

Edinburgh Research Explorer

Hierarchies Against Sublinear Advice

Citation for published version:
Fortnow, L & Santhanam, R 2014, 'Hierarchies Against Sublinear Advice' Electronic Colloquium on
Computational Complexity (ECCC), vol. 21, pp. 171-182.

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Electronic Colloquium on Computational Complexity (ECCC)

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 05. Apr. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/43710634?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://www.research.ed.ac.uk/portal/en/publications/hierarchies-against-sublinear-advice(0471a3da-b2e3-4ef6-8098-ba54f13eb828).html

Hierarchies against Sublinear Advice

Lance Fortnow1 and Rahul Santhanam2

1 Georgia Institute of Technology fortnow@cc.gatech.edu
2 University of Edinburgh rsanthan@inf.ed.ac.uk

Abstract. We strengthen the non-deterministic time hierarchy theorem of [5,15,18] to show that the
lower bound holds against sublinear advice. More formally, we show that for any constants c and d such
that 1 6 c < d, there is a language in NTIME(nd) which is not in NTIME(nc)/n1/d. The best known
earlier separation [8] could only handle o(log(n)) bits of advice in the lower bound.
We generalize our hierarchy theorem to work for other syntactic complexity measures between poly-
nomial time and polynomial space, including alternating polynomial time with any fixed number of
alternations. We also use our technique to derive an almost-everywhere hierarchy theorem for non-
deterministic classes which use a sublinear amount of non-determinism, i.e., the lower bound holds on
all but finitely many input lengths rather than just on infinitely many.
As an application of our main result, we derive a new lower bound for NP against NP-uniform non-
deterministic circuits of size O(nk) for any fixed k. This result is a significant strengthening of a result
of Kannan [12], which states that not all of NP can be solved with P-uniform circuits of size O(nk) for
any fixed k.

1 Introduction

One of the fundamental questions in complexity theory is whether resource hierarchies exist, i.e., whether
having more of a resource allows us to solve more computational problems. Hierarchies are known for many
fundamental resources, including deterministic time [10, 11], deterministic space [16] and non-deterministic
time [5, 15,18,7].

Hierarchy theorems yield the only unconditional separations we know against polynomial-time classes,
and thus it is of interest to investigate how strong we can make these separations. Ideally, we would like the
separations to work against non-uniform classes, not just uniform ones. The notion of advice allows us to
interpolate between the uniform and the non-uniform settings, and then the question becomes how much
advice we can handle in the lower bound when proving a hierarchy theorem.

This question is interesting for at least a couple of different reasons. First, the amount of non-uniformity
in the lower bound is closely tied to the question of derandomization. If we could show that for any fixed k,
there is a language in deterministic polynomial time which cannot be solved in deterministic time O(nk) with
O(nk) bits of advice, we could conclude that every language in probabilistic polynomial time can be solved
infinitely often in deterministic sub-exponential time, using the hardness-randomness tradeoffs of [13, 3]. A
similar derandomization result for the class MA follows from the assumption that there is a language in NP
which cannot be solved in non-deterministic time O(nk) with O(nk) bits of advice.

Second, from a technical point of view, hierarchy theorems are used in many of the important separation
results in complexity theory [2, 6, 17]. Improved hierarchy theorems open the way to stronger versions of
these results.

The traditional proofs of hierarchy theorems yield only uniform lower bounds. However, the proof of the
deterministic time hierarchy theorem [10,11] can easily be adapted to yield separations against n−ω(1) bits
of advice. This adaptation exploits the closure of deterministic time under complementation.

The situation is very different for resources such as non-deterministic time which are not known to be
closed under complementation. The best hierarchy theorem known for this case in terms of the advice handled
by the lower bound is due to [9]. They adapt Zak’s proof of the non-deterministic time hierarchy [18] to show
that NP 6⊆ NTIME(nc)/ log(n)1/2c for any c > 0. Not much more can be expected of adaptations of classical
proofs of the non-deterministic time hierarchy theorem [5, 15, 18]. Since such proofs consider exponentially

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 171 (2014)

many input lengths when diagonalizing against a single machine, they’re incapable of handling advice more
than O(log(n)).

1.1 Our Results

Our main result is a significant improvement of the non-deterministic time hierarchy theorem in terms of
the advice handled in the lower bound.

Theorem 1. Let d > 1 and d′ > d be any constants, and let t be a time-constructible time bound such that
t = o(nd). Then NTIME(nd) 6⊆ NTIME(t)/n1/d′

.

Theorem 1 improves on known results handling advice in two respects. First, the amount of advice in the
lower bound can be as high as nΩ(1), in contrast to earlier results in which it was limited to be O(log(n)).
Second, the hierarchy is provably tight in terms of the time bounds, while earlier results handling advice
could only separate NTIME(nd) from NTIME(nc) with advice, where c < d.

The ideas of the proof of Theorem 1 also enable us to make progress on another direction in which
hierarchy theorems can be strengthened: showing that hierarchy theorems hold almost everywhere. By this
we mean that the lower bound holds on all but finitely many input lengths, rather than just on infinitely
many. While it is well-known that the deterministic time hierarchy theorem can be adapted to hold almost
everywhere, it is a long-standing open problem whether this adaptation can be done for the non-deterministic
hierarchy theorem. It is shown in [4] that any adaptation has to be non-relativizing.

We make progress on this question by showing that almost-everywhere hierarchies do hold for a very
natural sub-class of non-deterministic time: non-deterministic time with bounded non-determinism. Given
functions t and g, let NTIMEGUESS(t, g) denote the class of languages accepted by non-deterministic ma-
chines running in time t(n) and using at most g(n) non-deterministic bits on any input of length n. Note that
most natural NP-complete problems, such as SAT and CLIQUE, belong to NTIMEGUESS(poly(n), o(n)). We
show the following.

Theorem 2. Let d > 1 be any constant, and let t be a time-constructible function such that t(n) = o(nd).
Let g(n) = o(n) be any function computable in time O(n). Then NTIMEGUESS(nd, 2g) 6⊆ i.o.NTIME(t, g).

We are able to use Theorem 1 to derive a new circuit lower bound for NP, improving a 30-year old result
of Kannan [12].

Theorem 3. Let k > 1 be any constant. NP does not have NP-uniform non-deterministic circuits of size
O(nk).

Finally, we consider the question of whether Theorem 1 can be extended to complexity measures other
than NTIME. We show that for a wide variety of complexity measures, including all the alternating time
classes with a bounded number of alternations, the analogue of Theorem 1 holds. Since the statements of
these results are somewhat technical, we refer the reader to Section 6.

1.2 Techniques

We now attempt to give some intuition for the ideas in our proofs.
Recall that we are attempting to give hierarchies for non-deterministic time where the upper bound is

uniform, but the lower bound allows as large an amount of non-uniformity as possible. Tradtional proofs of
uniform non-deterministic time hierarchy theorems [5, 15,18] use the delayed diagonalization technique. We
illustrate this technique through Zak’s proof, which is arguably the simplest. Suppose we wish to define a
non-deterministic machine M running in time nd which diagonalizes against some non-deterministic machine
Mi running in time t = o(nd). Rather than diagonalizing against Mi on some fixed input x depending on i as
in the proof of the deterministic time hierarchy theorem [10,11], we diagonalize against Mi on some interval
Ii of input lengths, meaning that we are guaranteed M differs from Mi on some input of length in Ii. The

2

interval Ii is of the form [ni, 2n
d
i] for some ni depending on i. The diagonalization proceeds via a “copying”

mechanism. On an input x in Ii of length less than 2n
d
i , M on x simply simulates Mi on x0, accepting iff

Mi accepts. On an input of the form x02nd
i −ni , where |x| = ni, M determines Mi(x) by brute force search,

accepting iff Mi rejects. By assumption on t and assuming ni is large enough, M can be defined to run in
time nd on all inputs in Ii.

Assume, for the purpose of contradiction, that M and Mi define the same language. Then M and Mi

agree on all inputs with lengths in Ii, which by the copying mechanism of M , implies that Mi(x) agrees with

Mi(x0j) for each x of length ni and each j ∈ [0, 2n
d
i −ni]. But then M cannot agree with Mi on x02nd

i −ni , as
M on that input does the opposite of what Mi does on x. Note that we cannot guarantee that M differs from
Mi on any specific input, merely that it differs from Mi on some input in Ii. Also note that the interval Ii
is exponentially long. Intuitively, M bides its time for exponentially many input lengths, until it has enough
resources to do the opposite of what Mi does on x.

With an appropriate choice of intervals Ii, the above argument yields a uniform hierarchy theorem. It
was adapted by Fortnow, Santhanam and Trevisan [8] to show a hierarchy with advice, but the advice which
the adaptation can handle is very low: o(log(n)). The challenge in adapting Zak’s argument to hierarchies
against advice is that the argument uses exponentially many input lengths. This hurts us in two ways. First,
using a naive copying argument requires an exponential amount of information (advice bits for all input
lengths in the interval) to be encoded into the starting input x, which is impossible. This is dealt with in [8]
by only using sub-logarithmically many polynomially spaced input lengths in an exponentially long interval,
and “jumping” from one input length to a polynomially larger one during the copy phase. The cost paid
for the way this issue is dealt with in [8] is that the time bounds in the hierarchy theorem are polynomially
separated rather than just being asymptotically separated as in the proof of the uniform non-deterministic
time hierarchy. There is also a second issue, which is that for Zak’s form of delayed diagonalization to work,
advice for the final input length in the interval must be encoded into x. This constrains the advice that can
be handled in this argument to sub-logarithmic, as the final input length in the interval is exponentially
larger than x.

This second issue is a bottleneck for all delayed diagonalization arguments using exponentially long
intervals, which includes all the traditional arguments [5,15,18]. Recently, Fortnow and Santhanam [7] gave
a new proof of the non-deterministic time hierarchy theorem, which unlike previous proofs, critically uses the
definition of non-deterministic time using polynomial-time verifiability. This new argument has the benefit
that it uses only a polynomially long interval, and is a natural starting point for an attempt to handle more
advice in the non-deterministic time hierarchy.

Intuitively, rather than “copying along a line” as in Zak’s argument, the Fortnow-Santhanam proof
“copies down a tree”. Suppose we wish to define a non-deterministic machine M running in time nd which
diagonalizes against some non-deterministic machine Mi running in time t = o(nd). We again define some
interval Ii of input lengths for achieving this, but now Ii = [ni, ni + ndi] is only polynomially long. For any
input y ∈ I of length less than ni + ndi , M copies the behaviour of Mi on two different inputs of length one
larger, by accepting iff both Mi(x0) and Mi(x1) accept. On input of the form xw, |x| = ni, |w| = ndi , M
simulates Mi on x with witness w and does the opposite. Thus this diagonalization phase actually use the
non-deterministic nature of Mi, rather than simply doing brute force search. It is again easy to see that if Ii
is chosen appropriately, M can be made to run in time nd.

Now assume, for the purpose of contradiction, that M agrees with Mi on all inputs in Mi. If Mi accepts
on x, then by the copying behaviour of M , Mi accepts on all inputs in the interval I. But this implies that
for all candidate witnesses w of size ndi , Mi rejects on x with witness w, which is a contradiction, as Mi

would then reject on x itself. The case where Mi rejects on x is argued similarly.
By using only a polynomially long interval, the argument above, which we term witness-based diagonal-

ization, gives hope for handling a sub-polynomial amount of advice in the lower bound. However, there are
again obstacles to adapting the argument to advice. Even if the argument uses a polynomially long interval,
it still uses all input lengths within that interval. A naive adaptation of the argument would require advice
for all these input lengths to be encoded into x, which would be impossible as the number of input lengths
is larger than x.

3

We could try using jumps again, so that fewer input lengths within the interval are used. However, it is
unclear how to do this with witness-based diagonalization, as every jump only contributes to one bit in the
witness, and therefore with a small number of jumps, we are unable to build a witness which we can use in
the diagonalization process at the last input length in the interval.

We solve the problem by hybridizing between delayed diagonalization and witness-based diagonalization.
The idea is that witness-based diagonalization can be “simulated” within a single input length, namely the
last input length in the interval. However, in order to perform this simulation, we need to copy from the
first input length in the interval to the last one. This can be done using jumps again, but how we use jumps
critically affects the parameters in the final hierarchy results. The fewer the jumps used, the more advice
we can handle, but the larger the gap between the time upper bound and the time lower bound. We need
to choose the jump mechanism appropriately to get an optimal tradeoff between the quality of the ensuing
hierarchy theorem in terms of time bounds and the quality of the ensuing hierarchy theorem in terms of
advice. This gets somewhat technical, but we are able to prove Theorem 1 using these ideas.

The proof of Theorem 1 still uses a polynomially long interval for diagonalization. Suppose we wish to
prove an almost-everywhere hierarchy for non-deterministic time, i.e., a hierarchy theorem where the lower
bound holds for almost all input lengths rather than for infinitely many lengths3. It is known [4] that this
cannot be done in a relativizing way. We show in this paper that an almost-everywhere hierarchy can be
obtained for a natural subclass of non-deterministic time, namely non-deterministic time with sub-linear
witnesses. The key observation is that when the amount of non-determinism is sub-linear, a variant of the
witness-based diagonalization argument can be carried out within a single input length, meaning that we can
diagonalize against any fixed machine on any large enough input length. This yields an almost-everywhere
hierarchy.

The proof of Theorem 3 is substantially different. It uses an indirect diagonalization technique due to [14],
where the presumed existence of a simulation of a class C with weakly uniform circuits of fixed polynomial
size is used multiple times to derive a simulation of C in a small amount of time with sub-linear advice,
as long as the uniformity condition is in some sense stronger than the class C. We require a variant of this
argument which uses a census technique, and then an application of Theorem 1 completes the proof.

For the extensions to other complexity measures, we abstract out the properties required of the complexity
measure using the notion of leaf languages.

2 Preliminaries

2.1 Complexity Classes, Promise Problems and Advice

We assume a basic familiarity with complexity classes. The Complexity Zoo (which can be found at
http://qwiki.caltech.edu/wiki/ComplexityZoo) is an excellent resource for basic definitions and state-
ments of results.

We require some classes defined by simultaneous resource bounds. Let t : N → N be a time bound, and
g : N→ N be a bound on the amount of non-determinism used. The complexity class NTIMEGUESS(t, g) is
the class of all languages L for which there is a non-deterministic machine M deciding L which runs in time
O(t(n)) and uses at most g(n) guess bits on any input of length n.

Given a complexity class C, coC is the class of languages L such that L̄ ∈ C. Given a function s : N→ N,
SIZE(s) is the class of Boolean functions f = {fn} such that for each n, fn has Boolean circuits of size
O(s(n)). Given a language L and an integer n, Ln = L ∩ {0, 1}n. Given a class C, i.o.C is the class of
languages L for which there is a language L′ ∈ C such that Ln = L′n for infinitely many length n.

In order to deal with promise classes in a general way, we take as fundamental the notion of a complexity
measure. A complexity measure CTIME is a mapping which assigns to each pair (M,x), where M is a time-
bounded machine (here a time function tM (x) is implicit) and x an input, one of three values “0” (accept),
“1” (reject) and “?” (failure of CTIME promise). We distinguish between syntactic and semantic complexity

3 Note that this notion of almost-everywhere separations is different from the related notion considered by [1], who
give a negative relativization result

4

measures. Syntactic measures have as their range {0, 1} while semantic measures may map some machine-
input pairs to “?”. The complexity measures DTIME and NTIME are syntactic (each halting deterministic
or non-deterministic machine either accepts or rejects on each input), while complexity measures such as
BPTIME and MATIME are semantic (a probabilistic machine may accept on an input with probability 1/2,
thus failing the bounded-error promise). For syntactic measures, any halting machine defines a language,
while for semantic measures, only a subset of halting machines define languages.

Let t : N→ N be a time function, and a : N→ N be an advice function. A language L is in CTIME(t)/a
if there is a machine M halting in time t(·) taking an auxiliary advice string of length a(·) such that for each
n, there is some advice string bn, |bn| = a(n) such that M fulfils the CTIME promise for each input x with
advice string bn and accepts x iff x ∈ L.

For syntactic classes, a lower bound with advice translates to a lower bound for the class itself.
We will need standard notions of uniformity for circuits. The direct connection language for a sequence

of circuits C = {Cn}, where Cn is on n input bits, is the language LC consisting of all tuples of the form
〈1n, g, h, r〉, where g and h are indices of gates, r is the type of g (AND/OR/NOT/INPUT, and in case
of INPUT, which of the n input bits g is, with an additional bit to specify whether g is the designated
output gate), and h is a gate feeding in to g in case the type r is not INPUT. Other encodings of the direct
connection language are of course possible, but our results are insensitive to the details of the encoding.

Given a class C of languages and a function s : N→ N, a language L is said to have C-uniform circuits of
size s(n) if there is a size-s(n) circuit family {Cn} such that its direct connection language is computable in
C. By a description of a circuit Cn, we mean the list of tuples in LC corresponding to gates in Cn.

3 Hierarchies for Non-deterministic Time against Sublinear Advice

In this section, we prove the following general theorem, and then show how it implies Theorem 1.
As described in the Introduction section, the proof involves a hybrid of delayed diagonalization and

witness-based diagonalization. We think of the diagonalization as proceeding in two phases: the jump phase
where copying occurs, and the witness-gathering phase where the witness is built and witness-based diago-
nalization is performed.

We need some preliminary notation. Let f : N → N be a function such that f(n) is computable in
O(polylog(n)) time and f(n) > n for all n. We will use f to parameterize the jumps in the diagonalization.
Given a time function t1, for any n, let g(n) be the minimum i such that f (g(n))(n) > n+ 2t1(n) + 2. Note
that for each n, g(n) exists, using the monotonicity of f . For a string w of length r, we define Enc(w) to be
the 2r-bit string whose even bits are all 0, and whose i’th odd bit is the i’th bit of w, for each i ∈ [r].

Theorem 4. Let t1 and t2 be increasing time-constructible functions, with t1, t2 = Ω(n). Let f, g : N → N
be functions as defined above, and let a : N → N be an advice function such that a(n) is computable in
time O(polylog(n)). Suppose n =

∑g(n)
l=0 a(f (l)(n)) +ω(1), and t1(f(m)) + g(m)polylog(m) = o(t2(m)). Then

NTIME(t2) 6⊆ NTIME(t1)/a

Proof. Define a non-deterministic machine M as follows. On input x of length m, M first calculates t2(m). It
then tries to decompose x = 1i01j0z110k, where i, j > 0, k > 0, z ∈ {0, 1}∗. Note that such a decomposition
is unique if it exists. If M succeeds in finding such a decomposition, it sets n = i + j + |z| + 4, and checks
if m = f l(n) for some 0 6 l 6 g(n), and if |z| >

∑g(n)
l=0 a(f (l)(n)). This check can be done in time at most

g(n)polylog(n) and hence time at most g(m)polylog(m), by assumption on f and g. If this check doesn’t
succeed, M rejects. If it succeeds, there are two cases: l < g(n) and l = g(n). In the first case, M decomposes
z = z0z1 . . . zl+1z

′, where for each i, 0 6 i 6 l+ 1, |zi| = a(f (i)(n)) and z′ ∈ {0, 1}∗. Note that by assumption
on n and a, such a decomposition can be performed for n large enough - if it cannot be performed, M halts
and rejects. M simulates Mi on x0f(m)−m with advice zl+1, accepting iff Mi accepts. In the second case,
where l = g(n), M decomposes z = z0z1 . . . zlz

′, where for each i, 0 6 i 6 l, |zi| = a(f (i)(n)) and z′ ∈ {0, 1}∗.
Note that by assumption on n and a, such a decomposition can be performed for n large enough - if it cannot
be performed, M halts and rejects. It also calculates q = k − 2t1(n) − 2. Note that q is non-negative by

5

the assumptions on f and g. M simulates Mi on 1i01j0z11Enc(0t1(n)1)0q with advice zl, accepting iff Mi

accepts. Throughout M maintains an internal clock, and if it detects that it has been running for more than
t2(m) steps after the calculation of t2(m), it halts and rejects.

The operation of M above corresponds to the jump phase.
Now suppose M does not succeed in finding a decomposition as above. It then tries to decompose

x = 1i01j0z11Enc(0s1w)0q, where i, j > 0, s, q > 0, z, w ∈ {0, 1}∗ and moreover, setting n = i+ j + |z|+ 4,
the conditions that m = f (g(n)(n) and |z| >

∑g(n)
l=0 a(f (l)(n)) are satisfied. Note that such a decomposition is

unique if it exists. If this decomposition attempt fails, M halts and rejects. If it succeeds, M decomposes z =
z0z1 . . . zlz

′, where for each i, 0 6 i 6 l, |zi| = a(f (i)(n)) and z′ ∈ {0, 1}∗. Note that by assumption on n and
a, such a decomposition can be performed for n large enough - if it cannot be performed, M halts and rejects.
Now there are two cases: s > 0 and s = 0. In the first case, M simulates Mi on 1i01j0z11Enc(0s−11w0)0q

with advice zl and 1i01j0z11Enc(0s−11w1)0q with advice zl, accepting iff both computations accept. In the
second case, M simulates Mi on 1i01j0z11 with non-deterministic sequence w and advice z0, rejecting iff
Mi accepts. Throughout M maintains an internal clock, and if it detects that it has been running for more
than t2(m) steps after the calculation of t2(m), it halts and rejects.

The operation of M above corresponds to the witness-gathering phase.
By definition of M , it halts in time O(t2(m)). Moreover, using the various assumptions on computability

of f, a, t1, t2, all the checks and calculations of M , as well as the final simulation step, can be completed in
time O(t2(m)) for m large enough.

We now proceed to show that L(M) 6∈ NTIME(t1(m))/a(m). Suppose, to the contrary, that Mi is a non-
deterministic advice taking machine accepting L(M) using a(m) bits of advice. We derive a contradiction.

Choose j and n large enough so that all the checks, calculations and simulation of M can be completed
in time O(t2(m)) for any m such that there is an input of length m which can be successfully decomposed
with the corresponding n and j, and so that n >

∑g(n)
l=0 a(f (l)(n)). Let z0, z1, . . . zg(n) be the correct advice

strings for Mi at lengths n, f(n) . . . fg(n)(n), and let z = z0z1 . . . zg(n). Consider the input x = 1i01j0z11.
By assumption, M on x agrees with Mi on x with advice z0 (since |x| = n). By the behaviour of M in the
jump phase, we have that M on x0f

i(n)−n agrees with Mi on x0f
i(n)−n with advice zi, for each i ∈ [0, g(n)].

By the behaviour of M in the witness-gathering phase, we have that M accepts x0f
i(n)−n iff M accepts

xEnc(0s1w)0q for each s, 0 6 s 6 t1(n), w of length t1(n) − s and q = m − n − 2t1(n) − 2 iff Mi accepts
xEnc(0s1w)0q with advice zg(n) for each s, 0 6 s 6 t1(n), w of length t1(n)− s and q = m− n− 2t1(n)− 2.
But for each w of length tn(n), again by the behaviour of M in the witness-gathering phase, M accepts
xEnc(1w)0q, q = m − n − 2t1(n) − 2 iff Mi rejects x with witness w and advice z0. This happens iff Mi

rejects x with advice z0, which is a contradiction to the assumption that M on x agrees with Mi on x with
advice z0.

We now show how to derive Theorem 1 from the more general Theorem 4 above. This allows us to get the
“best of both worlds” for non-deterministic time hierarchies with advice: time bounds only asymptotically
separated, and advice in the lower bound which is nΩ(1).

Proof of Theorem 1. Apply Theorem 4 with t1 = nd, t2 = t, f(n) = 2n, a(n) = n1/e. In this case,
g(n) = O(log(n)), and it can be checked easily that the conditions on f, g, a in terms of t1, t2, n all hold. The
theorem follows. �

4 An Almost-everywhere Hierarchy Theorem

Ideally, we would like to prove almost-everywhere hierarchy theorems, i.e., show that reducing the amount of
time available makes languages harder to compute on all but finitely many input lengths. Almost-everywhere
hierarchy theorems are known for classes closed under complementation such as deterministic time and
deterministic space, but not for non-deterministic time. It is shown in [4] that there is an oracle relative
to which NEXP ⊆ i.o.NP, therefore non-standard techniques would be required even to show an almost-
everywhere separation of NEXP from NP.

6

We consider non-deterministic classes with sub-linear non-determinism, i.e., the non-deterministic ma-
chine is allowed to use only o(n) non-deterministic bits. These classes contain most commonly studied
problems in NP including SAT,CLIQUE, V C etc. when the input is encoded in the standard way. Thus
showing an almost-everywhere hierarchy for such classes is of interest.

The following theorem immediately implies Theorem 2.

Theorem 5. Let g(n) = o(n) be any sub-linear function computable in time O(n). Let t1 and t2 be time-
constructible functions such that n 6 t1 = o(t2). Then NTIMEGUESS(t2, 2g(n)) 6⊆ i.o.NTIMEGUESS(t1, g(n)).

Proof. Define a non-deterministic machine M as follows. On input x of length n, M first tries to decompose
x = 1i01k0z, where i, k > 0. If x cannot be decomposed in this manner, or if it can but |z| > g(n), M
immediately rejects. If |z| = g(n), M runs the non-deterministic Turing machine Mi on 1i01n−i−20 for at
most t2(n) steps, using z as the sequence of guess bits for the simulation of the machine. If the machine Mi

does not halt within time t2(n), or if it uses more than g(n) guess bits, M rejects. Otherwise, it does the
opposite of Mi, accepting if Mi rejects and rejecting otherwise.

If |z| < g(n), M runs Mi on x1 = 1i01k−100z and x2 = 1i01k−101z, accepting iff both simulations halt
and accept within time t2(n), and each uses at most g(n) guess bits.

M runs in time O(t2(n)) and uses at most 2g(n) guess bits on any input of length n. We show that
L(M) 6∈ i.o.NTIMEGUESS(t1(n), g(n)).

Suppose, to the contrary, that L(M) ∈ i.o.NTIMEGUESS(t1(n), g(n)), and let Mi be a non-deterministic
machine running in time ct1(n) for some constant c, and with g(n) guess bits, such that L(Mi) coincides with
L(M) on infinitely many input lengths. Let I be an infinite set of input lengths such that L(Mi) coincides
with L(M) on each input length in I. Choose n ∈ I large enough such that M can complete its simulations
of Mi on all inputs of length n of the form 1i0y for some y. That such an n exists follows from the facts that
n 6 t1(n) = o(t2(n)).

By the assumption that M agrees with Mi on length n, we have that Mi accepts 1i01n−i−20 iff M accepts
1i01n−i−20 iff Mi accepts 1i01n−i−300 and 1i01n−i−310... Continuing inductively, we have that Mi accepts
1i01n−i−20 iff M accepts all strings of the form 1i01n−g(n)−i−20z iff Mi does not accept on 1i01n−i−20 for
any guess sequence z of length g(n). But then we have that Mi accepts 1i01n−i−20 iff Mi does not accept
1i01n−i−20, which is a contradiction.

By combining the ideas in the proof of Theorem 5 with the ideas of the proof of Theorem 4, we get the
following almost-everywhere hierarchy against advice. We omit the proof because it contains no new ideas
beyond those in the proofs of Theorem 5 and Theorem 4.

Theorem 6. Let a : N → N be an advice function and g : N → N a guess function, both computable in
time O(n), such that a(n) + g(n) = n− ω(1). Then for any time-constructible functions t1 and t2 such that
n 6 t1 = o(t2), NTIMEGUESS(t2, 2g) 6⊆ i.o.NTIMEGUESS(t1, g)/a.

5 A Lower Bound against Weakly Uniform Circuits

While it is a major open problem to show that NP does not have linear size circuits, one could hope to
show lower bounds when there is some uniformity condition on the circuits. A result of this form was shown
by [12].

Theorem 7. [12] For every k, NP does not have P-uniform circuits of size O(nk).

We strengthen this lower bound in two ways. First, we allow the circuits to be NP-uniform rather than
P-uniform. Second, we allow the circuits to be non-deterministic rather than deterministic. The following is
a re-statement of Theorem 3.

Theorem 8. For every k > 1, NP does not have NP-uniform non-deterministic circuits of size O(nk).

7

Proof. Assume NP has NP-uniform non-deterministic circuits of size O(nk). Let L ∈ NP be arbitrary. We
will show that L can be simulated in non-deterministic time n2k+2 with n1/(4k) bits of advice, which will
yield a contradiction to Theorem 4 when t2 = n4k and t1 = n2k+2.

By assumption, L has non-deterministic circuits of size O(nk), so there is a non-deterministic circuit
family {Cn} for L of size at most c · nk for some constant c. Furthermore, by NP-uniformity, the direct
connection language Ldc for {Cn} (see Section 2 for the definition) is in NP. We consider a “succinct”
version Lsucc of the language Ldc, defined as follows. Letting Bin(n) be the binary representation of n,
define

Lsucc = {〈Bin(n)01dn
1/(5k2)e, g, h, r〉 | 〈1n, g, h, r〉 ∈ Ldc}.

Intuitively, Lsucc is an “unpadded” version of Ldc.
Observe that Lsucc ∈ NP. Given an input y for Lsucc, our non-deterministic polynomial-time algorithm

first checks if y can be parsed as a “valid” tuple 〈z, g, h, r〉, where z = Bin(n)01dn
1/(5k2)e for some positive

integer n, g and h are valid gate indices between 1 and c · nk, and r is a valid gate type. If this check
fails, reject. Otherwise, the algorithm runs the non-deterministic polynomial-time machine deciding Ldc on
〈1n, g, h, r〉, and accepts if and only if this machine accepts. Note that this algorithm for Lsucc runs in time
polynomial in |y|, since we only simulate the machine for Ldc when n1/(5k2) 6 |y| 6 n and the machine for
Ldc runs in time polynomial in n.

Now we apply the assumption that NP has NP-uniform circuits of size O(nk) for a second time. Since
Lsucc ∈ NP, there is a non-deterministic circuit family {Dm} of O(mk) size for Lsucc. Given an integer n, let

m(n) be the least integer such the size of the tuple 〈Bin(n)01dn
1/(5k2)e, g, h, r〉 is at most m(n) for any valid

gate indices g and h for Cn and any valid gate type r. Using a standard encoding of tuples, we can assume,
for large enough n, that m(n) 6 n1/(4.5k2), since g, h, r can all be encoded with O(log n) bits each.

We now describe a simulation of L in time O(n2k+2) with n1(4k) bits of advice. Let M be an advice-taking
machine which operates as follows. On input x of length n, M receives an advice string of length O(n1/4k).
It interprets this advice as consisting of two parts: the description of a non-deterministic circuit Dm for the
language Lsucc on inputs of length m(n) 6 n1/(4.5k2), and an O(log(n)) bit string representing the census
value, i.e., the number of inputs in Lsucc of that length. For every possible pair of gate indices g and h of Cn
and every possible gate type r, M simulates the circuit Dm on 〈Bin(n)01dn

1/(5k2)e, g, h, r〉 to decide whether
gate h is an input to gate g and whether the type of gate g is r. Each such simulation can be done in time
O(n1/2k), as the size of Dm is O(n1/4k). There are at most O(n2k+1) such simulations that M performs, since
there are at most that many relevant triples 〈g, h, r〉. Note that since the circuit Dm is non-deterministic,
M cannot know for sure the answer to a given simulation. Instead, it performs all the simulations and then
checks that the number of YES answers is equal to the census value encoded in the advice string. In such a
case, it knows that the answers to all simulations are correct; otherwise, it rejects.

In the case where answers to all simulations are correct, M has a full description of the non-deterministic
circuit Cn. It simulates Cn on x, and accepts if and only if Cn(x) outputs 1. This simulation can be done
in time O(n2k) since the circuit Cn is of size O(nk). The total time taken by M is O(n2k+2), and M
uses O(n1/4k) bits of advice. By our assumptions on Cn and Dm, the simulation is correct. Thus L ∈
NTIME(n2k+2)/O(n1/4k).

However, as L ∈ NP was chosen to be arbitrary, we have NP ⊆ NTIME(n2k+2)/O(n1/4k), which for k > 1
contradicts Theorem 4.

The idea of using advice reduction in the proof of Theorem 8 is inspired by a result of Santhanam and
Williams [14], who generalized Theorem 7 in a different direction, by showing that for any k, P does not
have P-uniform circuits of size O(nk). The additional ingredients in the proof of Theorem 8 are the use of
Theorem 4, as well as the use of a census technique to deal with NP-uniformity.

6 Generalizing to Other Syntactic Classes

In this section we show how to generalize Theorem 4. We first show how to generalize the robustly-often
time hierarchy of [7], and then sketch how to use the ideas of the proof to generalize Theorem 4.

8

First, we define robustly-often simulations.
Let S be a subset of positive integers. S is robust if for each positive integer k, there is a positive integer

m > 2 such that n ∈ S for all m 6 n 6 mk.
Let L be a language, C a complexity class, and S a subset of the positive integers. We say L ∈ C on S if

there is a language L′ ∈ C such that Ln = L′n for any n ∈ S.
Given a language L and complexity class C, L ∈ r.o.C if there is a robust S such that L ∈ C on S. In such

a case, we say that there is a robustly-often (r.o.) simulation of L in C. We extend this notion to complexity
classes in the obvious way - given complexity classes B and C, B ⊆ r.o.C if there for each language L ∈ B,
L ∈ r.o.C.

Now we describe a general framework in which we can show robustly-often hierarchies and hierarchies
with sub-linear advice.

Let N be a nondeterministic polynomial-time Turing machine where on input x of length n, N(x) has
2p(n) computation paths indexed by strings z ∈ {0, 1}p(n). We can also think of z as representing an integer
between 1 and 2p(n) in a standard way.

Define OUTPUT(N, x) to be the string w of length 2p(n) such that zth bit of w is 1 if N(x) accepts on
the path indexed by z and 0 otherwise.

Let A ⊆ Σ∗. We define the class LEAF(A) as the class of languages L such that for some nondeterministic
polynomial-time Turing machine N , x ∈ L if and only if OUTPUT(N, x) ∈ A. For example if A is the set of
strings with at least one 1 then LEAF(A) = NP. We can also define LEAFTIME(A, t) where we restrict N to
run in time O(t).

We say a class C is closed under linear-time monotone 2-query transductions if for every language L′ ∈ C
and every deterministic linear-time oracle machine O making at most 2 queries to its oracle and outputting
a monotone function of the answers to the queries, L(OL

′
) ∈ C. This definition might seem involved, but

in fact any natural complexity arising from a leaf language satisfies this property, eg., the levels of the
polynomial-time hierarchy.

We can generalize the robustly-often hierarchy for non-deterministic time [7] as follows.

Theorem 9. Suppose A is computable by a family of DLOGTIME-time uniform NC1 circuits. If t1 and t2
are functions such that t1 is time-constructible and

– t1(n+ 1) = o(t2(n)),
– n 6 t1(n) 6 nc for some constant c, and
– LEAFTIME(A, t1(n)) is uniformly closed under linear-time monotone 2-query transductions,

then LEAFTIME(A, t2(n)) 6⊆ r.o.LEAFTIME(A, t1(n)).

Corollary 1. Let t1, t2 : N→ N be functions such that t1 is time-constructible and t1(n+ 1) = o(t2(n)). For
every integer k > 1, Σk − TIME(t2) 6⊆ r.o.Σk − TIME(t1), and Πk − TIME(t2) 6⊆ r.o.Πk − TIME(t1).

Proof (Proof of Theorem 9).
Without loss of generality assume A is computed by fan-in 2 circuits where every path has length d log n

and negations are only on the inputs.
Let M1,M2, . . . be an enumeration of multitape nondeterministic machines that run in time t1(n). For

an input x of length n, OUTPUT(Mi, x) will have length 2t1(n) and the circuit C used to determine if
OUTPUT(Mi, x) is in A will have depth dt1(n). C has 2t1(n)) inputs which we express as yz for z ∈ {0, 1}t1(n).

Define a nondeterministic Turing machine M that on input 1i01m0w does as follows:

– If |w| < dt1(i+m+ 2) consider the gate g that is reached in C by following the path w
• If g is an OR gate then accept if both Mi(1i01m0w0) and Mi(1i01m0w1) accepts.
• If g is an AND gate then accept if either Mi(1i01m0w0) or Mi(1i01m0w1) accepts.

– If |w| = dt1(i+m+ 2) consider the input variable yz.
• If the variable is not negated then accept if Mi(1i01m0) rejects on the path specified by z.
• If the variable is negated then accept if Mi(1i01m0) accepts on the path specified by z.

9

Since we can universally simulate t(n)-time nondeterministic multitape Turing machines on an O(t(n))-time
2-tape nondeterministic Turing machine and LEAFTIME(A, t1) is closed under linear-time monotone 2-query
transductions, L(M) ∈ LEAFTIME(A,O(t1(n+ 1))) ⊆ LEAFTIME(A, t2(n)).

Suppose LEAFTIME(A, t2(n)) ⊆ r.o.LEAFTIME(A, t1(n)). Pick a C such that dt1(n)� nc for all n large
enough. By the definition of r.o. there is some n0 and a language L ∈ LEAFTIME(t1(n)) such that L(M) = L
on all inputs of length between n0 and nC0 . Fix i such that L(x) = A(OUTPUT(Mi, x)) with n0 6 |x| 6 nC0 .
Then z ∈ L(Mi)⇔ z ∈ L(M) for all z = 1i01n00w for w 6 t1(i+ n0 + 2).

By induction on the gates Mi(1i01n00) accepts iff C(OUTPUT(Mi, 1i01n00)) outputs false and thus iff
OUTPUT(Mi, 1i01n00) is not inA. This contradicts our assumption that L(1i01n00)) = A(OUTPUT(Mi, 1i01n00)).

We can combine the proofs of Theorem 9 and Theorem 4 to generalize Theorem 1 for LEAFTIME.

Theorem 10. Suppose A′ is computable by DLOGTIME-time uniform NC1 circuits. Let d > 1 and e > d be
arbitrary constants. If t1 is a time-constructible function such that

– t1(n) = o(nd),
– LEAFTIME(A′, t1(n)) is closed under linear time monotone 2-query transductions,

then LEAFTIME(A′, nd) 6⊆ LEAFTIME(A′, t1(n))/n1/e.

Proof Sketch. We show how to modify the proof of Lemma 4 for LEAFTIME.
The jump phase will remain exactly the same. In the witness gathering phase, we need to change things

a little. The string w obtained from a successful decomposition of the input x in the witness-gathering
phase will now correspond to a path in the circuit C accepting the leaf language which determines the
answer of Mi on x. Again, we will assume without loss of generality that C is a balanced logarithmic-depth
circuit, where all input-output paths are of the same length. There are two cases: w encodes a maximum-
length path in C, or it does not. In the former case, let g be the gate that is reached following the path
described by w. If g is an OR gate, then M simulates Mi on 1i01j0z11Enc(0s−11w0)0q with advice zl
and 1i01j0z11Enc(0s−11w1)0q with advice zl, accepting iff both computations accept. If g is an AND gate,
M simulates Mi on 1i01j0z11Enc(0s−11w0)0q with advice zl and 1i01j0z11Enc(0s−11w1)0q with advice zl,
accepting iff either computation accepts. If w encodes a maximum-length path, let yz be the variable pointed
to by w, where z is a witness for M on x. If yz is un-negated, M does the opposite of Mi on x using witness
z with advice z0, and if yz is negated, M does the same as Mi on x using witness z with advice z0.

We now get a contradiction following an argument similar to the proof of Theorem 4. �

Corollary 2. For any reals 1 6 r < s and every integer k > 1, Σk − TIME(ns) 6⊆ Σk − TIME(nr)/n1/s and
Πk − TIME(ns) 6⊆ Πk − TIME(nr)/n1/s.

7 Acknowledgments

We thank an anonymous referee for pointing out an error in a previous version of this paper.

References

1. Eric Allender, Richard Beigel, Ulrich Hertrampf, and Steven Homer. Almost-everywhere complexity hierarchies
for nondeterministic time. Theoretical Computer Science, 115(2):225–241, 19 July 1993.

2. Eric Allender and Vivek Gore. A uniform circuit lower bound for the permanent. SIAM Journal on Computing,
23(5):1026–1049, 1994.

3. László Babai, Lance Fortnow, Noam Nisan, and Avi Wigderson. BPP has subexponential time simulations unless
EXPTIME has publishable proofs. Computational Complexity, 3(4):307–318, 1993.

4. Harry Buhrman, Lance Fortnow, and Rahul Santhanam. Unconditional lower bounds against advice. In Proceed-
ings of 36th International Colloquium on Automata, Languages and Programming, pages 195–209, 2009.

10

5. Stephen Cook. A hierarchy for nondeterministic time complexity. In Conference Record, Fourth Annual ACM
Symposium on Theory of Computing, pages 187–192, Denver, Colorado, 1–3 May 1972.

6. Lance Fortnow, Richard Lipton, Dieter van Melkebeek, and Anastasios Viglas. Time-space lower bounds for
satisfiability. Journal of the ACM, 52(6):833–865, 2005.

7. Lance Fortnow and Rahul Santhanam. Robust simulations and significant separations. In Proceedings of the 38th
International Colloquium on Automata, Languages and Programming, pages 569–580, 2011.

8. Lance Fortnow, Rahul Santhanam, and Luca Trevisan. Promise hierarchies. Electronic Colloquium on Computa-
tional Complexity(ECCC), 11(98), 2004.

9. Lance Fortnow, Rahul Santhanam, and Luca Trevisan. Hierarchies for semantic classes. In Proceedings of the
Thirty-Seventh Annual ACM Symposium on Theory of Computing, 2005.

10. Juris Hartmanis and Richard Stearns. On the computational complexity of algorithms. Trans. Amer. Math. Soc.
(AMS), 117:285–306, 1965.

11. Frederick Hennie and Richard Stearns. Two-tape simulation of multitape Turing machines. Journal of the ACM,
13(4):533–546, October 1966.

12. Ravi Kannan. Circuit-size lower bounds and non-reducibility to sparse sets. Information and Control, 55(1):40–56,
1982.

13. Noam Nisan and Avi Wigderson. Hardness vs randomness. Journal of Computer and System Sciences, 49(2):149–
167, 1994.

14. Rahul Santhanam and Ryan Williams. On medium-uniformity and circuit lower bounds. In Proceedings of the
28th Annual IEEE Conference on Computational Complexity, pages 15–23, 2013.

15. Joel Seiferas, Michael Fischer, and Albert Meyer. Separating nondeterministic time complexity classes. Journal
of the ACM, 25(1):146–167, January 1978.

16. Richard Stearns, Juris Hartmanis, and Philip Lewis. Hierarchies of memory limited computations. In Proceedings
of the Sixth Annual Symposium on Switching Circuit Theory and Logical Design, pages 179–190. IEEE, 1965.

17. Ryan Williams. Non-uniform ACC circuit lower bounds. In Proceedings of 26th Annual IEEE Conference on
Computational Complexity, pages 115–125, 2011.

18. Stanislav Žák. A Turing machine time hierarchy. Theoretical Computer Science, 26(3):327–333, October 1983.

11

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

