
 

 

 
 

 

Edinburgh Research Explorer 
 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Impact of cross-disorder polygenic risk on frontal brain
activation with specific effect of schizophrenia risk

Citation for published version:
Whalley, HC, Hall, L, Romaniuk, L, Macdonald, A, Lawrie, SM, Sussmann, JE & McIntosh, AM 2015,
'Impact of cross-disorder polygenic risk on frontal brain activation with specific effect of schizophrenia risk'
Schizophrenia Research, vol. 161, no. 2-3, pp. 484–489. DOI: 10.1016/j.schres.2014.10.046

Digital Object Identifier (DOI):
10.1016/j.schres.2014.10.046

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
Schizophrenia Research

Publisher Rights Statement:
Under a Creative Commons license

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 05. Apr. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/43710524?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1016/j.schres.2014.10.046
https://www.research.ed.ac.uk/portal/en/publications/impact-of-crossdisorder-polygenic-risk-on-frontal-brain-activation-with-specific-effect-of-schizophrenia-risk(05cf3d7a-0bac-46b2-8319-395481328919).html


Schizophrenia Research 161 (2015) 484–489

Contents lists available at ScienceDirect

Schizophrenia Research

j ourna l homepage: www.e lsev ie r .com/ locate /schres
Impact of cross-disorder polygenic risk on frontal brain activation with
specific effect of schizophrenia risk
Heather C. Whalley ⁎, Lynsey Hall, Liana Romaniuk, Alix Macdonald, Stephen M. Lawrie,
Jessika E. Sussmann, Andrew M. McIntosh
Division of Psychiatry, University of Edinburgh, Edinburgh, UK
⁎ Corresponding author at: University of Edinburg
Morningside Park, Edinburgh EH10 5HF, UK. Tel.: +44 13
6531.

E-mail address: heather.whalley@ed.ac.uk (H.C. Whall

http://dx.doi.org/10.1016/j.schres.2014.10.046
0920-9964/© 2014 Elsevier B.V. All rights reserved.
a b s t r a c t
a r t i c l e i n f o
Article history:
Received 22 August 2014
Received in revised form 3 October 2014
Accepted 28 October 2014
Available online 20 November 2014

Keywords:
Polygenic
Schizophrenia
Frontal cortex
fMRI
Evidence suggests that there is shared genetic aetiology across the major psychiatric disorders conferred by ad-
ditive effects of many common variants. Measuring their joint effects on brain function may identify common
neural riskmechanisms.We investigated the effects of a cross-disorder polygenic risk score (PGRS), based on ad-
ditive effects of genetic susceptibility to the five major psychiatric disorders, on brain activation during perfor-
mance of a language-based executive task. We examined this relationship in healthy individuals with (n =
82) and without (n = 57) a family history of bipolar disorder to determine whether this effect was additive or
interactive dependent on the presence of family history. We demonstrate a significant interaction for polygenic
loading × group in left lateral frontal cortex (BA9, BA6). Further examination indicated that this was driven by a
significant positive correlation in those without a family history (i.e. healthy unrelated volunteers), with no sig-
nificant relationships in the familial group.We then examined the effect of the individual diagnoses contributing
to the PGRS to determine evidence of disorder-specificity. We found a significant association with the
schizophrenia polygenic score only, with no other significant relationships. These findings indicate differences
in left lateral frontal brain activation in association with increased cross-disorder PGRS in individuals without a
family history of psychiatric illness. Lack of effects in the familial group may reflect epistatic effects, shared envi-
ronmental influences or effects not captured by the PGRS. The specific relationshipwith loading for schizophrenia
is notably consistent with frontal cortical inefficiency as a circumscribed phenotype of psychotic disorders.

© 2014 Elsevier B.V. All rights reserved.
1. Introduction

Current diagnostic criteria in psychiatry are based around symptom
patterns and course of illness, however, no symptom is uniquely associ-
ated with an individual condition, and symptoms vary between people
with the same diagnosis. Psychosis, mood instability, and cognitive im-
pairments for example are observed across multiple diagnoses. There is
also considerable overlap in genetic contributions, as well as common-
alities in implicated brain networks, for example the prefrontal cortex
and medial temporal lobes (Phillips et al., 2003; Shaw and Rabin,
2009; Dickstein et al., 2013;Hong Lee et al., 2013). There is an increasing
uncertainty therefore over the degree to which current diagnostic
criteria define biologically-valid distinct entities, or whether common
mechanisms contribute to multiple conditions or cross-disorder
phenotypes.

To address such issues, previous imaging studies have employed a
dimensional approach, by examining the neurobiology of specific
h, Royal Edinburgh Hospital,
1 537 6502; fax: +44 131 537

ey).
symptoms crossing diagnostic boundaries. These have included individ-
uals with, or at increased risk of, schizophrenia with and without mood
symptoms (Whalley et al., 2008; Simon et al., 2010; Tomasino et al.,
2011; Barbour et al., 2012), and patients with mood disorder with and
without psychotic features (Sommer et al., 2007; Khadka et al., 2013).
Although literature is limited, evidence suggests alterations in medial
temporal lobe and limbic structures in association with mood-related
symptoms across disorders (Tomasino et al., 2011), and alterations in
lateral prefrontal functioning in association with psychosis, also trans-
diagnostically (Anticevic et al., 2013).

Genetic imaging studies have also examined the impact of shared
genetic risk on underlying neurobiology. Previous studies have in-
vestigated the effects on neurobiology of individual SNPs identified
as potential risk markers for illness within and across diagnostic
groups (Mechelli et al., 2008; Chakirova et al., 2011; Papagni et al.,
2011; Prata et al., 2011; Whalley et al., 2012a,b). Current evidence
however suggests that for psychiatric disorders a substantial propor-
tion of the heritability is explained by a polygenic component. We
previously used the polygenic approach to demonstrate increased
activation of mood-related limbic regions in association with in-
creased polygenic loading for bipolar disorder (Whalley et al.,
2012a,b, 2013).

http://crossmark.crossref.org/dialog/?doi=10.1016/j.schres.2014.10.046&domain=pdf
http://dx.doi.org/10.1016/j.schres.2014.10.046
mailto:heather.whalley@ed.ac.uk
http://dx.doi.org/10.1016/j.schres.2014.10.046
http://www.sciencedirect.com/science/journal/09209964
www.elsevier.com/locate/schres
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One recent study has used genetic strategies to explore shared ge-
netic architecture across the 5major psychiatric disorders using Psychi-
atric Genomics Consortium data (Smoller et al., 2013). The authors
identified shared genetic effects between Attention Deficit Hyperactivi-
ty Disorder (ADHD), Autism (Aut), Bipolar disorder (BD),Major Depres-
sive Disorder (MDD) and Schizophrenia (SCZ), in 33,332 cases and
27,888 controls (Smoller et al., 2013), firstly by examining effects of
shared GWAS hits for BD and SCZ, and then by generating cross-
disorder polygenic risk scores (PGRSs) to examine a broader set of com-
mon variants. This cross-disorder PGRS is likely to account for an even
greater proportion of overall risk than for single disorder PGRS and al-
lows examination of processes involved in enhanced risk across diag-
nostic groups (Smoller et al., 2013).

In the current studywe examine the neural effects of this broader set
of common variants on brain activation in regions previously associated
with the 5major psychiatric disorders, namely the prefrontal cortex and
medial temporal lobe structures (Phillips et al., 2003; Shaw and Rabin,
2009; Dickstein et al., 2013). We also sought to test whether there
was an additive or interactive effect of family history on the effect of
PGRSonneural activationby examining groupswith andwithout a fam-
ily history of mood disorder. The paradigm, a language-based executive
function task, was chosen as it had previously been shown to differenti-
ate psychiatric patients, and those at increased familial risk, from
healthy controls in these regions (McIntosh et al., 2008a,b; Whalley
et al., 2011). Moreover, it probes frontal neuropsychological deficits in
executive function, verbal initiation and verbal fluency seen across a
range of psychiatric disorders (Clark et al., 2000; Arts et al., 2008;
Booth and Happe, 2010).

We were also interested in examining whether there was any evi-
dence for disease-specific brain activation associations by deconstructing
the components of the cross-disorder PGRS into diagnosis-specific sub-
scores (Smoller et al., 2013). Based on neuroimaging evidence de-
scribed, we hypothesised that there would be abnormal frontal activa-
tion in association with increased loading for schizophrenia, and
increased activation of medial temporal regions in association with
mood disorder.
2. Methods

2.1. Study population

Individuals at high genetic risk of bipolar disorder I (BDI), because of
a close family history of the disorder, and control subjects with no fam-
ily history were recruited as part of the Scottish Bipolar Family Study
(Sprooten et al., 2011; Whalley et al., 2011). Caseloads of psychiatrists
across Scotlandwere searched for individuals diagnosedwith BDI. Diag-
noses were confirmed with the Structural Clinical Interview for DSM-
IV-TRAxis I Disorders (SCID-I) (First et al., 2002) or the symptom check-
list of Operational Criteria (OPCRIT) (McGuffin et al., 1991). Subjects
with BD were asked to identify a first or second-degree relative (be-
tween 16–25 years) not suffering from the disorder. These unaffected
individuals were invited to participate in this study provided they had
at least one first degree, or two second degree relatives with BDI. Con-
trols with no personal history of BD or family history of amood disorder
in first-degree relatives were identified from the personal contacts of
the bipolar high-risk subjects. Exclusion criteria for all groups included
a personal history of major depression, mania or hypomania, psychosis,
substance dependence, an IQ b70 or clinical diagnosis of learning dis-
ability, or any major neurological disorder or history of head injury
that included loss of consciousness, and any contraindications to MRI.
A total of 82 bipolar high-risk and 57 controls provided suitable fMRI
data and genetic information. All participants provided written
informed consent and the study was approved by the multi-centre re-
search ethics committee for Scotland. All participants included in the
current study were unrelated.
2.2. Genotyping and derivation of polygenic scores

Genomic DNA was extracted from venous blood. Genotyping was
conducted at the Wellcome Trust Clinical Research Facility, Edinburgh,
United Kingdom (www.wtcrf.ed.ac.uk) using the Illumina OmniExpress
730K SNP array. PGRS analyses were performed in PLINK (Purcell et al.,
2007) using imputed genotype data. Imputation was performed in ac-
cordance with the 1000 Genomes Project Protocol SNPs with an impu-
tation quality score of r2 N 0.3 retained for analysis. Methods for
creating PGRS are described elsewhere (Purcell et al., 2009). Summary
statistics from the PGC GWAS Cross Disorder group (33,332 cases and
27,888 controls) were used as the training set to create cross-disorder
PGRS for our samples (Smoller et al., 2013). Our primary analyses con-
cerned those SNPs from the PGC data that met a significance level of
p = .5 or less as previously described (Purcell et al., 2009; Whalley
et al., 2012a,b, 2013), further details in Supplementary material.

2.3. Clinical assessments

All participants were interviewed by one of the two experienced
psychiatrists (AMM, JES) using the SCID (First et al., 2002) to confirm
the absence of any lifetime axis I disorders. Current symptoms were
rated using the Young Mania Rating Scale (YMRS) (Young et al.,
1978), Hamilton Rating Scale for Depression (HAM-D) (Hamilton,
1960), and the positive and negative syndrome scale (PANSS) (Kay
et al., 1987).

2.4. Experimental paradigm

Subjects performed the verbal initiation section of the Hayling Sen-
tence Completion Test (HSCT) (Burgess and Shallice, 1997) in the scan-
ner (Whalley et al., 2004). This is an extension of the verbal fluency task
and considered a test of executive function. Briefly, subjects were
shown sentences with the last word missing and asked to think of an
appropriate word to complete the sentence and press a button when
they had done so. The task has four levels of difficulty, according to
the range of suitable completion words suggested by the sentence con-
text. This allowed a standard subtraction analysis (sentence completion
versus baseline) and a parametric analysis (examining increasing acti-
vation with increasing task difficulty). Sentences were presented in
blocks of fixed difficulty. The order of the blocks was pseudo-random,
and each block was repeated four times using different sentences. Im-
mediately after scanning, subjects were given the same sequence of
sentences on paper and requested to complete each sentence with the
word they first thought of in the scanner. ‘Word appropriateness’ scores
were determined from the word frequency list of sentence completion
norms (Bloom and Fischler, 1980).

2.5. Image processing and analysis

Scanning procedure details are contained in Supplementary materi-
al. EPI and T1 images were reconstructed into nifti format (Mayo Foun-
dation, Rochester, MN, USA) using DICOM convert functions in SPM5
(Statistical Parametric Mapping: The Wellcome Department of Cogni-
tive Neurology and collaborators, Institute of Neurology, London) run-
ning in Matlab (The MathWorks, Natick, MA, USA). Images were pre-
processed using standard protocols in SPM5. All EPI images were
realigned to the mean volume in the series. Functional images were
then normalised according to standard co-registration procedures
using the individual's structural scan. Finally, all realigned and normal-
ised images were smoothed with an 8 × 8 × 8 mm full width half max-
imum (FWHM) Gaussian filter.

First-level analysis was performed using the general linear model. At
the individual subject level the data was modelled with four conditions
corresponding to the four difficulty levels each modelled by a boxcar
convolved with a synthetic haemodynamic response function. Estimates

http://www.wtcrf.ed.ac.uk
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of the subject'smovementwere entered as ‘covariates of no interest’. The
participant's data was filtered in the time domain using high pass filter
(128 s cut-off) and serial correlations were accounted for by using the
first order autoregressive model. Contrasts were constructed to examine
all four levels of sentence completion difficulty versus baseline, and areas
of increasing activation with increasing task difficulty (the parametric
contrast).

2.6. Second-level analysis

For each contrast of interest, one contrast image per subject was en-
tered into a second-level random effects analysis. The cross-disorder
PGRS for each individual was entered into a full factorial model as a sin-
gle regressor per group. The four multidimensional scaling (MDS) fac-
tors were entered as additional ‘nuisance’ covariates to control for
population stratification, along with age and IQ (NART).

Statistical maps were thresholded at a level of p b 0.001 (uncorrect-
ed). Regions were considered significant at a cluster level of p b 0.05,
corrected for multiple comparisons. All coordinates are quoted in Mon-
treal Neurological Institute (MNI) convention (http://www.mni.mcgill.
ca) and images are overlaid onto standard brain in MNI space using
Mango software package (http://ric.uthscsa.edu/mango). Regions of in-
terest included frontal brain regions (whole brain level) and amygdala
and hippocampus using small volume corrections (svc's) created
using the WFU PickAtlas (Tzourio-Mazoyer et al., 2002; Maldjian et al.,
2003).

3. Results

3.1. Demographic, clinical, temperament and behavioural measures

Therewere no significant differences between the groups in terms of
age, gender, or NART IQ (Table 1). The groups differed in terms of the
cross-disorder PGRS (p = 0.05), the disorder-specific sub-scores for
SCZ (p=0.03), and at the trend level for BD (p=0.06)where the famil-
ial group scored significantly higher than those without familial risk.
Table 1
Participant details.

Controls
(n = 57)

Bipolar high-risk
(n = 82)

t/Z p

Demographics
Mean age (years)
(std dev)

20.81 (2.33) 21.16 (2.78) 0.79 0.43

Gender
(M:F)

28:29 – 45:37 – 0.67a 0.51

Mean NART IQ (std dev) 109.63 (7.40) 109.21 (8.66) 0.30 0.76

Clinical measuresb (median (range))
bPANSS positive total 7 (3) 7 (4) 2.34 0.02
bPANSS negative total 7 (5) 7 (4) 0.20 0.85
bPANSS general total 16 (4) 17 (9) 1.58 0.14
bYMRS score 0 (4) 0 (3) 0.59 0.56
bHDRS score 0 (7) 0.5 (15) 2.38 0.02

PGRS
Cross disorder 0.1634 (0.01) 0.1995 (0.10) 2.02 0.05
ADHD 0.4664 (0.36) 0.4152 (0.36) 0.82 0.42
AUT −0.1389 (0.06) −0.1377 (0.06) 0.16 0.87
BD 1.5292 (0.25) 1.6131 (0.27) 1.86 0.06
MDD 0.2801 (0.21) 0.3117 (0.21) 0.89 0.38
SCZ −0.3670 (0.20) −0.2934 (0.18) 2.20 0.03

Behavioural measures
Word appropriateness
scores

3.06 (0.54) 2.92 (0.56) 1.33 0.18

Reaction time 2492 (610) 2544 (647) 0.43 0.64

PANSS = positive and negative syndrome scale, YMRS = Young mania rating scale,
HRDS = Hamilton depression rating scale, PGRS = polygenic risk score.

a Chi squared test.
b Mann–Whitney tests, median and range presented for skewed variables.
Groups also differed on measures of depression (from the HAM-D,
p = 0.02), and PANSS positive scores (p = 0.02), with the familial
group scoring highest. There were no significant group differences in
the within-scanner measures of reaction time or word appropriateness.
Both groups demonstrated the typical gradation in these behavioural
measures according to task difficulty (Whalley et al., 2011).

3.2. Task-related brain activation

All subjects also demonstrated the expected patterns of brain activa-
tion indicating that subjects were performing the task appropriately in
the scanner (Whalley et al., 2004; McIntosh et al., 2008a,b; Whalley
et al., 2011). Regions activated for the sentence completion versus base-
line contrast included the left medial and lateral prefrontal regions, left
lateral temporal cortex, sub-cortical structures, left lateral parietal cor-
tex, occipital lobes bilaterally, and right cerebellum, see Supplementary
Fig. 1.

3.3. Effects of cross-disorder PGRS on neural activation

For sentence completion versus baseline, there were no significant
relationships across the groups between the cross-disorder PGRS and
brain activation. There was however a statistically significant cross-
disorder PGRS × group interaction in a large cluster encompassing the
left inferior frontal gyrus, precentral and postcentral gyri (see Fig. 1a,
b: Brodmann areas 9 and 6; p b 0.001, KE = 817, Z = 4.63 [−58,
−14, 38]). Examining data within groups separately indicated that
this was driven by a significant positive effect in those without family
history (p b 0.001, KE = 1210, Z = 4.91 [−58, −16, 28]), with no sig-
nificant effects in the familial group. There were no significant findings
for the parametric contrast, and no significant findings for either con-
trast in medial temporal lobe regions.

Data for the peak of this main interaction was then extracted to ex-
plore the relationship with the composite sub-scores (within the family
history negative group) to determine if one of the diagnoseswas driving
this main effect. The only individual diagnosis that demonstrated a sig-
nificant correlation was the sub-score for schizophrenia, bothwhen de-
termined separately and whilst controlling for the other diagnoses
(p b 0.01 in each case, Table 2).

3.4. Effects of potential confounders

Neither the cross-disorder PGRS, nor the schizophrenia PGRS sub-
score correlated with NART IQ, nor any of the clinical measures, either
across or within groups. We also examined the relationship between
the MDS components and the extracted values from the peak cluster.
There were no significant correlations between thesemeasures indicat-
ing that the above findings were not confounded by population
stratification.

4. Discussion

Here we report an impact of cumulative genetic risk for the five
major psychiatric disorders on brain activation in frontal regions. This
was observed in the group without a family history for mood disorder,
where increasing cross-disorder PGRS was associated with increased
frontal activation. Examination of the contributing sub-scores suggested
that this effect was specific to elevated risk for schizophrenia. The result
was not associatedwith population stratification, age, or IQ, andwas not
confounded by illness or medication effects.

Our findings indicated that the relationship between frontal activa-
tion and PGRS was strongest for the association with the schizophrenia
sub-score. We note that whilst this finding is consistent with a specific
effect of genetic risk for schizophrenia on brain function, other explana-
tions should be considered. For example, this may be due to the larger
discovery GWAS sample in schizophrenia and/or the greater proportion

http://www.mni.mcgill.ca
http://www.mni.mcgill.ca
http://ric.uthscsa.edu/mango


Fig. 1. Interaction between groups for cross disorder PGRS in frontal cortex. a, Depicts significant interaction between individuals with andwithout family history of mood disorder in the
frontal cortex. Images are overlaid onto standard brain inMNI space usingMango software package (http://ric.uthscsa.edu/mango). Map represents T-statistic images thresholded equiv-
alent to p uncorrected= 0.001, see Methods for further details. b, Presents scatter plot of peak of activation versus PGRS for schizophrenia in both groups, blue—controls (without family
history), red—bipolar high risk (with family history).
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Table 2
Correlation coefficients between individual diagnoses and peak activation.

Diagnosis Polygenic score with peak
activation (r (p value))

Controlling for the other
disorders (r (p value))

Test of difference of correlation coefficients
with those for SCZ (Z score (p value))

Control group
ADHD 0.10

(p = 0.34)
0.05
(p = 0.73)

1.64
(p = 0.05)

Autism 0.01
(p = 0.60)

0.03
(p = 0.86)

2.12
(p = 0.02)

Bipolar disorder −0.01
(p = 1.00)

−0.01
(p = 0.94)

2.09
(p = 0.02)

Major Depressive Disorder 0.09
(p = 0.82)

0.08
(p = 0.57)

1.69
(p = 0.04)

Schizophrenia 0.38
(p b 0.01)

0.39
(p b 0.01)

n/a

Familial group
ADHD 0.15

(p = 0.16)
0.18
(p = 0.12)

–

Autism −0.15
(p = 0.19)

−0.19
(p = 0.10)

–

Bipolar disorder −0.06
(p = 0.57)

−0.08
(p = 0.51)

–

Major Depressive Disorder −0.06
(p = 0.60)

−0.07
(p = 0.53)

–

Schizophrenia −0.12
(p = 0.32)

−0.11
(p = 0.34)

–

N.B.: using predictive utility differences (|r|).
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of phenotypic variance explained by the PGRS in schizophrenia com-
pared to other psychiatric disorders. However, the finding is highly con-
sistent with observations that deficits in frontal cognition are a core
feature of schizophrenia (Simonsen et al., 2011). Similarly, imaging
studies consistently report altered frontal activation in patients with
the disorder during performance of executive function tasks (Manoach,
2003; Glahn et al., 2005). It is also highly consistent with a previous re-
port suggesting that elevated polygenic risk for schizophrenia (based
on ~600 SNPs) correlated significantly with neural ‘inefficiency’ or ‘com-
pensation’ in the left lateral prefrontal cortex during an executive task
(Walton et al., 2014). The current work extends this to suggest that
this effect is specific, or has a stronger relationship to schizophrenia
risk, rather than being related to a generalised elevated risk to the
other major psychiatric disorders. Further studies in different patient
populations could explore whether this relationship extends to other
disorders and reflects a true trans-diagnostic effect.

As predicted, the cross-disorder PGRS, along with SCZ and BD sub-
scores, was higher in those with a family history of mood disorder ver-
sus those without. The imaging findings suggest, however, that there
was a group × polygene interaction rather than additive effect of the
presence or absence of familial loading. On a neurocognitive level, one
interpretation is that this increased activation represents a compensato-
ry response or increased cognitive effort in thosewithout a family histo-
ry at the higher end of the schizophrenia risk spectrum, with a lack of
such response in the familial group. This type of response has indeed
been reported previously, where increased frontal activation occurs in
response to increased task cognitive load (Manoach, 2003). Genetic or-
igins of the interaction findings could be attributable to a number of fac-
tors. Firstly, epistatic effects, whereby the effects of the contributing
SNPs are modified by genetic background related to the presence of
positive family history. Genetic risk factors not captured by the PGRS
(including risk of less common or rare causal variants) could also be
influencing the relationship. Also, the fact that the familial group was
unaffectedmaymean that resilience factorsmay be present in a propor-
tion of these individuals. Similarly, the contamination of shared envi-
ronmental effects may also have an impact in the familial group. To
further clarify this finding it would be important to examine effects in
independent samples as well as in patient populations.

These results suggest that lateral prefrontal dysfunction is a herita-
ble vulnerability factor for schizophrenia rather than a secondary
consequence of illness or medication. The next step is to develop ap-
proaches that will provide a greater understanding of underlying
aetiological processes, to provide strategies for treatment and illness
prediction. SNPs included in the current study were derived from the
PGC cross-disorder consortia where previous analysis of expression
quantitative trait loci (eQTL) in post-mortem tissue indeed sug-
gested enrichment for brain markers (Smoller et al., 2013). The cur-
rent study indicates that there are also specific neurophysiological
responses associated with these SNPs. In addition, previous pathway
analysis from the cross-disorder group implicated significant enrich-
ment of calcium channel signalling genes, implicating a specific bio-
logical pathway in the pathogenesis of these disorders (Smoller et al.,
2013).

One important limitation is the potential bias towards schizo-
phrenia studies, mentioned above. This finding could reflect the
greater number of schizophrenia cases contributing to the original
cross-disorder PGC data and hence greater power to detect an effect.
However, the consistency with the schizophrenia literature would
indicate that this finding has firm biological validity. Also to note is
that we did not report any significant relationships between the
PGRS and positive symptom scores from the PANSS, however, this
is likely due to the fact that these were all currently well individuals
with a limited range of scores. Another potential limitation relates to
the generalisability of this study in the fact that individuals were re-
cruited based on the presence of a positive family history. Whilst it is
arguably possible that the findings may be less generalisable to spo-
radic cases, there is little empirical evidence that is the case. Indeed,
for disorders where there is partial genetic penetrance along with a
complex architecture, sporadic cases are to be expected and these in-
dividuals may be mechanistically very similar to those that arise
from within multiplex families.

In summarywe report association between cross-disorder PGRS and
frontal brain activation in healthy individuals. Thiswas in the absence of
family history rather than a generalised effect across all individuals, and
was associated specifically with the contribution of schizophrenia risk
to the cross-disorder PGRS. This regional association is consistent with
the notion that frontal cortical inefficiency is a circumscribed phenotype
for schizophrenia, and suggests that neuroimaging deficits in frontal re-
gions seen in other diagnostic groupsmay be related to the cross-over of
schizophrenia risk seen in these disorders.
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