear classifier. A novel supervised dictionary learning

algorithm tailored for this low complexity classifica-

tion architecture is proposed. The dictionary learning

problem, which jointly learns the dictionary and linear

classifier, is cast as a difference of convex (DC) pro-

gram and solved efficiently with an iterative DC solver.

We conduct experiments on several datasets, and show

that our learning algorithm that leverages the struc-

ture of the classification problem outperforms generic

learning procedures. Our simple classifier based on soft-

thresholding also competes with the recent sparse cod-

ing classifiers, when the dictionary is learned appro-

priately. The adopted classification scheme further re-

quires less computational time at the testing stage, com-

pared to other classifiers. The proposed scheme shows

the potential of the adequately trained soft-thresholding
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mapping for classification and paves the way towards

the development of very efficient classification methods

for vision problems.

Keywords Dictionary learning · Soft-thresholding ·
Sparse coding · Rectifier linear units · Neural networks

1 Introduction

The recent decade has witnessed the emergence of huge

volumes of high dimensional information produced by

all sorts of sensors. For instance, a massive amount of

high-resolution images are uploaded on the Internet ev-

ery minute. In this context, one of the key challenges

is to develop techniques to process these large amounts

of data in a computationally efficient way. We focus in
this paper on the image classification problem, which

is one of the most challenging tasks in image analy-

sis and computer vision. Given training examples from

multiple classes, the goal is to find a rule that permits to

predict the class of test samples. Linear classification is

a computationally efficient way to categorize test sam-

ples. It consists in finding a linear separator between

two classes.

Linear classification has been the focus of much re-

search in statistics and machine learning for decades

and the resulting algorithms are well understood. How-

ever, many datasets cannot be separated linearly and

require complex nonlinear classifiers. A popular nonlin-

ear scheme, which leverages the efficency and simplicity

of linear classifiers, embeds the data into a high dimen-

sional feature space, where a linear classifier is eventu-

ally sought. The feature space mapping is chosen to be

nonlinear in order to convert nonlinear relations to lin-

ear relations. This nonlinear classification framework

is at the heart of the popular kernel-based methods
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(Shawe-Taylor and Cristianini, 2004) that make use of

a computational shortcut to bypass the explicit com-

putation of feature vectors. Despite the popularity of

kernel-based classification, its computational complex-

ity at test time strongly depends on the number of

training samples (Burges, 1998), which limits its ap-

plicability in large scale settings.

A more recent approach for nonlinear classification

is based on sparse coding, which consists in finding

a compact representation of the data in an overcom-

plete dictionary. Sparse coding is known to be benefi-

cial in signal processing tasks such as denoising (Elad

and Aharon, 2006), inpainting (Fadili et al, 2009), cod-

ing (Figueras i Ventura et al, 2006), but it has also

recently emerged in the context of classification, where

it is viewed as a nonlinear feature extraction mapping.

It is usually followed by a linear classifier (Raina et al,

2007), but can also be used in conjunction with other

classifiers (Wright et al, 2009). Classification architec-

tures based on sparse coding have been shown to work

very well in practice and even achieve state-of-the-art

results on particular tasks (Mairal et al, 2012; Yang

et al, 2009). The crucial drawback of sparse coding clas-

sifiers is however the prohibitive cost of computing the

sparse representation of a signal or image sample at

test time. This limits the relevance of such techniques

in large-scale vision problems or when computational

power is scarce.

To remedy to these large computational require-

ments, we adopt in the classification a computation-

ally efficient sparsifying transform, the soft threshold-

ing mapping hα, defined by:

hα(z) = max(0, z − α) , (z − α)+, (1)

for α ∈ R+ and (·)+ = max(0, ·). Note that, unlike the

usual definition of soft-thresholding given by sgn(z)(|z|−
α)+, we consider here the one-sided version of the soft-

thresholding map, where the function is equal to zero

for negative values (see Fig. 3 (a) vs. Fig 3 (b)). The

map hα is naturally extended to vectors z by apply-

ing the scalar map to each coordinate independently.

Given a dictionary D, this map can be applied to a

transformed signal z = DTx that represents the coeffi-

cients of features in a signal x. Its outcome, which only

considers the most important features of x is used for

classification. In more details, we consider in this paper

the following simple two-step procedure for classifica-

tion:

1. Feature extraction: Let D = [d1| . . . |dN] ∈ Rn×N
and α ∈ R+. Given a test point x ∈ Rn, compute

hα(DTx).

LabelDT wT

Fig. 1 Soft-thresholding classification scheme. The box in
the middle applies the soft-thresholding non-linearity hα.

2. Linear classification: Let w ∈ RN . If wThα(DTx)

is positive, assign x to class 1. Otherwise, assign to

class −1.

The architecture is illustrated in Fig. 1. The proposed

classification scheme has the advantage of being sim-

ple, efficient and easy to implement as it involves a

single matrix-vector multiplication and a max opera-

tion. The soft-thresholding map has been successfully

used in (Coates and Ng, 2011), as well as in a number of

deep learning architectures (Kavukcuoglu et al, 2010b),

which shows the relevance of this efficient feature ex-

traction mapping. The remarkable results in Coates

and Ng (2011) show that this simple encoder, when

coupled with a standard learning algorithm, can often

achieve results comparable to those of sparse coding,

provided that the number of labeled samples and the

dictionary size are large enough. However, when this is

not the case, a proper training of the classifier param-

eters (D,w) becomes crucial for reaching good classifi-

cation performance. This is the objective of this paper.

We propose a novel supervised dictionary learning

algorithm, which we call LAST (Learning Algorithm

for Soft-Thresholding classifier). It jointly learns the

dictionary D and the linear classifier w tailored for the

classification architecture based on soft-thresholding.

We pose the learning problem as an optimization prob-

lem comprising a loss term that controls the classifi-

cation accuracy and a regularizer that prevents overfit-

ting. This problem is shown to be a difference-of-convex

(DC) program, which is solved efficiently with an it-

erative DC solver. We then perform extensive experi-

ments on textures, digits and natural images datasets,

and show that the proposed classifier, coupled with our

dictionary learning approach, exhibits remarkable per-

formance with respect to numerous competitor meth-

ods. In particular, we show that our classifier provides

comparable or better classification accuracy than sparse

coding schemes.

The rest of this paper is organized as follows. In

the next Section, we highlight the related work. In Sec-

tion 3, we formulate the dictionary learning problem

for classifiers based on soft-thresholding. Section 4 then

presents our novel learning algorithm, LAST, based on

DC optimization. In Section 5, we perform extensive ex-

periments on textures, natural images and digits datasets

and Section 6 finally gathers a number of important ob-
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servations on the dictionary learning algorithm, and the

classification scheme.

2 Related work

We first highlight in this section the difference between

the proposed approach and existing techniques from the

sparse coding and dictionary learning literature. Then,

we draw a connection between the considered approach

and neural network models on the architecture and op-

timization aspects.

2.1 Sparse coding

The classification scheme adopted in this paper shares

similarities with the now popular architectures that use

sparse coding at the feature extraction stage. We recall

that the sparse coding mapping, applied to a datapoint

x in a dictionary D consists in solving the optimization

problem

argmin
c∈RN

‖x−Dc‖22 + λ‖c‖1. (2)

It is now known that, when the parameters of the sparse

coding classifier are trained in a discriminative way, ex-

cellent classification results are obtained in many vi-

sion tasks (Mairal et al, 2012, 2008; Ramirez et al,

2010). In particular, significant gains over the stan-

dard reconstructive dictionary learning approaches are

obtained when the dictionary is optimized for classi-

fication. Several dictionary learning methods also con-

sider an additional structure (e.g., low-rankness) on the

dictionary, in order to incorporate a task-specific prior

knowledge (Zhang et al, 2013; Chen et al, 2012; Ma

et al, 2012). This line of research is especially popu-

lar in face recognition applications, where a mixture of

subspace model is known to hold (Wright et al, 2009).

Up to our knowledge, all the discriminative dictionary

learning methods optimize the dictionary in regards to

the sparse coding map in Eq. (2), or a variant that still

requires to solve a non trivial optimization problem. In

our work however, we introduce a discriminative dic-

tionary learning method specific to the efficient soft-

thresholding map. Interestingly, soft-thresholding can

be viewed as a coarse approximation to non-negative

sparse coding, as we show in Appendix A. This fur-

ther motivates the use of soft-thresholding for feature

extraction, as the merits of sparse coding for classifica-

tion are now well-established.

Closer to our work, several approaches have been in-

troduced to approximate sparse coding with a more effi-

cient feed-forward predictor (Kavukcuoglu et al, 2010a;

Gregor and LeCun, 2010), whose parameters are learned

in order to minimize the approximation error with re-

spect to sparse codes. These works are however different

from ours in several aspects. First, our approach does

not require the result of the soft-thresholding mapping

to be close to that of sparse coding. We rather require

solely a good classification accuracy on the training

samples. Moreover, our dictionary learning approach is

purely supervised, unlike Kavukcuoglu et al (2010a,b).

Finally, these methods often use nonlinear maps (e.g.,

hyperbolic tangent in Kavukcuoglu et al (2010a), multi-

layer soft-thresholding in Gregor and LeCun (2010))

that are different from the one considered in this pa-

per. The single soft-thresholding mapping considered

here has the advantage of being simple, very efficient

and easy to implement in practice. It is also strongly

tied to sparse coding (see Appendix A).

2.2 Neural networks

The classification architecture considered in our work

is also quite strongly related to artificial neural net-

work models (Bishop, 1995). Neural network models

are multi-layer architectures, where each layer consists

of a set of neurons. The neurons compute a linear com-

bination of the activation values of the preceding layer,

and an activation function is then used to convert the

neurons’ weighted input to its activation value. Popu-

lar choices of activation functions are logistic sigmoid

and hyperbolic tangent nonlinearities. Our classifica-

tion architecture can be seen as a neural network with

one hidden layer and hα as the hidden units’ activa-

tion function, and zero bias (Fig. 2). Equivalently, the

activation function can be set to max(0, x) with a con-

stant bias −α across all hidden units. The dictionary D

defines the connections between the input and hidden

layer, while w represents the weights that connect the

hidden layer to the output.

Output

Hidden layer

Input

Dictionary D

Normal vector  w

Fig. 2 Neural network representation of our classification
architecture. Greyed neurons have zero activation value.
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In an important recent contribution, Glorot et al

(2011) showed that using the rectifier activation func-

tion max(0, x) results in better performance for deep

networks than the more classical hyperbolic tangent

function. On top of that, the rectifier nonlinearity is

more biologically plausible, and leads to sparse net-

works; a property that is highly desirable in representa-

tion learning (Bengio et al, 2013). While the architec-

ture considered in this paper is close to that of Glorot

et al (2011), it actually differs in several important as-

pects. First, our architecture assumes that hidden units

have a bias equal to −α < 0, shared across all the hid-

den units, while it is unclear whether any constraint on

the bias is set in the existing rectifier networks. The

parameter α is intimately related to the sparsity of the

features. This can be justified by the fact that hα is

an approximant to the non-negative sparse coding map

with sparsity penalty α (see Appendix A). Without im-

posing any restriction on the neurons’ bias (e.g., neg-

ativity) in rectifier networks, the representation might

however not be sparse. This potentially explains the

necessity to use an additional `1 sparsifying regular-

izer on the activation values in Glorot et al (2011) to

enforce the sparsity of the network, while sparsity is

achieved implicitly in our scheme. Second, unlike the

work of (Glorot et al, 2011) that employs a biological

argument to introduce the rectifier function, we choose

the soft-thresholding nonlinearity due to its strong re-

lation to sparse coding. Our work therefore provides

an independent motivation for considering the rectifier

activation function, while the biological motivation in

(Glorot et al, 2011) in turn gives us another motivation

for considering soft-thresholding. Third, rectified linear

units are very often used in the context of deep net-

works (Maas et al, 2013; Zeiler et al, 2013), and seldom

used with only one hidden layer. In that sense, the clas-

sification scheme considered in this paper has a simpler

description, and can be seen as a particular instance of

the general neural network models.

From an optimization perspective, our learning al-

gorithm leverages the simplicity of our classification ar-

chitecture and is very different from the generic tech-

niques used to train neural networks. In particular, while

neural networks are generally trained with stochastic

gradient descent, we adopt a more principled approach

based on difference of convex optimization that reaches

better solutions. Our work therefore provides new in-

sights on the connections between dictionary learning

and neural network models.

3 Problem formulation

We present below the learning problem, that estimates

jointly the dictionary D ∈ Rn×N and linear classifier

w ∈ RN in our fast classification scheme described in

Section 1. We consider the binary classification task

where X = [x1| . . . |xm] ∈ Rn×m and y = [y1| . . . |ym] ∈
{−1, 1}m denote respectively the set of training points

and their associated labels. We consider the following

supervised learning formulation

argmin
D,w

m∑
i=1

L(yiw
Thα(DTxi)) +

ν

2
‖w‖22, (3)

where L denotes a convex loss function that penalizes

incorrect classification of a training sample and ν is a

regularization parameter that prevents overfitting. The

soft-thresholding map hα has been defined in Eq. (1).

Typical loss functions that can be used in Eq. (3) are

the hinge loss (L(x) = max(0, 1− x)), which we adopt

in this paper, or its smooth approximation, the logis-

tic loss (L(x) = log(1 + e−x)). The above optimization

problem attempts to find a dictionary D and a linear

separator w such that wT(DTxi − α)+ has the same

sign as yi on the training set, which leads to correct

classification. At the same time, it keeps ‖w‖2 small

in order to prevent overfitting. Note that to simplify

the exposition, the bias term in the linear classifier is

dropped. However, our study extends straightforwardly

to include nonzero bias.

The problem formulation in Eq. (3) is reminiscent

of the popular support vector machine (SVM) training

procedure, where only a linear classifier w is learned.

Instead, we embed the nonlinearity directly in the prob-

lem formulation, and learn jointly the dictionary D and

the linear classifier w. This significantly broadens the

applicability of the learned classifier to important non-

linear classification tasks. Note however that adding

a nonlinear mapping raises an important optimization

challenge, as the learning problem is no more convex.

When we look closer at the optimization problem

in Eq. (3), we note that, for any α > 0, the objective

function is equal to:

m∑
i=1

L(yiαwTh1(DTxi/α)) +
ν

2
‖w‖22

=

m∑
i=1

L(yiw̃
Th1(D̃Txi)) +

ν′

2
‖w̃‖22,

where w̃ = αw, D̃ = D/α and ν′ = ν/α2. Therefore,

without loss of generality, we set the sparsity parameter

α to 1 in the rest of this paper. This is in contrast with

traditional dictionary learning approaches based on `0
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or `1 minimization problems, where a sparsity parame-

ter needs to be set manually beforehand. Fixing α = 1

and unconstraining the norms of the dictionary atoms

essentially permits to adapt the sparsity to the prob-

lem at hand. This represents an important advantage,

as setting the sparsity parameter is in general a diffi-

cult task. A sample x is then assigned to class ‘+1’ if

wTh1(DTx) > 0, and class ‘−1’ otherwise.

Finally, we note that, even if our focus primarily

goes to the binary classification problem, the extension

to multi-class can be easily done through a one-vs-all

strategy, for instance.

4 Learning algorithm

The problem in Eq. (3) is non-convex and difficult to

solve in general. In this section, we propose to relax the

original optimization problem and cast it as a difference-

of-convex (DC) program. Leveraging this property, we

introduce LAST, an efficient algorithm for learning the

dictionary and the classifier parameters in our classifi-

cation scheme based on soft-thresholding.

4.1 Relaxed formulation

We rewrite now the learning problem in an appropri-

ate form for optimization. We start with a simple but

crucial change of variables. Specifically, we define uj ←
|wj |dj, vj ← |wj | and sj ← sgn(wj). Using this change

of variables, we have for any 1 ≤ i ≤ m,

yiw
Th1(DTxi) = yi

N∑
j=1

sgn(wj)(|wj |dT
j xi − |wj |)+

= yi

N∑
j=1

sj(u
T
j xi − vj)+.

Therefore, the problem in Eq.(3), with α = 1, can be

rewritten in the following way:

argmin
U,v,s

m∑
i=1

L

yi N∑
j=1

sj(u
T
j xi − vj)+

+
ν

2
‖v‖22, (4)

subject to v > 0.

The equivalence between the two problem formula-

tions in Eqs. (3) and (4) only holds when the compo-

nents of the linear classifier w are restricted to be all

non zero. This is however not a limiting assumption as

zero components in the normal vector of the optimal

hyperplane of Eq. (3) can be removed, which is equiv-

alent to using a dictionary of smaller size.

The variable s, that is the sign of the components

of w, essentially encodes the “classes” of the different

atoms. In other words, an atom dj for which sj = +1

(i.e., wj is positive) is most likely to be active for sam-

ples of class ‘1’. Conversely, atoms with sj = −1 are

most likely active for class ‘−1’ samples. We assume

here that the vector s is known a priori. In other words,

this means that we have a prior knowledge on the pro-

portion of class 1 and class −1 atoms in the desired

dictionary. For example, setting half of the entries of

the vector s to be equal to +1 and the other half to −1

encodes the prior knowledge that we are searching for

a dictionary with a balanced number of class-specific

atoms. Note that s can be estimated from the distribu-

tion of the different classes in the training set, assuming

that the proportion of class-specific atoms in the dictio-

nary should approximately follow that of the training

samples.

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−1
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(b)

Fig. 3 (a): sgn(x)(|x| − α)+, (b): hα (solid), and its smooth
approximation q(x−α) (dashed), with β = 10. We used α = 1.

After the above change of variables, we now approx-

imate the term (uT
j xi − vj)+ in Eq.(4) with a smooth

function q(uT
j xi−vj) where q(x) = 1

β log (1 + exp (βx)),

and β is a parameter that controls the accuracy of the

approximation (Fig. 3 (b)). Specifically, as β increases,

the quality of the approximation becomes better. The

function q with β = 1 is often referred to as “soft-plus”

and plays an important role in the training objective

of many classification schemes, such as the classifica-

tion restricted Boltzmann machines (Larochelle et al,

2012). Note that this approximation is used only to

make the optimization easier at the learning stage; at

test time, the original soft-thresholding is applied for

feature extraction.

Finally, we replace the strict inequality v > 0 in

Eq. (4) with v ≥ ε, where ε is a small positive con-

stant number. The latter constraint is easier to handle

in the optimization, yet both constraints are essentially

equivalent in practice.
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We end up with the following optimization problem:

(P) :
argmin

U,v

m∑
i=1

L

yi N∑
j=1

sjq(u
T
j xi − vj)

+
ν

2
‖v‖22,

subject to v ≥ ε,

that is a relaxed version of the learning problem in Eq.

(4). Once the optimal variables (U,v) are determined,

D and w can be obtained using the above change of

variables.

4.2 DC decomposition

The problem (P) is still a nonconvex optimization prob-

lem that can be hard to solve using traditional meth-

ods, such as gradient descent or Newton-type meth-

ods. However, we show in this section that problem (P)

can be written as a difference of convex (DC) program

(Horst, 2000) which leads to efficient solutions.

We first define DC functions. A real-valued function

f defined on a convex set U ⊆ Rn is called DC on U if,

for all x ∈ U , f can be expressed in the form

f(x) = g(x)− h(x),

where g and h are convex functions on U . A represen-

tation of the above form is said to be a DC decomposi-

tion of f . Note that DC decompositions are clearly not

unique, as f(x) = (g(x)+c(x))−(h(x)+c(x)) provides

other decompositions of f , for any convex function c.

Optimization problems of the form minx{f(x) : fi(x) ≤
0, i = 1, . . . , p}, where f and fi for 1 ≤ i ≤ p are all DC

functions, are called DC programs.

The following proposition now states that the prob-

lem (P) is DC:

Proposition 1 For any convex loss function L and

any convex function q, the problem (P ) is DC.

While Proposition 1 states that the problem (P) is

DC, it does not give an explicit decomposition of the ob-

jective function, which is crucial for optimization. The

following proposition exhibits a decomposition when L

is the hinge loss.

Proposition 2 When L(x) = max(0, 1−x), the objec-

tive function of problem (P) is equal to g − h, where

g = ν
2‖v‖

2
2 +

m∑
i=1

max
( ∑
j:sj=yi

q(uT
j xi − vj),

1 +
∑

j:sj 6=yi

q(uT
j xi − vj)

)
,

h =

m∑
i=1

∑
j:sj=yi

q(uT
j xi − vj).

The proofs of Propositions 1 and 2 are given in Ap-

pendix B. Due to Proposition 2, the problem (P) can

be solved efficiently using a DC solver.

4.3 Optimization

DC problems are well studied optimization problems

and efficient optimization algorithms have been pro-

posed in (Horst, 2000; Tao and An, 1998) with good

performance in practice (see An and Tao (2005) and

references therein, Sriperumbudur et al (2007)). While

there exists a number of popular approaches that solve

globally DC programs (e.g., cutting plane and branch-

and-bound algorithms (Horst, 2000)), these techniques

are often inefficient and limited to very small scale prob-

lems. A robust and efficient difference of convex algo-

rithm (DCA) is proposed in Tao and An (1998), which

is suited for solving general large scale DC programs.

DCA is an iterative algorithm that consists in solv-

ing, at each iteration, the convex optimization prob-

lem obtained by linearizing h (i.e., the non convex part

of f = g − h) around the current solution. The local

convergence of DCA is proven in Theorem 3.7 of Tao

and An (1998), and we refer to this paper for further

theoretical guarantees on the stability and robustness

of the algorithm. Although DCA is only guaranteed to

reach a local minima, the authors of Tao and An (1998)

state that DCA often converges to a global optimum.

When this is not the case, using multiple restarts might

be used to improve the solution. We note that DCA is

very close to the concave-convex procedure (CCCP) in-

troduced in (Yuille et al, 2002).

At iteration k of DCA, the linearized optimization

problem is given by:

argmin
(U,v)

{g(U,v)− Tr(UTA)− vTb} subject to v ≥ ε.

(5)

where (A,b) = ∇h(Uk,vk) and (Uk,vk) are the solu-

tion estimates at iteration k, and the functions g and h

are defined in Proposition 2. Note that, due to the con-

vexity of g, the problem in Eq. (5) is convex and can be

solved using any convex optimization algorithm (Boyd

and Vandenberghe, 2004). The method we propose to

use here is a projected first-order stochastic subgradi-

ent descent algorithm. Stochastic gradient descent is an

efficient optimization algorithm that can handle large

training sets (Akata et al, 2014). To make the exposi-
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tion clearer, we first define the function:

p(U,v; xi, yi) = max
( ∑
j:sj=yi

q(uT
j xi − vj),

1 +
∑

j:sj 6=yi

q(uT
j xi − vj)

)
+ 1
m

(
ν
2‖v‖

2
2 − Tr(UTA)− vTb

)
.

The objective function of Eq. (5) that we wish to min-

imize can then be written as
∑m
i=1 p(U,v; xi, yi). We

solve this optimization problem with the projected stochas-

tic subgradient descent algorithm in Algorithm 1.

Algorithm 1 Optimization algorithm to solve the lin-

earized problem in Eq. (5)

1. Initialization: U← Uk and v← vk.
2. For t = 1, . . . , T
2.1 Let (x, y) be a randomly chosen training point, and

its associated label.
2.2 Choose the stepsize ρt ← min(ρ, ρ t0

t
).

2.3 Update U, and v, by projected subgradient step:

U← U− ρt∂Up(U,v;x, y),

v← Πv≥ε (v − ρt∂vp(U,v;x, y)) ,

where Πv≥ε is the projection operator on the set v ≥ ε.
3. Return Uk+1 ← U and vk+1 ← v.

In more details, at each iteration of Algorithm 1, a

training sample (x, y) is drawn. U and v are then up-

dated by performing a step in the direction ∂p(U,v; x, y).

Many different stepsize rules can be used with stochas-

tic gradient descent methods. In this paper, similarly to

the strategy employed in Mairal et al (2012), we have

chosen a stepsize that remains constant for the first t0
iterations, and then takes the value ρt0/t.

1 Moreover,

to accelerate the convergence of the stochastic gradient

descent algorithm, we consider a small variation of Al-

gorithm 1, where a minibatch containing several train-

ing samples along with their labels is drawn at each

iteration, instead of a single sample. This is a classi-

cal heuristic in stochastic gradient descent algorithms.

Note that, when the size of the minibatch is equal to

the number of training samples, this algorithm reduces

to traditional batch gradient descent.

Finally, our complete LAST learning algorithm based

on DCA is formally given in Algorithm 2. Starting from

a feasible point U0 and v0, LAST solves iteratively the

constrained convex problem given in Eq. (5) with the

solution proposed in Algorithm 1. Recall that this prob-

lem corresponds to the original DC program (P), except

that the function h has been replaced by its linear ap-

proximation around the current solution (Uk,vk) at

1 The precise choice of the parameters ρ and t0 are dis-
cussed later in Section 5.1.

Algorithm 2 LAST (Learning Algorithm for Soft-

Thresholding classifier)

1. Choose any initial point: U0 and v0 ≥ ε.
2. For k = 0, . . . ,K − 1,
2.1 Compute (A,b) = ∇h(Uk,vk).
2.2 Solve with Algorithm 1 the convex optimization prob-

lem:

(Uk+1,vk+1)← argmin
(U,v)

{g(U,v)− Tr(UTA)− vTb}

subject to v ≥ ε.

2.3 If (Uk+1,vk+1) ≈ (Uk,vk), return (Uk+1,vk+1).

iteration k. Many criteria can be used to terminate the

algorithm. We choose here to terminate when a max-

imum number of iterations K has been reached, and

terminate the algorithm earlier when the following con-

dition is satisfied:

min

{
|(ωk+1 − ωk)i,j |,

∣∣∣∣ (ωk+1 − ωk)i,j
(ωk)i,j

∣∣∣∣} ≤ δ,
where the matrix Ωk = (ωk)i,j is the row concatenation

of U and vT, and δ is a small positive number. This

condition detects the convergence of the learning algo-

rithm, and is verified whenever the change in U and

v is very small. This termination criterion is used for

example in Sriperumbudur et al (2007).

5 Experimental results

In this section, we evaluate the performance of our clas-

sification algorithm on textures, digits and natural im-

ages datasets, and compare it to different competitor

schemes. We expose in a first section the choice of the

parameters of the model and the algorithm. We then

focus on the experimental assessment of our scheme.

Following the methodology of Coates and Ng (2011),

we break the feature extraction algorithms into (i) a

learning algorithm (e.g, K-Means) where a set of ba-

sis functions (or dictionary) is learned and (ii) an en-

coding function (e.g., `1 sparse coding) that maps an

input point to its feature vector. In a first step of our

analysis (Section 5.2), we therefore fix the encoder to

be the soft-thresholding mapping and compare LAST

to existing supervised and unsupervised learning tech-

niques. Then, in the following subsections, we compare

our complete classification architecture (i.e., learning

and encoding function) to several classifiers, in terms

of accuracy and efficiency. In particular, we show that

our proposed approach is able to compete with recent

classifiers, despite its simplicity.
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5.1 Parameter selection

We first discuss the choice of the model parameters for

our method. Unless stated otherwise, we choose the

vector s according to the distribution of the different

classes in the training set. We set the value of the reg-

ularization parameter to ν = 1, as it was found empiri-

cally to be a good choice in our experiments. It is worth

mentioning that setting ν by cross-validation might give

better results, but it would also be computationally

more expensive. We set moreover the parameter of the

soft-thresholding mapping approximation to β = 100.

Recall finally that the sparsity parameter α is always

equal to 1 in our method, and therefore does not require

any manual setting or cross-validation procedure.

In all experiments, we have moreover chosen to ini-

tialize LAST by setting U0 equal to a random sub-

sample of the training set, and v0 is set to the vec-

tor whose entries are all equal to 1. We however no-

ticed empirically that choosing a different initialization

strategy does not significantly change the testing ac-

curacy. Then, we fix the maximum number of itera-

tions of LAST to K = 50. Moreover, setting properly

the parameters t0 and ρ in Algorithm 1 is quite crucial

in controlling the convergence of the algorithm. In all

the experiments, we have set the parameter t0 = T/10,

where T denotes the number of iterations. Furthermore,

during the first T/20 iterations, several values of ρ are

tested {0.1, 0.01, 0.001}, and the value that leads to the

smallest objective function is chosen for the rest of the

iterations. Finally, the minibatch size in Algorithm 1

depends on the size of the training data. In particular,

when the size of the training data m is relatively small

(i.e., smaller than 5000), we used a batch gradient de-

scent, as the computation of the (complete) gradient is

tractable. In this case, we set the number of iterations

to T = 1000. Otherwise, we use a batch size of 200, and

perform T = 5000 iterations of the stochastic gradient

descent in Algorithm 1.

5.2 Analysis of the learning algorithm

In a first set of experiments, we focus on the compar-

ison of our learning algorithm (LAST) to other learning

techniques, and fix the encoder to be the soft-thresholding

mapping for all the methods. We present a compara-

tive study on textures and natural images classification

tasks.

5.2.1 Experimental settings

We consider the following dictionary learning algorithms:

1. Supervised random samples: The atoms of D

are chosen randomly from the training set, in a su-

pervised manner. That is, if κ denotes the desired

proportion of class ‘1’ atoms in the dictionary, the

dictionary is built by randomly picking κN training

samples from class ‘1’ and (1 − κ)N samples from

class ‘−1’, where N is the number of atoms in the

dictionary.

2. Supervised K-means: We build the dictionary by

merging the subdictionaries obtained by applying

the K-means algorithm successively to training sam-

ples of class ‘1’ and ‘−1’, where the number of clus-

ters is fixed respectively to κN and (1− κ)N .

3. Dictionary learning for `1 sparse coding: The

dictionary D is built by solving the classical dictio-

nary learning problem for `1 sparse coding:

min
D,ci

m∑
i=1

‖xi −Dci‖22 + λ‖ci‖1 subject to ∀j, ‖dj‖22 ≤ 1.

(6)

To solve this optimization problem, we used the al-

gorithm proposed by Mairal et al (2010) and im-

plemented in the SPAMS package. The parameter

λ is chosen by a cross-validation procedure in the

set {0.1, 0.01, 0.001}. Note that, while the previous

two learning algorithms make use of the labels, this

algorithm is unsupervised.

4. Stochastic Gradient Descent (SGD): The dic-

tionary D and classifier w are obtained by optimiz-

ing the following objective function using mini-batch

stochastic gradient descent :

J(D,w) =

m∑
i=1

L(yiw
Tq(DTxi − α)) +

ν

2
‖w‖22,

with q(x) = 1
β log(1 + exp(βx)). This corresponds

to the original objective function in Eq. (3), where

hα is replaced with its smooth approximant. 2 This

smoothing procedure is similar to the one used in

our relaxed formulation (Section 4.1). As in LAST,

we set β = 100, α = 1, and use the same initial-

ization strategy. This setting allows us to directly

compare LAST and this generic stochastic gradient

descent procedure widely used for training neural

networks. Following Glorot et al (2011), we use a

mini-batch size of 10, and use a constant step size

chosen in {0.1, 0.01, 0.001, 0.0001}. The stepsize is

chosen through a cross-validation procedure, with a

randomly chosen validation set made up of 10% of

2 We also tested SGD on the original (non-smooth) op-
timization problem. This resulted in slightly worse perfor-
mance. We therefore only report results obtained on the
smoothed objective function.
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the training data. The number of iterations of SGD

is set to 250000.

For the first three algorithms, the parameter α in

the soft-thresholding mapping is chosen with cross val-

idation in {0.1, 0.2, . . . , 0.9, 1}. The features are then

computed by applying the soft thresholding map hα,

and a linear SVM classifier is trained in the feature

space. For the random samples andK-means approaches,

we set κ = 0.5 as we consider classification tasks with

roughly equal number of training samples from each

class. Finally, for SGD and LAST, the dictionary D

and linear classifier w are learned simultaneously. The

encoder h1 is used to compute the features.

5.2.2 Experimental results

In our first experiment, we consider two binary tex-

ture classification tasks, where the textures are col-

lected from the 32 Brodatz dataset (Valkealahti and

Oja, 1998) and shown in Fig. 4. For each pair of tex-

tures under test, we build the training set by randomly

selecting 500 12× 12 patches per texture, and the test

data is constructed similarly by taking 500 patches per

texture. The test data does not contain any of the train-

ing patches. All the patches are moreover normalized to

have unit `2 norm. Fig. 5 shows the binary classifica-

tion accuracy of the soft-thresholding based classifier as

a function of the dictionary size, for dictionaries learned

with the different algorithms.

Task 1

Task 2

vs

vs

Bark Woodgrain

Pigskin Pressedcl

Fig. 4 Two binary classification tasks (bark vs woodgrain and
pigskin vs. pressedcl)

For the first task (bark vs. woodgrain), one can see

that LAST and SGD dictionary learning methods out-

perform the other methods for small dictionary sizes.

For large dictionaries (i.e., N ≈ 400) however, all the

learning algorithms yield approximately the same clas-

sification accuracy. This result is in agreement with the

conclusions of Coates and Ng (2011), where the au-

thors show empirically that the choice of the learning

algorithm becomes less crucial when dictionaries are

very large. In the second and more difficult classifica-

tion task (pigskin vs. pressedcl), our algorithm yields

the best classification accuracy for all tested dictionary

sizes (10 ≤ N ≤ 400). Interestingly, unlike the previ-

ous task, the design of the dictionary is crucial for all

tested dictionary sizes. Using much larger dictionaries

might result in performance that is close to the one ob-

tained using our algorithm, but comes at the price of

additional computational and memory costs.
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(a) Bark vs. Woodgrain
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(b) Pigskin vs. Pressedcl

Fig. 5 Texture classification results (fixed soft-thresholding
encoder)

Fig. 6 further illustrates the evolution of the objec-

tive function with the number of iterations for LAST

and SGD, for a dictionary of size 50. For the sake of

completeness, we also consider a gradient descent (GD)

method, with a backtracking line search rule for step-

size selection. One can see that LAST converges in a

few iterations to a solution with a small objective func-

tion. On the other hand, GD is rapidly stuck in a bad

local minimum, and fails to improve the quality of the

solution. SGD performs better than GD in terms of the
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final objective function, but reaches a local minimum

with a larger value of the objective function than LAST.
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(a) LAST: J(D∞,w∞) = 1.0
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(b) SGD (solid): J(D∞,w∞) = 24.1. GD (dashed):
J(D∞,w∞) = 175.8. The dotted green line reports
the final objective function reached by LAST.

Fig. 6 J(D,w) as a function of the number of iterations
on the texture classification task 2, for (a) LAST, and (b)
Stochastic Gradient Descent (chosen stepsize based on vali-
dation set: 0.001) and Gradient Descent (with backtracking
line search). We run LAST for 50 iterations, and SGD, GD
for 250000 iterations. The dictionary size is set to 50.

We now conduct experiments on the popular CIFAR-

10 image database (Krizhevsky and Hinton, 2009). The

dataset contains 10 classes of 32× 32 RGB images. For

simplicity and better comparison of the different learn-

ing algorithms, we restrict in a first stage the dataset

to the two classes “deer” and “horse”. We extend our

results to the multi-class scenario later in Section 5.5.

Fig. 7 illustrates some training examples from the two

classes. The classification results are reported in Fig. 8.

Once again, the soft-thresholding based classifier with

a dictionary and linear classifier learned with LAST

outperforms all other learning techniques. In particu-

lar, using the LAST dictionary learning strategy re-

sults in significantly higher performance than stochas-

tic gradient descent for all dictionary sizes. We further

note that with a very small dictionary (i.e., N = 2),

LAST reaches an accuracy of 77%, whereas some learn-

ing algorithms (e.g., K-means) do not reach this accu-

racy even with a dictionary that contains as many as

400 atoms. To further illustrate this point, we show in

Fig. 9 the 2-D testing features obtained with a dictio-

nary of two atoms, when D is learned respectively with

the K-Means method and LAST. Despite the very low-

dimensionality of the feature vectors, the two classes

can be separated with a reasonable accuracy using our

algorithm (Fig. 9 (b)), whereas features obtained with

the K-means algorithm clearly cannot be discriminated

(Fig. 9 (a)). We finally illustrate in Fig. 10 the dictio-

naries learned using K-Means and LAST for N = 30

atoms. It can be observed that, while K-Means dictio-

nary consists of smoothed images that minimize the

reconstruction error, our algorithm learns a discrimina-

tive dictionary whose goal is to underline the difference

between the images of the two classes.

Fig. 7 Examples of CIFAR-10 images in categories “deer”
and “horse”.
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Fig. 8 Performance of the “deer” vs. “horse” binary classi-
fication task (fixed soft-thresholding encoder)

In summary, our supervised learning algorithm, specif-

ically tailored for the soft-thresholding encoder pro-

vides significant improvements over traditional dictio-

nary learning schemes. Our classifier can reach high ac-

curacy rates, even with very small dictionaries, which

is not possible with other learning schemes.
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Fig. 9 Learned 2D features and linear classifiers with K-
Means and LAST for the “deer” vs. “horse” classification
task (N = 2).

(a) K-Means

(b) LAST

Fig. 10 Normalized dictionary atoms learned with K-Means
and LAST, for the “deer” vs. “horse” binary classification
task (N = 30).

5.3 Classification performance on binary datasets

In this section, we compare the proposed LAST classifi-

cation method3 to other classifiers. Before going through

the experimental results, we first present the different

methods under comparison:

1. Linear SVM: We use the efficient Liblinear (Fan

et al, 2008) implementation for training the linear

classifier. The regularization parameter is chosen us-

ing a cross-validation procedure.

2. RBF kernel SVM: We use LibSVM (Chang and

Lin, 2011) for training. Similarly, the regularization

and width parameters are set with cross-validation.

3. Sparse coding: Similarly to the previous section,

we train the dictionary by solving Eq. (6). We use

however the encoder that “matches naturally” with

this training algorithm, that is:

argmin
c
‖x−Dc‖22 + λ‖c‖1,

3 By extension, we define the LAST classifier to be the soft-
thresholding based classifier, where the parameters (D,w) are
learned with LAST.

Task 1 [%] Task 2 [%]
Linear SVM 49.5 49.1
RBF kernel SVM 98.5 90.1
Sparse coding (N = 50) 97.5 85.5
Sparse coding (N = 400) 98.1 90.9
NN (N = 50) 94.3 84.1
NN (N = 400) 97.8 86.6
LAST (N = 50) 98.7 87.3
LAST (N = 400) 98.6 93.5

Table 1 Classification accuracy for binary texture classifi-
cation tasks.

where x is the test sample, D the previously learned

dictionary and c the resulting feature vector. A lin-

ear SVM is then trained on the resulting feature vec-

tors. This classification architecture, denoted “sparse

coding” below, is similar to that of Raina et al (2007).

4. Nearest neighbor classifier (NN): Our last com-

parative scheme is a nearest neighbor classifier where

the dictionary is learned using the supervised K-

means procedure described in 5.2.1. At test time,

the sample is assigned the label of the dictionary

atom (i.e., cluster) that is closest to it.

Note that we have dropped the supervised random

samples learning algorithm used in the previous section

as it was shown to have worse classification accuracy

than the K-means approach.

Table 1 first shows the accuracies of the different

classifiers in the two binary textures classification tasks

described in 5.2.2. In both experiments, the linear SVM

classifier results in a very poor performance, which is

close to the random classifier. This suggests that the

considered task is nonlinear, and has to be tackled with

a nonlinear classifier. One can see that the RBF kernel

SVM results in a significant increase in the classifica-

tion accuracy. Similarly, the `1 sparse coding non linear

mapping also results in much better performance com-

pared to the linear classifier, while the nearest neighbor

approach performs a bit worse than sparse coding. We

note that, for a fixed dictionary size, our classifier out-

performs NN and sparse coding classifiers in both tasks.

Moreover, it provides comparable or superior perfor-

mance to the RBF kernel SVM in both tasks.

We now turn to the binary experiment “deer” vs.

“horse” described in the previous subsection. We show

the classification accuracies of the different classifiers

in Table 2. LAST outperforms sparse coding and near-

est neighbour classifiers for the tested dictionary sizes.

RBF kernel SVM however slightly outperforms LAST

with N = 100 in this experiment. Note however that

the RBF kernel SVM approach is much slower at test

time, which makes it impractical for large-scale prob-

lems.
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“deer” vs. “horse” [%]
Linear SVM 72.6
RBF kernel SVM 83.5

Sparse coding (N = 10) 70.6
Sparse coding (N = 100) 76.2
NN (N = 10) 67.7
NN (N = 100) 70.9
LAST (N = 10) 80.1
LAST (N = 100) 82.8

Table 2 Binary classification accuracy on the binary classi-
fication problem “deer” vs. “horse”.

Overall, the proposed LAST classifier compares fa-

vorably to the different tested classifiers. In particular,

LAST outperforms the sparse coding technique for a

fixed dictionary size in our experiments. This result

is notable, as sparse coding classifiers are known to

provide very good classification performance in vision

tasks. Note that, when used with another standard learn-

ing approach as K-Means, the soft-thresholding based

classifier is outperformed by sparse coding, which shows

the importance of the learning scheme in the success of

this classifier.

5.4 Handwritten digits classification

We now consider a classification task on the MNIST

(LeCun et al, 1998) and USPS (Hull, 1994) handwritten

digits datasets. USPS contains 9298 images of size 16×
16 pixels, with 7291 images used for training and 2007

for testing. The larger MNIST database is composed of

60000 training images and 10000 test images, all of size

28 × 28 pixels. We preprocess all the images to have
zero-mean and to be of unit Euclidean norm, and all

images are moreover resized to a resolution of 16 × 16

pixels.

We address the multi-class classification task using

a one-vs-all strategy, as it is often done in classification

problems. Specifically, we learn a separate dictionary

and a binary linear classifier by solving the optimiza-

tion problem for each one-vs-all problem. Classification

is then done by predicting using each binary classi-

fier, and choosing the prediction with highest score. In

LAST, for each one-vs-all task, we naturally set 1/10 of

the entries of s to 1 and the other entries to −1, assum-

ing the distribution of features of the different classes in

the dictionary should roughly be that of the images in

the training set. In our proposed approach and SGD,

we used dictionaries of size N = 200 for USPS and

N = 400 for MNIST as the latter dataset contains much

more training samples. We compare LAST to baseline

classification techniques described in the previous sec-

tion, as well as to sparse coding based methods. In

MNIST USPS
Linear SVM 8.26 9.07
RBF kernel SVM 1.4 4.2
K-NN `2 5.0 5.2
LAST 1.23 4.53
Sparse coding 2.85 5.33
Huang and Aviyente (2006) - 6.05
SDL-G L (Mairal et al, 2008) 3.56 6.67
SDL-D L (Mairal et al, 2008) 1.05 3.54
Ramirez et al (2010) 1.26 3.98
SGD 1.84 5.88
3 layers ReLU net (Glorot et al, 2011) 1.43 -

Table 3 Classification error (percentage) on MNIST and
USPS datasets.

addition to building the dictionary in an unsupervised

way, we consider the sparse coding classifiers in Mairal

et al (2008); Huang and Aviyente (2006); Ramirez et al

(2010), which construct the dictionary in a supervised

fashion.

Classification results are shown in Table 3. One can

see that LAST largely outperforms linear and nearest

neighbour classifiers. Moreover, our method has a bet-

ter accuracy than RBF-SVM in MNIST, while being

slightly worse on the USPS dataset. Our approach also

outperforms the soft-thresholding based classifier opti-

mized with stochastic gradient descent on both tasks,

which highlights the benefits of our optimization tech-

nique compared to the standard algorithm used for train-

ing neural networks. We also report from Glorot et al

(2011) the performance of a three hidden layer rec-

tified network optimized with stochastic gradient de-

cent, without unsupervised pre-training. It can be seen

that LAST, while having a much simpler architecture,

slightly outperforms the deep rectifier network on the

MNIST task. Furthermore, LAST outperforms the un-

supervised sparse coding classifier in both datasets. In-

terestingly, the proposed scheme also competes with,

and sometimes outperforms the discriminative sparse

coding techniques of (Huang and Aviyente, 2006; Mairal

et al, 2008; Ramirez et al, 2010), where the dictionary

is tuned for classification. While providing comparable

results, the LAST classifier is much faster at test time

than sparse coding techniques and RBF-SVM classi-

fiers. It is noteworthy to mention that the best discrim-

inative dictionary learning results we are aware of on

these datasets are achieved by Mairal et al (2012) with

an error rate of 0.54% on MNIST and 2.84% on USPS.

Note however that in this paper, the authors explic-

itly incorporate translation invariance in the problem

by augmenting the training set with shifted versions

of the digits. Our focus goes here instead on methods

that do not augment the training set with distorted or

transformed samples.
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CIFAR-10
Linear SVM 59.70
LAST (N = 400) 46.56
SGD (N = 400) 52.96
3 layers ReLU net 50.86
3 layers ReLU net + sup. pre-train 49.96

Table 4 Classification error (percentage) on the CIFAR-10
dataset. ReLU net results are reported from (Glorot et al,
2011).

5.5 CIFAR-10 classification

We now consider the multi-class classification problem

on the CIFAR-10 dataset (Krizhevsky and Hinton, 2009).

The dataset contains 60000 color images of size 32× 32

pixels, with 50000 images for training and 10000 for

testing. The classifier input consists of vectors of raw

pixel values of dimension 32× 32× 3 = 3072. This set-

ting, similar to that of Glorot et al (2011), takes no

advantage of the fact that we are dealing with images

and is sometimes referred to as “permutation invari-

ant”, as columns in the data could be shuffled without

affecting the result. We consider this scenario to focus

on the comparison of the performance of the classifiers.

Due to the relatively high dimensions of the problem

(n = 3072, m = 50000), we limit ourselves to classi-

fiers with feedforward architectures. In fact, using RBF-

SVM for this task would be prohibitively slow at the

training and testing stage. For each one-vs-all task, we

set the dictionary size of LAST and SGD methods to

400. Moreover, unlike the previous experiment, we set

in LAST half of the entries of the sign vector s to 1 and

the other half to −1. This is due to the high variability

of intra-class images and the relatively small dictionary

size: the number of atoms required to encode the pos-

itive class might not be sufficient if s is set according

to the distribution of images in the training set. The

results are reported in Table 4.

Once again, this experiment confirms the superior-

ity of our learning algorithm over linear SVM. More-

over, LAST significantly outperforms the generic SGD

training algorithm (by more than 6%) in this challeng-

ing classification example. What is more surprising is

that LAST significantly surpasses the rectifier neural

network with 3 hidden layers (Glorot et al, 2011) trained

using a generic stochastic gradient descent algorithm

(with or without pre-training). This shows that, despite

the simplicity of our architecture (it can be seen as one

hidden layer), the adequate training of the classification

scheme can give better performance than complicated

structures that are potentially difficult to train. We fi-

nally report the results of sparse coding classifier with a

dictionary trained using Eq. (6). If we use a dictionary

Complexity Time [s]
Linear SVM O(n) 0.2
RBF kernel SVM O(nm) 60.6

Sparse coding O
(
nN√
ε

)
4 10.25

LAST classifier O(nN) 0.53

Table 5 Computational complexity for classifying one test
sample, and time needed to predict the labels of the 10000
test samples in the MNIST dataset. For reference, all the ex-
periments are carried out on a 2.6 GHz, 16 GB RAM laptop.

with 400 atoms, we get an error of 53.9%. By using

a much larger dictionary of 4000 atoms, the error re-

duces to 46.5%. The computation of the test features is

however computationally very expensive in that case.

6 Discussion

We first discuss in this section aspects related to the

computational complexity of LAST. Then, we analyze

the sparsity of the obtained solutions. We finally explain

some of the differences between LAST and the generic

stochastic gradient descent algorithm.

6.1 Computational complexity at test time

We compare the computational complexity and run-

ning times of LAST classifier to the ones of different

classification algorithms. Table 5 shows the computa-

tional complexity for classifying one test sample us-

ing various classifiers and the time needed to classify

MNIST test images. We recall that n, m, and N de-

note respectively the signals dimension, the number of

training samples and the dictionary size. Clearly, linear

classification is very efficient as it only requires the com-

putation of one inner product between two vectors of

dimension n. Nonlinear SVMs however have a test com-

plexity that is linear in the number of support vectors,

which scales linearly with the training size (Burges,

1998). This solution is therefore not practical for rel-

atively large training sets, like MNIST or CIFAR-10.

Feature extraction with sparse coding involves solving

an optimization problem, which roughly requires 1/
√
ε

matrix-vector multiplications, where ε controls the pre-

cision (Beck and Teboulle, 2009). For a typical value of

4 The complexity reported here is that of the FISTA al-
gorithm Beck and Teboulle (2009), where ε denotes the re-
quired precision. Note that another popular method for solv-
ing sparse coding is the homotopy method, which is efficient
in practice, however it has exponential theoretical complexity
Mairal and Yu (2012).
5 To provide a fair comparison with our method, we used

dictionaries of the same size as for our proposed approach,
for the sake of this experiment.
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ε = 10−6, the complexity becomes 1000nN (neglecting

other constants), that is 3 orders of magnitude larger

than the complexity of the proposed method. This can

be seen clearly in the computation times, as our ap-

proach is slightly more expensive than linear SVM, but

remains several orders of magnitude faster than other

methods. Note moreover that the soft-thresholding clas-

sification scheme is very simple to implement in practice

at test time, as it is a direct map that only involves max

and linear operations.

6.2 Sparsity

Sparsity is a highly beneficial property in representation

learning, as it helps decomposing the factors of varia-

tions in the data into high level features (Bengio et al,

2013; Glorot et al, 2011). To assess the sparsity of the

learned representation, we compute the average spar-

sity of our representation over all data points (training

and testing combined) on the MNIST and CIFAR-10

dataset. We obtain an average of 96.7% zeros in the

MNIST case, and 95.3% for CIFAR-10. In other words,

our representations are very sparse, without adding an

explicit sparsity penalization as in (Glorot et al, 2011).

Interestingly, the reported average sparsity in (Glorot

et al, 2011) is 83.4% on MNIST and 72.0% on CIFAR-

10. Our one-layer representation therefore exhibits an

interesting sparsity property, while providing good pre-

dictive performance.

6.3 LAST vs. stochastic gradient descent

As discussed earlier, the soft-thresholding classification

scheme belongs to the more general neural network

models. Neural networks are commonly optimized with

stochastic gradient descent algorithms, as opposed to

the DC method proposed in this paper. The proposed

learning algorithm has several advantages compared to

SGD:

– Better local minimum: In all our experiments,

LAST reached a better solution than SGD in terms

of the testing accuracy. This confirms the observa-

tions of Tao and An (1998) whereby DCA converges

to “good” local minima, and often to global minima

in practice.

– Descent method: Unlike stochastic gradient de-

scent, LAST (and more generally DCA) is a descent

method. Moreover, it is guaranteed to converge to

a critical point (Tao and An, 1998).

– No stepsize selection: Stochastic gradient descent

(and more generally gradient descent based algo-

rithms) are very sensible to the difficult choice of

the stepsize. Choosing a large stepsize in SGD can

be beneficial as it helps escaping local minimas, but

it can also lead to an oscillatory behaviour that pre-

vents convergence. Interestingly, our optimization

algorithm does not involve any stepsize selection,

when given a convex optimization solver. In fact,

our algorithm solves a sequence of convex problems,

which can be solved with any off-the-shelf convex

solver. Note that even if the intermediate convex

optimization problems are solved with a gradient-

descent based technique, the choice of the stepsize

is less challenging as we have a better understand-

ing of the theoretical properties of stepsize rules in

convex optimization problems.

As we have previously mentioned, unlike SGD, our

algorithm assumes the sign vector of the linear classifier

w to be known. A simple heuristic choice of this param-

eter was shown however to provide very good results in

our experiments, compared to SGD. Of course, choos-

ing this parameter with cross-validation might lead to

better results, but also implies a slower training proce-

dure.

7 Conclusion

We have proposed a supervised learning algorithm tai-

lored for the soft thresholding based classifier. The learn-

ing problem, which jointly estimates a discriminative

dictionary D and a classifier hyperplane w is cast as a

DC problem and solved efficiently with an iterative al-

gorithm. The proposed algorithm (LAST), which lever-

ages the DC structure, significantly outperforms stochas-

tic gradient descent in all our experiments. Further-

more, the resulting classifier consistently leads to bet-

ter results than the unsupervised sparse coding classi-

fier. Our method moreover compares favorably to other

standard techniques as linear, RBF kernel or nearest

neighbour classifiers. The proposed LAST classifier has

also been shown to compete with recent discriminative

sparse coding techniques in handwritten digits classifi-

cation experiments. We should mention that, while the

sparse coding encoder features some form of competi-

tion between the different atoms in the dictionary (of-

ten referred to as explaining-away (Gregor and LeCun,

2010)), our encoder acts on the different atoms inde-

pendently. Despite its simple behavior, our scheme is

competitive when the dictionary and classifier parame-

ters are learned in a suitable manner.

The adopted classification scheme can be seen as a

one hidden layer neural network with a soft-thresholding

activation function. This activation function has recently

gained significant attention in the deep learning com-
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munity, as it is believed to make the training procedure

easier and less prone to bad local minima. Our work,

which reveals the specific structure of the optimization

problem for the one-hidden layer version of that net-

work, potentially brings some founded justification to

the recent successes of that activation function in neu-

ral networks. An interesting question is whether it is

possible to find a similar structure for networks with

many hidden layers. This would significantly help the

training of deep networks, and offer many insights on

this challenging problem, which is usually tackled using

generic optimization methods.

A Soft-thresholding as an approximation to

non-negative sparse coding

We show here that soft-thresholding can be viewed as a coarse
approximation to the non-negative sparse coding mapping
(Denil and de Freitas, 2012). To see this, we consider the prox-
imal gradient algorithm to solve the sparse coding problem
with additional nonnegativity constraints on the coefficients.
Specifically, we consider the following mapping

argmin
c∈RN

‖x−Dc‖22 + λ‖c‖1 subject to c ≥ 0.

The proximal gradient algorithm proceeds by iterating the
following recursive equation to convergence:

ck+1 = proxλt‖·‖1+I·≥0
(ck + tDT(x−Dck)),

where prox is the proximal operator, t is the chosen stepsize
and I·≥0 is the indicator function, which is equal to 0 if
all the components of the vector are nonnegative, and +∞
otherwise. Using the definition of the proximal mapping, we
have

proxλt‖·‖1+I·≥0
(x) , argmin

u≥0
{

1

2
‖u− x‖22 + λt‖u‖1}

= max(0,x− λt).

Therefore, imposing the initial condition c0 = 0, and a step-
size t = 1, the first step of the proximal gradient algorithm
can be written

c1 = max(0,DTx− λ) = hλ(DTx),

which precisely corresponds to our soft-thresholding map. In
this way, our soft-thresholding map corresponds to an approx-
imation of sparse coding, where only one iteration of proximal
gradient algorithm is performed.

B Proofs

B.1 Proof of Proposition 1

Before going through the proof of Proposition 1, we need the
following results in (Horst, 2000, Section 4.2):

Proposition 3 1. Let {fi}li=1 be DC functions. Then, for any

set of real numbers (λ1, . . . , λl),
∑l
i=1 λifi is also DC.

2. Let f : Rn → R be DC and g : R → R be convex. Then, the
composition g(f(x)) is DC.

We recall that the objective function of (P) is given by:

m∑
i=1

L

yi N∑
j=1

sjq(u
T
j xi − vj)

+
ν

2
‖v‖22,

The function ‖v‖22 is convex and therefore DC. We show
that the first part of the objective function is also DC. We
rewrite this part as follows:

m∑
i=1

L

 ∑
j:sj=yi

q(uT
j xi − vj)−

∑
j:sj 6=yi

q(uT
j xi − vj)

 .

Since q is convex, q(uT
j xi−vj) is also convex (Boyd and Van-

denberghe, 2004). As the loss function L is convex, we finally
conclude from Proposition 3 that the objective function is
DC. Moreover, since the constraint v ≥ ε is convex, we con-
clude that (P) is a DC optimization problem.

B.2 Proof of Proposition 2

We now suppose that L(x) = max(0, 1 − x), and derive the
DC form of the objective function. We have:

m∑
i=1

L
(
yi

N∑
j=1

sjq(u
T
j xi − vj)

)
=

m∑
i=1

max
(

0, 1 +
∑

j:sj 6=yi

q(uT
j xi − vj)−

∑
j:sj=yi

q(uT
j xi − vj)

)
=

m∑
i=1

max
( ∑
j:sj=yi

q(uT
j xi − vj)−

∑
j:sj=yi

q(uT
j xi − vj),

1 +
∑

j:sj 6=yi

q(uT
j xi − vj)−

∑
j:sj=yi

q(uT
j xi − vj)

)
=

m∑
i=1

max
( ∑
j:sj=yi

q(uT
j xi − vj), 1 +

∑
j:sj 6=yi

q(uT
j xi − vj)

)
−

m∑
i=1

∑
j:sj=yi

q(uT
j xi − vj).

The objective function of (P) can therefore be written as
g − h, with:

g = ν
2
‖v‖22 +

m∑
i=1

max
( ∑
j:sj=yi

q(uT
j xi − vj),

1 +
∑

j:sj 6=yi

q(uT
j xi − vj)

)
,

h =
m∑
i=1

∑
j:sj=yi

q(uT
j xi − vj),

where g and h are convex functions.
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