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Abstract—Homotopic routing asks for a path going around
holes according to a given “threading”. Paths of different homo-
topy types can be used to improve load balancing and routing
resilience. We propose the first lightweight homotopic routing
scheme that generates constant bounded stretch compared to the
shortest path of the same homotopy type. Our main insight is that
in a sequence of triangles to traverse, a message always routed
to the nearest point on the next triangle in the sequence travels
at most a constant times the length of any shortest path going
through the same sequence of triangles. Our routing scheme
operates on two levels enabled by a coarse triangulation. The
top level is used to specify and represent the requested homotopy
type, while the bottom level executes the local greedy routing on
a triangle sequence. After a preprocessing step that triangulates
the given region and creates a minimum-size auxiliary structure,
routing operates greedily at two different resolutions. We also
present simulation analysis in a variety of settings and show that
the paths indeed have small stretch in practice, considerably
shorter than the bounds guaranteed by the theory.

I. INTRODUCTION

In this paper we consider the problem of routing in a wire-
less sensor network deployed in a complex geometric domain
Σ with holes. This is a common situation for large-scale sensor
networks, as the shape of the sensor deployment region (due
to obstacles, terrain variation and other deployment forbidding
factors) necessarily comes to play with the network design and
management.

Our goal is to find short paths of a specific homotopy type,
i.e., paths that go around holes in some specific ordering. In the
example of Figure 1, there are many different ways to “thread”
a route from s to t in the network with three holes. Observe
that paths α, β, γ are all different in a global sense, in that, e.g.,
one can’t deform α to β without “lifting” it “over” some hole.
In contrast, paths γ and δ are only different in a local sense;
one can deform γ to δ continuously through local changes,
keeping δ within the domain. This difference is characterized
by the homotopy type of a path. Two paths in a domain are
homotopy equivalent if one path can be continuously deformed
to the other, while staying within the domain.

For paths in a network, differences in homotopy types are
differences at a global scale, and are crucial factors in adapting
to large dynamic obstructions – such as fires or floods that
gradually destroy sensors in a region. The obvious method
of using shortest paths globally, and making local detours to
get around faults is not a good strategy in such cases. The
phenomenon will continue to destroy local detours, causing
loss of messages, forcing repeated detours and eventually
blocking all local paths, requiring reconstruction of large

parts of routing table. Knowing the topology of the network,
and using homotopy types, we can effortlessly switch to a
completely different type of path when we notice persistent
disturbances in a region.

In Figure 1, a regional failure connecting the upper two
holes may destroy both γ and δ, while paths α and β remain
available. Despite the importance of homotopic routing in
terms of improving load balancing and routing resilience, it is
only very recently that homotopic routing has been explicitly
addressed [26]. In Zeng et al. [26], greedy routing in a virtual
coordinate space finds paths of different homotopy types.
However, the algorithm has no theoretical guarantee on the
path stretch, i.e., there is no bound on the path length in
comparison with the length of a shortest path of the same
homotopy type.

δ

s

t
α

βγ

Fig. 1. In a network of 3 holes
(shaded), paths α, β, γ have dis-
tinct homotopy types; γ and δ are
homotopy equivalent.

Our contribution. In this paper
we introduce a routing frame-
work with a modest state per
node that guarantees constant
worst-case stretch for any given
homotopy type. This is the first
work that achieves a provable
bound.

We assume that the sensor
nodes are densely deployed in
a geometric domain (e.g., campus map, floor plan) that is
represented by a polygon (possibly with holes) Σ. While the
network may have a huge number of nodes, the domain in
which the nodes are deployed is often of a much smaller
complexity. Let us denote by n the number of sensor nodes
and k the number of vertices of Σ. In practice, k � n. Instead
of building a structure on the network topology, we take the
geometric domain in which the network is embedded and use
a structure on Σ to encode the path homotopy type. Notice
that this approximation gives us a number of benefits. The
complexity of Σ is much smaller. Further, a structure operating
on Σ is relatively stable, while network links can be volatile.
As is common in geographical routing, we assume that nodes
know their own geographical location through GPS or other
localization schemes.

Our method operates on a two-level structure. On the top
level, we use a coarse triangulation of the geometric domain to
encode the network shape and to compute the path homotopy
type. On the bottom level, we show that a simple, greedy
geographic routing scheme within a sequence of triangles,



which together with the top-level gives a constant (bounded)
worst-case stretch compared to the shortest path of the same
homotopy type.

We decompose Σ into triangles using certain diagonals
connecting vertices of the polygon Σ. The dual graph of the
triangulation is a planar graph D. If Σ has h holes, we cut the
domain along h diagonals (cut edges) that interconnect the
holes, thereby obtaining a simply connected domain whose
corresponding dual graph is a tree T . For a particular homo-
topy type, the shortest path stays inside a sequence of triangles
S = {41,42, · · · ,4m} in the triangulation, whose dual is
a simple path in T . Since the simple path connecting two
nodes in a tree is unique, any existing method of routing on
a tree, such as hyperbolic embedding [17] or compact routing
labels [21], can be used to find S using a greedy algorithm
on the tree T . Thus, the top-level greedy algorithm simply
reveals the triangles of S, one at a time, which contains a
shortest path of the required homotopy type. Our bottom-level
algorithm will then realize a path within S, whose length is
at most a constant times the shortest path inside S, i.e., the
shortest path of the requested homotopy type. We remark that
triangulation of Σ and the tree T can be computed at the
network initialization phase. The corners of each triangle are
pre-loaded at the sensor nodes that are inside the triangle,
along with the corners of the (at most 3) triangles that are
adjacent to it. This way, finding the “global path” in T is done
at runtime in the network using local, greedy information.

The main technical contribution of the paper is the algorithm
for the bottom level routing scheme, along with analysis
showing it to have worst-case stretch bounded by a constant.
It operates with only local information of the geometry of the
current triangle ∆i and the next diagonal to cross (the common
edge of ∆i and the next triangle, ∆i+1, in the sequence) and
yet finds globally short paths. Our algorithm is very simple:
From the point where the path enters the current triangle,
∆i, the path heads directly (greedily) to the closest point on
the common edge of the next triangle, ∆i+1, oblivious to
the triangle sequence beyond ∆i+1. It may appear counter-
intuitive that this algorithm can have a bounded competitive
ratio, since the strategy does not utilize the position of the
destination t. The proof of the bounded stretch factor is highly
non-trivial and is the major technical contribution of this paper.

To summarize, both the top-level and bottom-level routing
algorithms are of a greedy nature. The top level computes a
sequence of geometric triangles that the homotopic routing
path should visit; the bottom level uses a greedy algorithm in
the sensor network to find a network routing path realizing
the requested homotopy type. The top level uses virtual coor-
dinates for finding the homotopy type; the bottom level uses
the nodes’ true geographical coordinates to realize one such
path. After the initial preprocessing, each node only stores the
Euclidean coordinates of the corners of the triangle containing
it and the adjacent triangles (for bottom-level routing), the
virtual coordinates of its own and adjacent triangles (for top-
level routing), and the h cut edges of the dual graph (for
specifying the path homotopy types). The storage requirement

for each node is of size O(h), where h is the number of
holes in Σ, and is independent of the network size or the
complexity of the geometric domain Σ. The preprocessing
involves computing a triangulation of Σ and the top-level
embedding (e.g., by [17]) or computation of routing labels
(e.g., by [21]), whose complexity is roughly linear in the
complexity, k, of the geometric domain Σ and independent
of the number, n, of sensor nodes, which can potentially be
much larger.

As a by-product, our bottom-level greedy routing algorithm
within a sequence of triangles can be extended to greedy
routing within a sequence of consecutively adjacent simple
polygons, with the same worst-case stretch, since we can
always triangulate each simple polygon. Thus, our algorithm
applies to a number of geometric routing schemes that first de-
compose a network into convex or nearly convex polygons [10,
25, 27], providing constant stretch for local routing.

Related Work. Our scheme is in the family of geometric
routing schemes [11] that use the nodes’ coordinates to
guide a message to the destination. In particular, the simplest
geographical greedy routing [15] delivers the message to the
neighbor whose distance to the destination is the smallest. One
well known limitation of this approach is that a message can
get stuck at a node that does not have any neighbor closer
to the destination; this often happens when the domain Σ is
not convex. To resolve this issue, a number of schemes (such
as GLIDER [10]) first decompose the network into pieces
such that simple greedy routing can be carried out inside
each piece and the adjacency of the pieces are extracted and
propagated to the network on top of which global routing is
performed. In some papers (e.g., [25, 27]), the sensor network
domain is partitioned into convex or nearly convex pieces, and,
again, a similar routing scheme is designed by first finding
the sequence of pieces to visit and then using a local, greedy
algorithm to deliver the message to the next piece in the
sequence. However, none of these prior local routing schemes
guarantees bounded stretch (compared to the shortest path
through the same sequence of cells). Further, none of the
global routing schemes explicitly considers path homotopies.

In the geometric setting, computing the shortest homotopic
path inside a polygon Σ, when we have global knowledge of
Σ, can be done in almost linear time. A simple polygon with k
edges can be triangulated in O(k) time [1, 8]. A polygon with
k vertices and h holes can be triangulated in O(k+h log1+ε h)
time [2], or in O(k log∗ k+h log k) expected time [24]. Given
a triangulated polygon, computing the shortest path with a
given homotopy type can be done in time linear in the number
of times the path crosses a diagonal of the triangulation [13].
All of the above schemes assume full knowledge of the entire
triangulation Σ and compute only a geometric path; they do
not route within a sensor network deployed inside Σ.

There has been a number of related papers about online
navigation for robot motion planning, which uses models sim-
ilar to our bottom-level routing algorithm. In one of the most
investigated models [5], we are given a planar straight line



graph H with n vertices, whose edges are weighted by their
Euclidean lengths, the source s and destination t are vertices
of H , and a packet can only move on edges of H . A packet
only knows s, t, N(v) (the set of neighbors of v), and the
location of the packet. Various studies have been done under
this model [4–7, 18]. It has been established that deterministic
oblivious (i.e., “memoryless”) algorithms can be found for
triangulations, but no algorithm has constant competitive ratio.
For triangulations that have the “diamond property”, a constant
competitive algorithm exists if the algorithm can use O(1)-
memory within the packet being routed [6]. In particular, if
the triangulation has exactly two ears (as does a sequence of
triangles), there is a simple algorithm with competitive ratio
9. This setting is different from ours. In our setting, the tri-
angulation is coarser than the network resolution. The routing
path does not need to follow the edges of the triangulation;
it can pass through interiors of triangles, potentially allowing
the path to be significantly shorter.

The problem of robot motion planning and online navigation
has also been considered in a geometric domain with obstacles
under various models of the robots’ vision; refer to the
survey [20]. A tactile robot learns the boundary of an obstacle
only when it encounters it and then moves along it [19].
A vision-based robot only learns the obstacles when it can
see them. For tactile robots in an environment with square
obstacles, constant competitive ratios can be achieved; when
the obstacles can have unbounded aspect ratio, no constant
competitive algorithm exists [9, 22]. If the domain is a special
simple polygon called a “street”, in which s, t split the polygon
boundary into two chains such that any point on one chain is
visible to some point on the other chain, then online algorithms
exist in which a robot with a vision sensor can search for the
destination t with a constant competitive ratio [16]. Additional
results can be obtained for star-shaped polygons, etc.; refer to
[3]. Note that a sequence of triangles, as in our setting, is
a street. Note, though, that in our model the “vision” of the
robot (message) is restricted to the current containing triangle.

II. BOUNDED STRETCH HOMOTOPIC ROUTING

We assume a dense collection of sensor nodes deployed
inside a given polygonal domain Σ with h ≥ 0 holes. The
number of vertices of Σ is k. The number of sensors inside
Σ is n. Typically, h � k � n. Our objective is to prepare
the sensor nodes with minimal information such that one can
easily answer the query of homotopic routing using local
greedy algorithms. We start by explaining how to define path
homotopy in the query.

A. Path Homotopy

First we triangulate the polygon Σ, i.e., adding diagonals
(edges connecting visible vertices of Σ) to decompose Σ into
triangles. Note that no Steiner points are added. An example
is shown in Figure 2.

Any path from a source s to a destination t must go through
a sequence of triangles. We say a path follows a sequence S,
if it visits the triangles in the order S. The homotopy type

42

43

t

s
44

41

Fig. 2. A triangulated region and routing paths inside. The shaded part is a
hole with no wireless nodes while the rest of the domain is densely covered
by sensors (not shown in the figure). The red path shows the shortest path
from point s to point t, while the blue path is created by following our greedy
routing strategy. The dashed path is a shortest path with a different homotopy
type.

of a path is captured by S. Figure 2 shows (in solid red and
dashed red) the shortest geometric paths from s to t of two
different homotopy types.

To define a path of a certain homotopy type, we
work with the dual graph (D) of the triangulation,
in which each triangle is represented by a vertex,
and vertices corresponding to adjacent triangles are
connected by edges. See Figure 3 for an example.

w

z

a c

b
d

Fig. 3. A triangulated polygon. Dual graph
shown with blue edges. Cut edges are shown
in dashed lines. Red and green curves show
paths of different homotopy types. The solid
edges in the dual constitute the tree T .

A path in a do-
main with holes can
go around holes in
different ways; e.g.,
consider the red and
green paths connect-
ing z and d in Fig-
ure 3. To characterize
these differences for-
mally, we introduce
cut edges to the tri-
angulation, which are
diagonals (or edges in
the dual graph) that connect holes to the outer boundary
(possibly via other holes). The cut edges are chosen one per
hole arbitrarily . Removing the cut edges makes Σ a simple
polygon and makes the dual graph D a tree, denoted by T .
In Figure 3 the cut edges (shown dashed) are ab and cd in
the dual; they cross corresponding triangulation edges (also
shown dashed).

This demarcation of cut edges suffices to distinguish paths
of different homotopy types. Any two paths that cross the same
sequence of cut edges are of the same homotopy type. Note
that we are interested only in some basic homotopy types.
In general, a path may go around a hole many times, but
such paths are not of practical interest in network applications.
Therefore we are only interested in the homotopy types in
which the shortest path only visits each triangle once. This
means that the path winds around a hole at most once, i.e.,
any cut appears at most once in the type description. Thus, the
length of a description for a practical path is O(h), where h is
the number of holes of Σ. The homotopy type definition is only
with respect to the geometric domain Σ and is independent of
the sensor network within Σ.



Our goal is, for a given homotopy type (sequence of cut
edges), to find a path of that type in the sensor network, from
the source to the destination, by using a local greedy decision
rule. Our routing protocol follows a two-level structure, and
adopts greedy decisions to make progress at each level:

1) Top level: Determines the sequence S of triangles that
the shortest path with the specified homotopy type goes
through.

2) Bottom level: Routes the message in the sensor network,
following the sequence of triangles S.

The top-level procedure is concerned with finding the
sequence of triangles that the shortest path of the given
homotopy type should follow. Our hope of achieving short
stretch paths rests on the bottom-level procedure, which must
be designed with care and constitutes the major contribution
of this paper. We will first describe our algorithm and prove its
performance in the geometric case of a continuous Euclidean
metric, and then consider its adaptation to a discrete network
setting in Section II-D.

B. Greedy Routing at the Bottom Level

In this subsection we design and analyze the performance
of the bottom-level protocol for greedy routing in a sequence
of triangles S = 41,42, · · · .

Definition 2.1 (Bottom-Level Greedy Routing). For a mes-
sage at point p, inside4i and destined for t,

1) It is routed along the shortest path to (any point in) the
next triangle4i+1 in the sequence S.

2) If 4i is the last triangle in S, then it is routed along the
shortest possible path from p to t.

Such a path is shown in blue in Figure 2. While the algorithm
is conceptually simple, the proof that it achieves short paths
is quite involved. For lack of space, we will present only the
important ideas and theorems here; the complete proofs of the
theorems can be found in a full version online [14].

In the Euclidean plane, the shortest path between two points
is the (straight) segment, while that from a point to triangle is
simply the segment from the given point to the nearest point
of the triangle. The greedy path from s to t therefore consists
of such a sequence of segments through the triangles of S
(shown in blue in Figure 2). We prove the following theorem.

Theorem 2.2. Given a non-repeating sequence S of triangles,
the greedy routing algorithm finds a path of length at most
ρ times the length of the shortest path following the same
sequence S, where ρ is a constant independent of the input.

A non-repeating sequence means that no triangle appears
more than once in S. Thus the shortest path never visits the
same triangle again, and therefore does not self intersect. The
theorem implies that while the algorithm operates greedily
with very local information, it still produces good paths, not
much longer than the shortest one in its homotopic category.

For points u and v on a path P , we use Pu,v to denote the
part of P in between them, and |Pu,v| to denote its length. For
general points x and y, |xy| denotes the Euclidean distance

between x and y. For vertices vi and vj on P , we denote the
path between them by Pi,j , if there is no ambiguity.

Let us represent the greedy path by Ps,t and the shortest path
by Qs,t. These two paths may intersect each other at points
other than at s and t, but we need to only consider regions
between intersections. To see why this is true suppose that
the paths intersect at an intermediate point w. In this case,
if |Ps,w| ≤ ρ|Qs,w| and |Pw,t| ≤ ρ|Qw,t|, then by simply
adding we have |Ps,t| ≤ ρ|Qs,t|. Thus we only need to prove
the ρ stretch for each segment of P,Q between consecutive
intersections.

If the line segment connecting s, t is inside the sequence of
triangles, Qs,t is straight and its length equals |st|. Otherwise,
Qs,t makes intermediate turns. We can divide the path Qs,t
into subpaths each having all turns in the same direction. More
formally, a spiral is a directed simple path with every turn in
the same direction, clockwise or counterclockwise.

Lemma 2.3. If v and v′ are successive intersections of P and
Q, thenQv,v′ : the shortest path between these two intersections,
is a spiral.

This lemma implies that to estimate the stretch between
intersections, which is our goal, we can assume that the
shortest path segment is a spiral.

(c)(a) (b)

Fig. 4. Spiral paths. (a) Growing spiral; (b) Shrinking spiral; (c) Combined
spiral, can be seen as a concatenation of growing and shrinking spirals

A spiral can be of different types; see Figure 4. We focus
on the first case of a growing spiral shortest path segments;
other cases are analogous.

Q

v1

q1

v2
v3

q4s t

e1
e2 e3

41

44

43

42

v4

q2 q3

P

Fig. 5. The greedy path intersects the edges at points v1, v2, · · · , while the
shortest path intersects them at points q1, q2, · · · etc.

Any two successive triangles 4i and 4i+1 in sequence S
share a common edge, ei; let li be the line containing ei. Let
vi (resp., qi) denote the intersection of P (resp., Q) with ei,
and let ri = qivi; see Figure 5.

Some segments of P (e.g., v1v2) intersect the corresponding
edge (here e2) at an interior point, and at a right angle; we
refer to these as orthogonal segments, or o−segments. Other
segments (e.g., v3v4) intersect at a boundary of the edge; we
refer to these as boundary segments, or b−segments.



We will modify the greedy path P to a different path P ′,
which is easier to analyze. This new path P ′ is necessarily
longer than the original path, therefore an upper bound on its
length is an upper bound on the length of P .

ui

ei

vivi−1

Fig. 6. We replace a b-
segment such as vi−1vi
by an o-segment (vi−1ui)
and an l-segment uivi.

Modification: Replace b-segments.
Let us start with P ′ = P and modify
through the following steps. For each
b-segment vi−1vi, we take vi−1ui as
the perpendicular line from vi−1 to
li. Then we replace vi−1vi by an o-
segment (vi−1ui) and a segment uivi.
This replacement is shown in Figure 6.
The segment uivi is tangential to the
edge ei and we call it an l-segment.

After all such replacements, P ′ has no b-segments, and only
has o and l segments. Applying triangle inequality at each
place shows |P ′| ≥ |P |. For simplicity, let us refer to P ′ as P
in the rest of the section. Note that vi is now the point where
the greedy path leaves the edge ei.

li

gi−1

vi

ui

wi

hi−1

βi

αi+1

qi−1βi−1

li−1

qi

vi−1

ri−1

αiβi

Fig. 7. Bounding the greedy path.

The quantities most im-
portant to our analysis are
shown in Figure 7. The
angular turn made by the
shortest path Q at point qi
is βi. Equivalently, it is the
curvature at qi. The an-
gle between the straight line
qi−1qi and li−1 is αi. The
circular arc of radius ri−1

centered at qi−1 intersects
straight line qiqi−1 at gi−1.
It intersects the straight line
through qi−1 that is parallel
to qiqi+1 at hi−1. The arc of radius qigi−1 centered at qi
intersects li at wi.

Theorem 2.4. The total length, |P | =
m∑
i=1

|Pi−1,i|, of a grow-

ing spiral greedy path can be bounded by the sum of three
terms: |P | ≤ A+B + C, where:

A = (2π + 1)

m∑
i=1

|Qi−1,i|,

B =

m∑
i−1

|ri−1|βi,

C = |rm−1|αm+1 +

m−1∑
i=1

αi+1(|ri−1| − |ri|).

Note that A is simply (2π + 1)|Q|. Therefore, it remains to
estimate B and C. It can be shown that between successive
edges of S, the distance of P from Q along the edges ei does
not increase beyond the length of Q between these edges:

Lemma 2.5. |ri| − |ri−1| ≤ |Qi−1,i|, for i = 2, . . .m.

From this result it follows that:

Lemma 2.6. C ≤ 2π|Q|.

RN1

RN2

bi
ai

Fig. 8. Shortest path spi-
ral and two types of
wedges. RN1 wedges in-
tersect some part of the
shortest path while RN2
wedges do not.

Finally, we need a bound for term

B =

m∑
i−1

|ri−1|βi. According to Fig-

ure 7, |ri−1|βi = |
_

gi−1hi−1 |: the
length of the arc

_

gi1hi−1. Intuitively,
this is the cost the greedy path incurs
at turns. The shortest path Q makes
a sharp turn at qi−1, while the greedy
path P , which is at a distance of about
ri−1, has to travel a longer distance
along the outside of the turn. We ana-
lyze this cost using the shortest path inside the wedge bounded
by qigi and qihi.

Figure 8 shows two types of possibilities for such wedges.
At the outer points of the spiral, the wedges do not intersect
the shortest path Q; we say they are of type RN2. At the
inner points of a spiral, the resulting wedges intersect one
or more outer layers of Q; we call these of type RN1, and
denote by ai and bi the nearest intersections of Q with the two
rays. If ξi = Qaibi is part of the shortest path between these
points, then it can be shown that over the RN1 type wedges:∑
RN1

|ri|βi+1 ≤
∑
RN1

π

2
ξi. The right side can be shown to be

no more than (π/2)|Q|. While for RN2 type wedges, it is
easy to show that the total angle is bounded by

∑
RN2

βi ≤ 3π.

Therefore, we get the resultant property that:

Lemma 2.7. For wedges of types RN1 and RN2,∑
RN1

|ri|βi+1 ≤ π
2 |Q|,∑

RN2

|ri|βi+1 ≤ 3π|Q|.

Therefore, it follows that B ≤
(π

2
+ 3π

)
|Q|. Using similar

arguments (omitted from this abstract), if Q is a growing
(or similarly, shrinking) spiral, |P | ≤ A + B + C ≤(

15

2
π + 1

)
|Q|, while the length for a combined spiral is

bounded by |P | ≤ 2(A+B + C). From the arguments that a
factor that holds as upper bound between intersections holds
for the entire path, we get the final theorem:

Theorem 2.8. The length of the greedy path is at most (15π+
2) times the length of the shortest path.

This is Theorem 2.2 with the constant ρ = 15π + 2; this
is a worst-case bound and likely can be improved. Also, our
simulations show that in practice the stretch factor is much
less than the theoretical bound. In the special case when Q is
a straight line, we obtain a much smaller bound of π + 1; in
fact, for this case, this bound is tight (see [14]).

Theorem 2.9. If the shortest path Q is a straight line, the
length of the greedy path is at most (π + 1) times the length
of the shortest path.



We had assumed that no triangles appear twice in the
triangle sequence S, which is the only practically interesting
case. However, Theorem 2.2 will still hold, with possibly a
larger constant, as long as a triangle is not repeated more than
a constant number of times.

C. Greedy Routing at the Top Level

At the top level, we have a tree T , dual to the triangulation
of Σ after cut edges are removed. Routing at this level deals
with finding a sequence of triangles that contains the shortest
path of the specified homotopy type. Routing in a tree using
a greedy algorithm can be done in various ways. We describe
two such methods below and show how to add homotopy types
on top of it.

Homotopic routing by hyperbolic embedding. To support
greedy routing in the tree T , we can embed T in the hyperbolic
plane using the method of Kleinberg [17]. Here we explain
how to augment it for routing of a given homotopy type.

c

z

zb d
a

w w

z

b

c

a
w

d

Fig. 9. The tree T is shown in solid
blue inside the Poincare disk. The red
and green paths from Figure 3 are
shown as red and green paths to dif-
ferent images of d. Together they rep-
resent a loop.

To support routing of a
given homotopy type, we
need to attach copies of
the tree along cut edges
such that routes through cut
edges can be found in a
greedy manner. Each cut
edge connects two vertices
of T that are always leaves.
We can attach a copy of T
to the open end of each du-
plicate cut edge. The conti-
nuity that was lost in remov-
ing the cut edges to create T
is now restored.

For example, the edge ab
in Figure 3 maps to two
different leaves b and a. Let
us attach a copy of T by
connecting edge ab at a and b, respectively, to maintain
continuity of the original D. That is, a and b are now neighbors
once again, while maintaining all other neighbor relations.
However, this creates a new set of cut leaves with discontinuity
where we need to attach copies of T for continuity. This can be
carried out indefinitely to get a tree T with infinitely number of
copies of T . This tree T is the Universal Covering Space of the
graph D. Each node of T maps to many copies in the universal
covering space T . Paths of different types are obtained by
simply routing to different images of the destination in T . In
particular, the shortest path for a given homotopy type maps
to a simple path in the T connecting the source to the proper
image of the destination. This simple path can be found by
using a greedy routing algorithm using a embedding of T in
hyperbolic virtual coordinates, as explained below.

The universal covering space of any graph is a tree [12],
and an infinite tree of bounded degree has a greedy, (1 +
ε)-distortion embedding in the hyperbolic plane that can be

computed by a distributed algorithm [17, 23]. Figure 9 shows
an example of the embedding in the Poincare disk.

To perform the top-level routing, we need to identify this
suitable image of the destination corresponding to the given
homotopy type. Recall that a homotopy type is determined by
the sequence in which a path crosses cut edges. For example,
the red path above crosses the cut edge cd in direction

−→
cd . We

define a corresponding transformation in the hyperbolic plane:
the transformation gcd maps the cd edge at the bottom right to
the cd edge at the top right. Then the two destinations d and
gcd(d) corresponds to different homotopy types shown by the
green and red paths.

A path to gcd(d) must cross the cut edge cd in direction
−→
cd , and thus is equivalent to that homotopy type. Trans-
formations such as gcd form a group called the group of
deck transformations. The generators of this group can be
composed together: gabgcd(w) = gab(gcd(w)). Therefore, a
homotopy type can be represented by a sequence of generators,
g = g1g2g3 . . . , which represents crossing the corresponding
cut edges in the given order and directions. Thus, for our
purposes, given a homotopy type g and a final destination d,
we will select as our destination g(d) and route to it by greedy
routing in the hyperbolic metric. Each generator is an isometry
of the hyperbolic plane and can be written as a Möbius
transformation: z → eiθ z−z01−z̄0z , with only two parameters: a
complex number z0 and an angle θ. A composition g can
be written in the same form, and therefore needs only two
parameters as well.

An analogous method of universal covering spaces used
in [26] embeds the entire network in the hyperbolic plane
using an expansive Ricci Flow computation. In contrast, we
need to embed only a coarse tree.

Routing with compact labels of T . An alternative method of
finding routing paths in D is to use compact routing labels for
the finite tree T . In a tree of size m – for example, as described
in [21] – this method assigns label ζ(p) of size O(logm) to
each node p. Given a destination label t, the source s can find
a neighbor p that is closer to t by merely comparing ζ(p) and
ζ(t). Using ζ, we can perform homotopic routing as follows.
Suppose ab, cd, . . . is the sequence of cut edges for the type.
We route from s to a using ζ, route from a to b locally, and
route from b to c using ζ again, and so on.

D. Implementation in a Sensor Network

In this section we describe the implementation issues in a
sensor network. This includes preprocessing to prepare the
necessary information for both top-level and bottom-level
routing algorithms. We also elaborate on how to implement
the bottom-level routing in a network setting.

Preprocessing. We assume that the polygon Σ (e.g., a map
of the deployment domain) in which the network is deployed
is already known before the deployment/initialization of the
network. The triangulation of Σ is done using a centralized al-
gorithm offline by the network owner/operator. A polygon with
k vertices and h holes can be triangulated in O(k+h log1+ε h)



time [2], or in O(k log∗ k + h log k) expected time [24]. h
cut edges are selected to cut the holes open. We also prepare
the coordinates for top-level routing in the tree T (and the
universal covering space T ) obtained from the triangulation
after the removal of the cut edges in a centralized manner.
The running time is dependent on k, h, the complexity of Σ
instead of the size of the sensor network.

Information about the triangles as well as the coordinates
of nodes of T are then disseminated to the network using
a network-wide broadcast such that each sensor node only
stores the following information: 1) the Euclidean coordinates
of the triangle containing itself and the (at most 3) adjacent
triangles; 2) the virtual coordinates of the triangle for top-level
routing and that of (at most 3) adjacent triangles; and 3) the cut
edges for issuing homotopic routing. With such information
each node is able to perform top-level greedy routing given
a specified homotopy type using only local information. The
storage requirement for each node is O(h). The message size
in the broadcast procedure is O(k), the size of Σ. Notice
that this procedure is only done once for the entire network
lifetime.

To specify a destination, we need to specify the triangle
containing it and its Euclidean coordinates. The former is for
top-level routing and the later is for bottom-level routing when
the message gets to the final triangle. Such information for the
destination can be obtained through standard location services.
Bottom-level routing in a sensor network. To perform
bottom-level routing, we implement the greedy strategy, de-
scribed in the continuous setting in Section II-B. There are
two cases. In the first case, the destination is not in the
current triangle 4. The top-level routing suggests the next
triangle 4′ to be visited. We find a path in the network
to the geometric diagonal shared by 4 and 4′. We simply
use geographical greedy routing towards the diagonal, i.e.,
forwarding the message to the neighbor whose Euclidean
distance is closest to the next triangle. Since we assumed
that sensors are densely deployed, geographical greedy routing
inside a triangle-shape domain should have high delivery rate.
In the rare situation that the message gets stuck, for example
due to small and temporary routing holes, we simply flood
it inside the triangle 4. In the second case, the destination
is inside the current triangle 4; again, simple geographical
greedy routing is employed and, in rare situations, flooding is
used when a message gets stuck.

III. SIMULATIONS

We have implemented our algorithm and run simulations
to investigate the observed stretch factor and load balancing.
Here, we are interested in evaluating the quality of the bottom
level of our algorithm; the top level simply produces the
unique sequence of triangles to be used at the bottom level.
We compare to three algorithms for routing in a network
within a sequence of geometric triangles: shortest path (SP)
routing, the landmark-based greedy routing algorithm used
in GLIDER [10], and the greedy algorithm using hyperbolic
virtual coordinates in [26].

GLIDER: A landmark-based 2-level routing method.
GLIDER [10] starts by selecting some nodes as landmarks.
Then, these landmarks flood the network such that every node
in the network can identify its nearest landmark. Nodes with
the same nearest landmark are said to be in the same Voronoi
cell. Each node is informed of the dual graph of the Voronoi
decomposition and thus knows the path in the dual to any
cell. When a message needs to move from cell A to cell B to
cell C, the message moves along a shortest path toward the
landmark of B, until it enters B. At that point, it switches to
a shortest path toward the landmark of C, etc.
Hyperbolic routing using Ricci flow. The hyperbolic routing
algorithm in [26] uses hyperbolic Ricci flow to compute an
embedding of the network in the hyperbolic space. Similarly,
the universal covering space is embedded so that homotopic
routing is supported. We remark that our method uses a very
coarse triangulation on the top level, rather than embedding the
entire network. In addition, our method guarantees bounded
stretch, while hyperbolic routing has no worst case guarantee.
Setting. While both the GLIDER scheme and our algorithm
utilize network decompositions, the decompositions are dif-
ferent in nature. Thus, for consistent comparison, we slightly
modify the GLIDER scheme to utilize the partition of the
given triangulation (instead of the Voronoi partition), treating
the triangles as cells, and setting the landmark of a triangle
to be the node nearest to the centroid of that triangle. Further,
all paths in comparison have the same homotopy type.

The simulation results reported in here are for unit-disk
graphs. The results for quasi-unit-disk graphs and other relax-
ations of radio models are similar (and thus omitted from this
extended abstract). The nodes are distributed as a perturbed
grid.

Our main observations from the simulations are:
• Our greedy routing method almost always finds routes

with a stretch of at most 3, which is much better than
the theoretical bounds, GLIDER and hyperbolic routing.
Its performance is consistent and is not sensitive to the
actual triangulation of Σ used.

• Our algorithm distributes traffic load more evenly than
the GLIDER 2-level routing method and causes fewer
hotspots.

• Although there is no theoretical guarantee on the stretch
for the GLIDER algorithm and the hyperbolic routing
scheme, the paths they generate have stretch typically no
more than 5 in all of the examples we have tested. This
is in agreement with results reported in [10] and [26].

Path Length. We first consider a network of 8713 sensors
deployed in a rectangle with three concave holes. The average
degree is 23. We first triangulate this region as shown in
Figure 10. We then take random sequences of triangles from
this network, select random source and destination from them,
execute routing using different methods and measure the
stretch and node loads. Each experiment is repeated 10, 000
times.Figure 11 shows the distribution of the stretch of our
algorithm, GLIDER, and hyperbolic routing over the shortest



Fig. 10. The rectangular domain with 8713 nodes distributed on a perturbed
grid. Comparing a shortest path (blue), the GLIDER path (red), the hyperbolic
routing path (brown), and our greedy route (green). The starting point is
circled by red, the end point is circled by black.

path algorithm. Of the three algorithms, 90% of the paths have
stretch factor below 1.5, which is far better than the theoretical
bound. Moreover, in this experiment our algorithm produces
no stretch greater than 3, which outperforms the other two
algorithms.

Our Algorithm, Avg=1.336
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Hyperbolic Routing, Avg=1.28
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Fig. 11. Histogram of stretch factors of paths produced by our algorithm,
GLIDER, and hyperbolic routing. Our algorithm has a typical stretch less
than 1.5, and is always less than 3, while GLIDER and hyperbolic routing
have some paths of length more than 3 times the shortest path length.

Load Balancing. Geographical routing using face routing to
get around holes is known to have a tendency to congregate
near hole boundaries, creating traffic hotspots that slow down
routing and drain sensor batteries. It has been shown that both
GLIDER and hyperbolic routing improved load balancing in
this aspect [10, 26], since both of them take long de-tours
around holes.

We show the load distribution as a histogram in Figure 12
for different algorithms. All three algorithms perform reason-
ably well in this respect. Our algorithm is slightly better than
GLIDER and slightly worse than hyperbolic routing.
Various Domains. We tested the performance of our algorithm
in the six different domains shown in Figure 13. In Fig-
ure 13(a) we tested the fan shape, in which it is expected that
our algorithm performs close to the worst case stretch bound
– our route approximately follows a semi-circle, resulting in
a stretch factor of about π/2. We also tested various domains
with obstacles.

We chose 10, 000 random routing paths within each net-
work. Table I shows that the average stretch of the greedy
routing method is always less than 1.5, irrespective of the
network geometry.

Hyperbolic Routing
Our Algorithm
GLIDER

#N
od

e

0

50

#N
od

e

0

50

#N
od

e

0

50

Loads
0 200 400 600 800 1000 1200 1400 1600

Fig. 12. A load comparison between paths produced by hyperbolic routing,
our algorithm and GLIDER. Only nodes with load above 200 are shown here.Networks Stretch

Fan shape domain 1.412191984
Spiral shape domain 1.271866423

Polygon domain with 1 hole 1.338248974
Rectangular domain with 1 hole 1.328246153
Rectangular domain with 5 holes 1.313282006
Rectangular domain with 7 holes 1.319227400

TABLE I. Stretch in different networks of Figure 13

Dependency on Triangulations. To check the dependence
of the quality of results on the nature of triangulations, we
repeated the experiment for different triangulations with ran-
domly distributed interior vertices, and found that the standard
deviation of the stretch of our method and GLIDER are both
small, about 0.013 and 0.018, respectively, implying that the
performances of these methods are largely independent of the
triangulation.

IV. CONCLUSION

We presented an algorithm to perform homotopic routing
in large-scale sensor networks. The greedy routing method
is extendable to general decompositions of networks beyond
triangles, and can be used to improve routing performance in
other decomposition-based routing methods. Future work will
utilize short homotopic paths for generating resilient backup
paths, specific types of loops for surveillance, etc.

Acknowledgements. We thank Michael Biro for helpful discussions.
J. Mitchell acknowledges support from the National Science Foun-
dation (CCF-1018388). Jie Gao and Chien-Chun Ni acknowledge
support from NSF grants DMS-1221339, CNS-1217823 and CNS-
1116881.

REFERENCES

[1] N. M. Amato, M. T. Goodrich, and E. A. Ramos. A randomized
algorithm for triangulating a simple polygon in linear time. Discrete
Comput. Geom., pages 245–265, 2001.

[2] R. Bar-Yehuda and B. Chazelle. Triangulating disjoint Jordan chains.
Internat. J. Comput. Geom. Appl., 4(4):475–481, 1994.

[3] P. Berman. On-line searching and navigation. In Online Algorithms,
pages 232–241, 1996.

[4] P. Bose, A. Brodnik, S. Carlsson, E. D. Demaine, R. Fleischer, A. López-
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APPENDIX

Lemma 4.1. | _
gi−1vi−1 |+ |vi−1ui| ≤ |

_
gi−1wi |+ |wiui|

Proof: Consider line ` through vi−1 and parallel to li.

li−1

f

`gi−1

y

wi

li

qiqi−1

ui

vi−1

Fig. 14.

Suppose f is on ` such that fwi+1 is perpendicular to li. And
arc

_
gi−1wi intersects ` at y. Then by triangle inequality:

| _
gi−1vi−1 | ≤|

_
gi−1y |+ |yvi−1| ≤ |

_
gi−1y |+ |wiui|

|vi−1ui| ≤|
_
ywi |

Adding, we have the intended result:
| _
gi−1vi−1 |+ |vi−1ui| ≤ |

_
gi−1wi |+ |wiui|.

Proof: of Theorem 2.4 Using Lemma 4.1:

| _
gi−1vi−1 |+ |vi−1ui−1| ≤ |

_
gi−1wi |+ |wiui|

Therefore:

|ri−1|αi+|Pi−1,i|+ |ri| ≤
(|ri−1|+ |Qi−1,i|)(αi+1 + βi) + |ri−1|+ |Qi−1,i|

Rearranging:

|Pi−1,i| ≤ (|ri−1|+|Qi−1,i|)(αi+1+βi+1)−ri−ri−1αi (1)

Expanding, we get the result:
m∑
i=1

|Pi−1,i| ≤
m∑
i=1

[|Qi−1,i|(βi + αi + 1) + |ri−1|(βi + αi+1 − αi)]

≤ (2π + 1)

m∑
i=1

|Qi−1,i|+
m∑
i=1

|ri−1|βi

+

m∑
i=1

|ri−1|(αi+1 − αi)

≤ (2π + 1)

m∑
i=1

|Qi−1,i|+
m∑
i=1

|ri−1|βi

+

m−1∑
i=1

αi+1(|ri−1| − |ri|) + |rm−1|αm+1

Proof: of Lemma 2.5

|ri| − |ri−1| = |viqi| − |gi−1qi−1|
≤ |wiqi| − |gi−1qi−1|
≤ |gi−1qi| − |gi−1qi−1|
≤ |qi−1qi| = |Qi−1,i|

Proof: of Lemma 2.6
Observation: |P0,1| ≤ |Q0,1| and |r1| ≤ |Q0,1|. Therefore:

|rm| =
m−1∑
i=2

(|ri| − |ri−1|) + |r1| ≤
m∑
k−1

|Qi−1,i|

Since αm+1 ≤ π, we have |rm−1|αm+1 ≤ π
m∑
i=1

|Qi−1,i|

And:
m−1∑
i=1

αi+1(|ri−1| − |ri|) ≤ π
m−1∑
i=1

max(|ri−1| − |ri|, 0)

≤ π
m∑
i=1

|Qi−1,i|

Adding, we have C ≤ 2π|Q|
Proof: of Lemma 2.7

Bound of RN1.

Case 1: When vi is on
_

gihi

li

gi qi
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θ1
βi+1

qi+1

θ2
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Fig. 15.

Let ξ1
i and ξ2

i be the parts of Qaibi on the left and right of
qivi.

|ξki | ≥ ri sin θk if 0 ≤ θk ≤ π/2

|ξki | ≥ ri if π/2 < θk ≤ π

Therefore:

|ξi| = |ξ1
i |+ |ξ2

i | ≥
2

π
(θ1 + θ2)ri =

2

π
βi+1ri

Therefore:

|ri|βi+1 ≤
π

2
ξi

Case 2: When vi is not on
_

gihi

Lemma 4.2. For any point p ∈ Ps,vi on the greedy path,
before ei, |pqi| ≤ |Qsqi |.
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Proof: By Induction. Simple for i = 1. Suppose it is true
for i = k : |pqk| ≤ |Qs,qk |. If p is before ek, then by triangle
inequality:

|pqk+1| ≤ |pqk|+ |qkqk+1| ≤ |Qs,qk |+ |qkqk+1| ≤ |Qs,qk+1
|.

If p is between ek and ek+1, by lemma 2.5:

|vk+1qk+1| ≤ |vkqk|+|qkqk+1| ≤ |Qs,qk |+|qkqk+1| ≤ |Qsqk+1
|

Lemma 4.3. |biqi| ≥ ri
Proof: Let4 be the triangle containing bi. Let the triangle

sequence, from 4 to the last triangle before li, be S. Let q∗i
be a point that is on the extension of biqi. Adding 4viqiq∗i to
S, we have a triangle sequence S∗. Taking bi and q∗i as source
and destination and applying greedy algorithm we get a new
greedy path that coincides with the original one from bi until
li, because 4 and following triangles are same before li and
the destination is not in S. The new path will also pass vi. By
definition of bi, the following observation is clear: biq∗i is fully
contained in S∗. Thus by Lemma 2.5, we have biqi ≥ viqi.

Similar to case 1, we have |ri|βi ≤ π
2 ξi. Therefore:∑

RN1

|ri|βi+1 ≤
∑
RN1

π

2
|ξi| ≤

π

2

∑
RN1

|Qi−1,i|

Bound for RN2.

Lemma 4.4. ∑
RN2

βi ≤ 3π

Therefore:

∑
RN2

|ri|βi+1 ≤ 3π

m∑
i=1

|Qi−1,i|

Proof: of Theorem 2.9 Suppose the shortest path Qst is a
straight line in the plane. We will modify the greedy path P to
an easier to analyze form P ′′, and show that P ′′ is necessarily
longer than |P | but shorter than (π+ 1) · |Q|. This will prove
that P itself is shorter than (π + 1) · |Q|.

We perform an additional pre-processing on P ′.

Step 2: Replace greedy subpaths by arcs. In this step we
will create a path P ′′ that we initialize as P ′′. Consider the
circle centered at q1 and with radius q1s. Suppose this circle
intersects l1 at w1. We replace the greedy path from s to v1 by
the arc

_
sw1 of the circle, followed by an l-edge w1v1. Now we

process the remaining straight segments of P ′′ in order. Our
goal is to convert entire P ′′ into a circular arc. To remove a
straight segment can be of l or o type, and we modify P ′′ as
follows:

1) Expansion: For an o-segment vixi+1, we replace the
path

_
svi +vixi+1 by an arc swi+1 of radius qi+1s from s

to li+1 and insert an l-segment wi+1xi+1. See Figure 14
2) Contraction: For an l-segment wixi, we contract the

arc swi preceeding it by a factor γ = |qixi|
|qiwi| , wand with

center qi. Note that this moves the starting point s to a
new location s′. Subsequently, we treat s′ as s.

We repeatedly execute the procedure with the first straight
segment of P ′′ until P ′′ has no straight segments except the
final segment to t.

Now we show that the contraction steps do not contract too
much.

Lemma 4.5. Suppose that a particular contraction modifies
path P̄ to

_

P . Then |
_

P | ≤ (π + 1)|s′t| ⇒ |P̄ | ≤ (π + 1)|st|

Proof:

qi

vi

s s′

wi

P̄

_

P

P ′vit

li

Fig. 17.

Observe that after the point vi, P̄ and
_

P are identical and
have not been modified since step 1. For the purposes of this
proof, let us refer to this part as P ′vit. Then we have:

|P̄ | = | _
swi |+ |wivi|+ |P ′vit|

= γ| _
swi |+ (1− γ)| _

swi |+ |wivi|+ |P ′vit|

= |
_

s′vi |+ |P ′vit|+ (1− γ)| _
swi |+ |wivi|

= |
_

P |+ (1− γ)| _
swi |+ (1− γ)|wiqi|

≤ (π + 1)|s′t|+ (1− γ)(| _
swi |+ |wiqi|)

≤ (π + 1)|s′t|+ (1− γ)(π + 1)(|sqi|)
≤ (π + 1)|s′t|+ (π + 1)(|ss′|)
≤ (π + 1)|st|

We can now show that the greedy path satisfies a bound of
(π + 1) on the stretch relative to the straight line path:



Suppose em is the last diagonal intersected by the path P ′′.
Then after step 2, P ′′ consists of a circular arc

_
svm centered

at qm. Since |vmqm| ≤ |sqm| ≤ |st|, we have that |vmt| ≤
|vmqm|+ |qmt| ≤ |st|.

|P ′′| ≤ π|sqm|+ |vmt|
≤ π|st|+ |st|
≤ (π + 1)|st|

By Lemmas 4.5 and 4.1, |P ′′| ≤ (π + 1)|st| ⇒ |P ′| ≤ (π +
1)|st|. We know that |P | ≤ |P ′|, therefore |P | ≤ (π + 1)|st|


