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Abstract. The effects of particle-size polydispersity on the initial susceptibilities
of concentrated ferrofluids are analyzed using a combination of theory and computer
simulation. The study is focused on a model ferrofluid with a prescribed magnetic-
core diameter distribution, a fixed non-magnetic surface layer (corresponding to a
demagnetized layer and adsorbed surfactant), and a combination of dipolar and
hard-core interactions. The non-trivial effects of polydispersity are identified by
comparing the initial susceptibilities of monodisperse and polydisperse ferrofluids with
the same Langevin susceptibility. The theory is based on a correction to the second-
order modified mean-field theory arising from a formal Mayer-type cluster expansion;
this correction is dependent on a parameter similar to the normal dipolar coupling
constant, except that it contains a complicated double average over the particle-size
distribution, which means that the initial susceptibility should depend significantly
on polydispersity. Specifically, the theory predicts that the initial susceptibility is
enhanced significantly by polydispersity. This prediction is tested rigorously against
results from Monte Carlo simulations, and is found to be robust. The qualitative
agreement between theory and simulation is already satisfactory, but the quantitative
agreement could be improved by a systematic extension of the cluster expansion.
The overall conclusion is that polydispersity should be accounted for carefully in
magnetogranulometric analyses of real ferrofluids.
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1. Introduction

Ferrofluids are colloidal suspensions of magnetized, roughly spherical nanoparticles in

an inert carrier liquid [1]. There are three main types of ferrofluid. In ionic aqueous

ferrofluids the particles are charge stabilized, and the repulsive electrostatic interactions

between them can be controlled by added salt. A second class of aqueous ferrofluids is

stabilized by a combination of steric and electrostatic effects. In this case, the particles

are surface-functionalized with molecules containing ionizable groups, and so the balance

of steric and electrostatic stabilization can be controlled by factors such as pH. In

the third and most common class of ferrofluids, the particles are suspended in a non-

aqueous medium such as kerosene or mineral oil, and are sterically stabilized by adsorbed

polar surfactant molecules such as oleic acid. There are many synthetic routes to such

materials [2], but the ultimate goal is to produce suspensions of particles with prescribed

sizes and shapes.

Denoting the magnetic-core diameter by x, and the total thickness of the non-

magnetic surfactant layer and demagnetized particle-surface layer by δ/2, the effective

hard-core diameter of a particle is given by

σ = x+ δ. (1)

The diameters of the magnetic cores are typically on the 1–10 nm scale, but

they are rarely uniform within a given sample, leading to considerable particle-size

polydispersity. Particle-size distributions can be estimated directly with microscopy

techniques, although this is a time-consuming approach, and subject to sampling errors.

An alternative approach is to analyze magnetic properties such as the magnetization

curve M(H), where M and H are the magnetization and external magnetic field,

respectively, or the initial susceptibility χ, which largely dictates the magnetization

curve. In this approach, a theory for the magnetic properties of a model ferrofluid of

arbitrary polydispersity is parameterized and then fitted to the measured experimental

data. In many cases, the particles are modelled as hard spheres with embedded point

dipoles – dipolar hard spheres (DHSs). The choice of internally fixed or fluctuating

dipoles does not affect the equilibrium thermodynamic and structural properties, but

it should be borne in mind that the dynamical properties do depend on whether the

dipoles relax by Brownian rotation of the particles or Néel rotation within the particles

[1]. There are many theories that account for the short-range interactions and the long-

range magnetic dipolar interactions between the particles, and their effects on the bulk

magnetic properties of the ferrofluid. These include the original Langevin theory for

non-interacting particles [3], the mean-field model of Weiss [4, 5], the mean-spherical

approximation (MSA) closure of the Ornstein-Zernike equation [6, 7], thermodynamic

perturbation theories [8, 9], so-called modified mean-field models [10, 11], Mayer-type

cluster expansions [12, 13, 14], and density functional theory (DFT) [15, 16, 17]. Some

of these theories are related. The first-order modified mean-field (MMF1) theory of

Pshenichnikov et al. was derived from the original Weiss mean-field model on the

assumption that the effective field inside the ferrofluid is linearly dependent on the
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Langevin magnetization [10]; the results coincide with the first-order high-temperature

approximation (HTA) [8, 9]. The MMF2 theory is based on a higher-order temperature

expansion [11], but the results are similar in form to the MMF1 theory, hence the MMF2

designation.

Some details should be noted before proceeding with this introduction. The most

important physical parameters of the ferrofluid are the particle concentration and the

strength of the dipolar interactions. These are characterized by the following properties.

Within the DHS model, the hard-core volume fraction ϕv and the magnetic-core volume

fraction ϕm are defined by

ϕv =
π

6

N�σ3�
V

=
π

6
ρ�σ3� (2)

ϕm =
π

6

N�x3�
V

=
π

6
ρ�x3� (3)

where N is the total number of particles, V is the system volume, ρ = N/V is the

number concentration, and �. . .� denotes an average over the magnetic-core diameter

distribution, p(x). The strength of the magnetic interactions is most simply measured

by a dipolar coupling constant, one choice for which is

λ =
µ0

4π

�m2�
kBT �σ3� (4)

where µ0 is the magnetic permeability of the vacuum, m ∝ x
3 is the particle magnetic

dipole moment, kB is Boltzmann’s constant, and T is the temperature.

A thorough investigation of the magnetization curves of real and simulated

ferrofluids was presented in [18, 19]. In this case, the magnetic particles were

modelled theoretically and in Monte Carlo (MC) simulations as dipolar hard spheres.

Experimental data were measured for a magnetite ferrofluid sample at T = 293 K

diluted to various particle concentrations, so that the particle-size distribution was the

same in each case. The dipolar coupling constant had the value λ � 0.63, and in the

most-concentrated sample, ϕv � 0.53 and ϕm � 0.12. The particle-size distribution was

modelled using a Γ-distribution, with two fit parameters. Each of the aforementioned

theories (except for DFT, because it was not available at the time) was fitted against the

experimental data. Only the second-order modified mean-field (MMF2) theory of Ivanov

and Kuznetsova [11] gave an apparent particle-size distribution that was independent

of concentration. To consolidate the results, simulations with the fitted particle-size

distribution were carried out, and essentially perfect agreement was demonstrated

between experiment and MMF2 theory. Recently, Szalai, Dietrich, and co-workers have

carried out comprehensive studies of the magnetization curves of polydisperse ferrofluids

from DFT and computer simulations, and with encouraging results [15, 16, 17].

The MMF2 theory gives a very simple expression for the initial susceptibility in

terms of the Langevin susceptibility

χL =
µ0ρ�m2�
3kBT

(5)

= 8ϕvλ (6)
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= 8ϕm

�
µ0

4π

�m2�
kBT �x3�

�

. (7)

In fact, the combination of (2) and (6) serves as a justification for the choice of dipolar

coupling constant given in (4). The MMF2 result for χ is

χMMF2 = χL

�

1 +
χL

3
+

χ
2
L

144

�

(8)

In [18, 19], a comparison of simulation results and theory showed that the MMF2 theory

performs rather well in predicting the initial susceptibility up to χ � 5.5. The upper

limit corresponds to the most-concentrated experimental sample, for which χL � 2.7.

Note that many theories give χ solely as a function of χL [4, 5, 6, 7, 8, 9, 10, 11]; hence,

they predict no difference between the susceptibilities of monodisperse and polydisperse

ferrofluids with the same Langevin susceptibilities. The recent DFT theory of Szalai,

Dietrich, and co-workers appears to possess the same property, inasmuch as there is a

‘master curve’ for the initial susceptibility of polydisperse ferrofluids [17].

In earlier simulation work, Wang and Holm studied the initial susceptibilities and

magnetization curves of bidisperse ferrofluids in which the small-particle and large-

particle dipolar coupling constants were approximately 1.3 and 5.3, respectively [20].

It was found that the MMF2 theory gave adequate results as long as the large-particle

volume fraction was less than about 0.02. The deviation between theory and simulation

was attributed to the formation of chains by the large particles, which occurred even in

zero applied magnetic field, and was enhanced by the presence of a field. The chains

possess large instantaneous magnetic moments, which increases the initial susceptibility.

In general, chain formation occurs in zero field when the dipolar coupling constant

λ > 4 [21, 22]. At very low temperatures and concentrations ring formation can

take place [23, 24]. In most real ferrofluids, though, the initial susceptibility is not

strongly influenced by such phenomena. In the presence of a field and with strong

enough interparticle interactions, chains can dominate the structure of the ferrofluid

[25, 26, 27, 28, 29] and then due account must be taken of them in order to describe the

full magnetization curve.

Recently, concentrated ferrofluids synthesized by the Perm group have been shown

to exhibit immense values of χ � 120–150 at temperatures down to T ∼ 200 K

[30, 31, 32]. These materials have very high magnetic-core volume fractions of up to

ϕm � 0.23, and are expected to have dipolar coupling constants λ ∼ 2. This poses a very

serious problem: what theory is capable of describing the magnetic properties arising

from such strongly interacting polydisperse particles? Certainly, the MMF2 theory (and

comparable theories) will not be able to predict such high values of χ. The Perm group

has shown that with the appropriate value of χL (which can be determined at very low

concentrations or at high temperatures, where interparticle correlations are negligible)

the MMF2 is inadequate. In the case of monodisperse ferrofluids, (8) can be extended to

include (non-vanishing) corrections of order λ2n, where n = 1, 2, 3, . . .. The details will

be discussed below. The evaluation of these corrections for real concentrated ferrofluids

with particle-size polydispersity has only recently been outlined [33]. It turns out that
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the parameter λ should be replaced by a different parameter, denoted Λ, which contains

a complicated double average over the particle-size distribution. For realistic models of

ferrofluids, the values of these parameters can differ by as much as a factor of 3. In

[33], the corrected theory was tested against experimental data for a real concentrated

ferrofluid with χ � 120 at low temperatures, and excellent agreement was achieved.

The purpose of the current work is to carry out a systematic comparison of

theory and simulation results for the initial susceptibilities of model monodisperse and

polydisperse concentrated ferrofluids with equal values of the Langevin susceptibility

(0 ≤ χL ≤ 10) or the dipolar coupling constant (0 ≤ λ ≤ 3), and over a range of

concentrations (0.20 ≤ ϕv ≤ 0.50). In this way, the effects of particle polydispersity

on the initial susceptibility can be isolated. These effects are shown to be considerable,

accounting for a difference of up to ∼ 10 between the monodisperse and polydisperse

ferrofluids. The MMF2 theory and similar theories expressing χ solely as a function of

χL predict that that polydispersity has no effect on the results. The extended theory

is seen to be improved by replacing λ (monodisperse) with Λ (polydisperse), and the

trends observed in the simulation results are captured faithfully by the theory.

This article is organized as follows. In section 2, the microscopic model, theoretical

expressions, and simulation methods are summarized. The results are presented in

section 3, affording a direct comparison of theory and simulation. Section 4 concludes

the article.

2. Model and methods

The magnetic particles are modelled as dipolar hard spheres, interacting via the pair

potential

u(rij,mi,mj) =






∞ rij < σij

µ0

4π

�
(mi ·mj)

r
3
ij

− 3(mi · rij)(mj · rij)
r
5
ij

�

rij ≥ σij
(9)

where rij is the interparticle separation vector, rij = |rij|, σij = (σi + σj)/2, and mi is

the magnetic dipole moment on particle i.

2.1. Particle distributions

Each system is defined by the magnetic-core diameter distribution, p(x). Normally,

log-normal or Γ-distributions are chosen as accurate representations of real particle-

size distributions. This can cause problems in computer simulations, however, since

the distribution has to be discretized in some way, and the large-x tail may not be

represented accurately by a small number of particles in the simulation configuration –

a small fraction of large particles can still make a significant contribution to the initial

susceptibility. In previous work [18, 19] the discretized particle configuration was chosen

so that all relevant moments of the distribution matched those of the target continuous
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distribution. Formal criteria exist for choosing the number of distinct fractions within

a configuration of a number of particles [34].

Here, very simple particle-size distributions are studied in order to eliminate any

spurious deviations between theory and simulations related to discretization and finite-

size samples. These distributions are either monodisperse, or are polydisperse and

consist of four fractions with particle numbers and magnetic-core diameters in the ratios

150 : 200 : 100 : 50 and 0.6 : 1.0 : 1.4 : 1.8, respectively. In the simulations of the

polydisperse systems, a total of N = 500 particles was used, and the distributions are

discussed below with this number of particles. The polydispersity of the distribution

can be characterized by the relative width

s =

�
�x2� − �x�2

�x� (10)

which gives s � 0.363. The discrete distribution is a crude representation of a

Γ-distribution, p(x) = x
α exp (−x/y)/[yα+1Γ(α + 1)]. The polydispersity of the Γ-

distribution is given by s = (1+α)−1/2. Figure 1 shows a plot of the discrete distribution

(in arbitrary units), and the Γ-distribution with the same polydispersity and the same

mean �x� = (α+ 1)y = 1.04, corresponding to α � 6.60 and y � 0.137. This value of α

is typical for real ferrofluids [18, 19]. It is stressed that the same discretized distribution

is used in comparisons between theory and simulation, so that no deviations arise from

the choice of particle configuration.

0.0 0.6 1.0 1.4 1.8 2.2
x (arbitrary units)

0

50

100

150

200

250

N

Figure 1. The discretized particle-size distribution p(x) (impulses), and a Γ-
distribution with α � 6.60 and y � 0.137 (line). The two distributions have the
same polydispersity (s � 0.363) and the same mean (�x� = 1.04).

The effects of polydispersity will be demonstrated either by comparing

monodisperse and polydisperse systems with the same hard-core volume fraction ϕv,

or the same magnetic-core volume fraction ϕm. Both measures of concentration are
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important experimentally: ϕm is determined by the ratio of the saturation magnetization

of the ferrofluid to the bulk magnetization of the particle material, while ϕv can either be

estimated by assuming the surfactant-layer dimensions, or by fitting small-angle neutron

scattering data. The monodisperse system is taken to be a fluid of dipolar hard spheres

with magnetic-core diameter x0, hard-core diameter σ0 = x0 + δ, and dipole moment

m0 ∝ x
3
0. In this work, δ/x0 = 1/2 throughout. In terms of these parameters, the

reduced dipole moment m∗
0 and dipolar coupling constant λ0 can be defined as follows.

m
∗
0 =

�
µ0

4π

m
2
0

kBTx
3
0

�1/2

(11)

λ0 =
µ0

4π

m
2
0

kBTσ
3
0

=
(m∗

0)
2

(1 + δ/x0)3
(12)

Comparisons will be made between monodisperse and polydisperse systems with the

same Langevin (low-concentration, high-temperature) susceptibility, given by (5)–(7).

For a polydisperse system, the reduced dipole moment of fraction i, and the overall

dipolar coupling constant, can be defined just as for the monodisperse system.

m
∗
i =

�
µ0

4π

m
2
i

kBTx
3
0

�1/2

(13)

λ =
�(m∗)2�
�(σ/x0)3�

(14)

2.1.1. Equal ϕv If the monodisperse and polydisperse systems are at the same hard-

core volume fraction ϕv, and temperature T , then the dipolar coupling constants λ (for

the polydisperse system) and λ0 (for the monodisperse system) must be equal in order

for the systems to have the same χL (6). Noting that �m2� ∝ �x6�, (4) leads to the

condition

�x6�
�σ3� =

x
6
0

σ
3
0

. (15)

The four-fraction distribution – called pv(x) – that satisfies this equal-ϕv condition is

given in table 1. The reduced dipole moment of each fraction is chosen so that λ = λ0.

To give a dipolar coupling constant λ, the reduced dipole moment of fraction i is

m
∗
i =

�
λ�(σ/x0)3�
�(x/x0)6�

�1/2 �
xi

x0

�3

(16)

which satisfies (14). The moments of the distribution are given in table 2, and the

reduced dipole moments for λ = λ0 = 1 are given in table 1. Tables 1 and 2 show

specific quantities corresponding to the monodisperse system with ϕv = 0.20, λ0 = 1.00,

and χL = 1.60. Quantities at different concentrations and temperatures can easily be

obtained by scaling.
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Table 1. Magnetic-core diameter distributions for configurations of N = 500 particles:
Ni is the number of particles of fraction i; x0 is the magnetic-core diameter for the
monodisperse system; xi is the magnetic core diameter; σi = xi + δ is the hard-core
diameter, where δ/x0 = 1/2 throughout; m∗

i is the reduced dipole moment (13) for a
system with the same Langevin susceptibility as a monodisperse system with λ0 = 1.00,
and either equal hard-core volume fraction ϕv [pv(x)] or equal magnetic-core volume
fraction ϕm [pm(x)].

i Ni xi/x0 σi/x0 m∗
i

Monodisperse
0 500 1.000000 1.500000 1.837117

Polydisperse pv(x)
1 150 0.420266 0.920266 0.136367
2 200 0.700443 1.200443 0.631328
3 100 0.980620 1.480620 1.732363
4 50 1.260797 1.760797 3.681903

Polydisperse pm(x)
1 150 0.401699 0.901699 0.119080
2 200 0.669498 1.169498 0.551295
3 100 0.937297 1.437297 1.512753
4 50 1.205096 1.705096 3.215151

Table 2. System parameters for each of the magnetic-core diameter distributions
given in table 1. Parameters for the monodisperse system are given for volume
fraction ϕv = 0.20, magnetic-core volume fraction ϕm = 0.059259, and χL = 1.60,
corresponding to λ0 = 1.00. Parameters are given for polydisperse systems with the
same value of χL and either equal hard-core volume fraction [pv(x)] or equal magnetic-
core volume fraction [pm(x)]. L is the simulation box length for a system containing a
total of N = 500 particles, as given in table 1. Quantities at different concentrations
and temperatures can easily be obtained by scaling.

Monodisperse pv(x) pm(x)

�x3�/x3
0 1.000000 0.548742 0.479179

�x6�/x6
0 1.000000 0.628405 0.479179

�σ3�/x3
0 3.375000 2.120866 1.949331

�(m∗)2� 3.375000 2.120866 1.617228
λ 1.000000 1.000000 0.829632
Λ 1.000000 1.859723 1.560000
ϕv 0.200000 0.200000 0.241071
ϕm 0.059259 0.051747 0.059259

L/x0 16.408573 14.054562 12.840146

2.1.2. Equal ϕm If the monodisperse and polydisperse systems are to have the same

magnetic-core volume fraction ϕm and Langevin susceptibility χL at a given temperature
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T , then from (7)

�x6�
�x3� =

x
6
0

x
3
0

. (17)

The four-fraction distribution that satisfies this equal-ϕm condition is given in table 1

as pm(x). The reduced dipole moments are chosen so that the right-hand side of (7) is

the same for both the monodisperse system (with dipolar coupling constant λ0) and the

polydisperse system. This leads to

m
∗
i =




�

1 +
δ

x0

�3

λ0




1/2 �

xi

x0

�3

. (18)

In this case, the dipolar coupling constants – as defined in (12) and (14) – are not the

same in the two systems, since the hard-core volume fractions are not equal either. The

values corresponding to monodisperse systems with λ0 = 1.00 are given in table 2. Once

again, quantities at different concentrations and temperatures can easily be obtained by

scaling.

2.2. Theory

For monodisperse systems, a cluster expansion in terms of ϕv and λ leads to a general

expression for χ of the form

χ = χL +
∞�

k,l=2

Bklϕ
k
vλ

l (19)

where Bkl is a virial-type coefficient. Many of the theories mentioned in the Introduction

only contain terms with k = l, giving a formula for χ expressed solely in terms of

χL = 8ϕvλ. For example, the MMF2 expression in (8) corresponds to the inclusion

of the exact coefficients B22 = 64/3 and B33 = 32/9, and with all others set equal to

zero. Huke and Lücke have analyzed the second virial-type coefficients B2l [12]; only the

coefficients with even-l are nonzero. Keeping only B22, B24, and B33 gives [11, 13, 14]

χλ = χL

�

1 +
χL

3

�

1 +
λ
2

25

�

+
χ
2
L

144

�

. (20)

Of course, there is an infinite number of λ-dependent corrections, but they become

less significant and more complicated to compute. In a recent magnetogranulometric

analysis of the initial susceptibility of a magnetite/linoleic acid ferrofluid, it was found

that the first ‘Huke-Lücke’ correction to the MMF2 theory was sufficient to describe

the experimental results [35], albeit with λ being determined from the experimental

concentration and Langevin susceptibility (6) rather than any microscopic details.

The focus here is on establishing a concrete connection between the microscopic

details of the ferrofluid (particle-size distribution, temperature, concentration) and the

initial susceptibility. It is tempting to apply (20) to polydisperse systems, simply by
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inserting (4) for λ. This is incorrect. The proper extension to the polydisperse case

gives the result

χΛ = χL

�

1 +
χL

3

�

1 +
Λ2

25

�

+
χ
2
L

144

�

(21)

where Λ involves a complicated double average over the particle-size distribution, p(x)

[33]. The explicit expression for Λ in the case of discretized distributions (as defined in

section 2.1) is

Λ =
µ0

4π

1

kBT
�

i Nim
2
i

����
�

ij

NiNjm
4
im

4
j

σ
6
ij

. (22)

Ivanov and Elfimova have shown that for realistic ferrofluid models, Λ/λ can be as high

as 3 [33]. The result expressed in (21) has been tested against experimental data for a

real, high-susceptibility ferrofluid, and excellent agreement has been demonstrated [33].

Obviously, for a monodisperse ferrofluid, Λ = λ = λ0. The numerical values of Λ for

the equal-ϕv and equal-ϕm cases with χL = 1.60 are given in table 2. Note that Λ ≥ λ

in all cases.

2.3. Computer simulations

Canonical (NV T ) MC simulations were performed in a cubic simulation box with side

L [36]. For the monodisperse system, the hard-core volume fractions were ϕv = 0.20,

0.30, and 0.40, representing moderate to high concentrations for real ferrofluids. The

dipolar coupling constants were as high as λ0 = 3.00, which corresponds to very strongly

interacting particles. The box dimensions for some monodisperse and polydisperse

systems with N = 500 particles and χL = 1.60 are given in table 2. Some other

calculations for the monodisperse system were carried out with N = 256 or N = 864

particles. Simulation parameters and results are collected in the Supplementary Data.

All calculations were performed in reduced units, defined in terms of the parameters of

the monodisperse system, as detailed in section 2.1. The long-range dipolar interactions

were computed using the Ewald summation with conducting boundary conditions.

Translational and rotational moves of the particles were conducted with maximum

displacement parameters giving acceptance rates of 20% and 50%, respectively. Typical

run lengths were 5 × 106 attempted translations and rotations per particle, after

equilibration. The initial susceptibility was determined from the fluctuation formula

χ =
µ0�|M |2�
3kBTV

(23)

where M =
�N

i=1 mi is the instantaneous dipole moment of the simulation box. The

‘dynamics’ in concentrated systems of strongly interacting particles can be slow, and so

the determination of �|M |2� was carried out with some care. Specifically, the probability

distributions p(Mα) (α = x, y, z) were plotted and fitted with Gaussian functions in
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order to confirm the behaviour expected from the Central Limit Theorem, and therefore

that the simulations had been run long enough:

p(Mα) =
1√
2πB2

exp

�

−(Mα − A)2

2B2

�

. (24)

An example is shown in figure 2. These data are for a polydisperse system of N = 500

particles at ϕv = 0.40 and with 1.00 ≤ λ ≤ 2.75, where the fluctuations in the

instantaneous magnetization are expected to be large. In general, the Gaussian function

provides an adequate fit, except in the wings of the distribution where the instantaneous

magnetization is approaching its maximum allowed values. In almost all cases, the

distributions are centered on Mα = 0. The one exception is at λ = 2.75, where the

strong dipolar interactions lead to long-lived magnetization fluctuations. The apparent

net magnetization �Mα� is only a statistical-sampling error. The difference between

B
2 = �M2

α� − �Mα�2 and B
2 + A

2 = �M2
α� is less than 0.3% in all cases, and in the

majority of cases at least one order of magnitude smaller. χ was evaluated by using B
2

as the best estimate of �|M |2� in (23).
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Figure 2. Probability distribution of the instantaneous magnetization Mα (in reduced
units) in one direction, from simulations of the polydisperse ferrofluid with ϕv = 0.40
and 1.00 ≤ λ ≤ 2.75. The simulation data are shown as symbols, and Gaussian fits
are shown with lines.

3. Results

All of the simulation results are collected in the Supplementary Data. In the following

plots, simulation results with different system sizes are shown with the same symbols

in order to keep the labelling simple. The estimated statistical uncertainties from the

fitting procedure described in section 2.3 are reported in the Supplementary Data, but

in the plots to follow, they are smaller than the symbol size.
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Figure 3 shows χ as a function of λ for monodisperse and polydisperse ferrofluids

with equal volume fraction ϕv = 0.20, 0.30, and 0.40. Recall from (6) that under

these conditions, having the same Langevin susceptibility (5) means having the same

value of λ (4). All of the data must fall on to the Langevin line at low concentration

and low values of λ (corresponding to high temperature). The simulation results show

that, at high values of λ, the susceptibility of the polydisperse ferrofluid is significantly

higher than that of the monodisperse ferrofluid. This must be due to there being

strong dipolar ‘nose-to-tail’ correlations between the larger particles, leading to larger

fluctuations in the instantaneous magnetization. It is not due to the mere presence

of large particles with large dipole moments, because the comparison is made between

systems with the same Langevin susceptibilities. For polydisperse and monodisperse

ferrofluids with λ = 2.75 and at ϕv = 0.20, 0.30, and 0.40, the differences in χ are 8,

9, and 7, respectively. At ϕv = 0.40 and λ = 3.00, the simulation results with different

size systems are slightly different, but it’s very difficult to get reliable results with such

strongly interacting particles; at lower values of λ and ϕv, there are no finite-size issues.

Figure 3 shows the MMF2 theory, which of course predicts no dependence of χ on

the polydispersity for systems with the same χL. The agreement between MMF2 theory

and simulation results for the monodisperse system is rather good at ϕv = 0.20 and 0.30,

but it breaks down at ϕv = 0.40. The extended theory χλ (20) slightly overestimates

the monodisperse simulation results at ϕv = 0.20 and 0.30, and underestimates them at

ϕv = 0.40. Crucially, the polydisperse version χΛ (21) correctly predicts the higher value

of χ in the polydisperse case. While the simulation results suggest that the difference

between χΛ and χλ is roughly independent of volume fraction (being in the range 7–9)

the theory predicts a difference that increases with volume fraction. It is not clear what

element of the theory causes this deviation, although the fact that the theory is more

accurate at low volume fraction suggests that it is to do with truncation of the density

expansion in (19). It is stressed that the deviations between theory and simulation are

not due to how the distribution is represented in the simulations, because the discretized

distribution is used in both theory and simulation. Although the agreement between

theory and simulation is not perfect, the fundamental conclusion is that increasing

polydispersity significantly increases the initial susceptibility.

Figure 4 shows the corresponding results for monodisperse and polydisperse systems

with the same magnetic volume fraction ϕm. The ranges on the x and y axes are chosen

so that the results for the monodisperse system would overlay those in figure 3, e.g.,

0 ≤ λ ≤ 3.25 for ϕv = 0.20 in figure 3(a) matches up with 0 ≤ χL ≤ 5.2 in figure

4(a). The simulation results show the same increase in χ with polydispersity, but the

magnitude of the increase is significantly less than in the equal-ϕv case. Table 2 shows

that the value of λ is smaller in the equal-ϕm case than in the equal-ϕv case. Since

λ should dictate the extent of dipolar nose-to-tail correlations [37, 38], and hence the

magnitude of fluctuations in the instantaneous magnetization, it is to be expected that

polydispersity should have less of an influence in the equal-ϕm case.

Obviously, the theoretical curves χMMF2 and χλ in figures 3(a)-(c) and 4(a)-(c)
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Figure 3. Initial susceptibility of monodisperse and polydisperse ferrofluids with
equal dipolar coupling constants λ and equal hard-core volume fractions ϕv: (a)
ϕv = 0.20; (b) ϕv = 0.30; (c) ϕv = 0.40. The open symbols are from simulations of
the monodisperse system, the filled symbols are from simulations of the polydisperse
system, and the dotted, dashed, and solid lines are the expressions χMMF2 (8), χλ (20),
and χΛ (21), respectively.

would overlay one another, while χΛ would not. Most importantly, χΛ accurately reflects

the reduced influence of polydispersity in the equal-ϕm case.

Figures 5(a) and (b) show the ratio χpoly/χmono of the initial susceptibilities of

polydisperse and monodisperse systems with equal values of ϕv and ϕm, respectively,

from simulations and theory (χΛ/χλ). The fitting errors in χΛ and χλ have been
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Figure 4. Initial susceptibility of monodisperse and polydisperse ferrofluids with
equal Langevin susceptibilities χL and equal magnetic-core volume fractions ϕm: (a)
ϕm = 0.059259; (b) ϕm = 0.088889; (c) ϕm = 0.118519. The open symbols are from
simulations of the monodisperse system, the filled symbols are from simulations of the
polydisperse system, and the dotted, dashed, and solid lines are the expressions χMMF2

(8), χλ (20), and χΛ (21), respectively.

propagated here, but they are still smaller than the symbol size; the scatter in the

data shows that these uncertainties are underestimates. Note that the MMF2 theory

predicts a constant value of χpoly/χmono = 1. Firstly, a comparison of (a) and (b)

emphasizes that the enhancement of χ by polydispersity is more pronounced in the

equal-ϕv case; at a moderate volume fraction (ϕv = 0.20) the enhancement can be very
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significant, more than 60% with strongly interacting particles. This effect is significantly

reduced in the equal-ϕm case. Secondly, the relative enhancement of χ decreases with

increasing concentration. Finally, the theory does capture the basic dependence of χ

on polydispersity, but the quantitative agreement with simulation could be improved.

The theory underestimates the ratio at low concentration, overestimates it at high

concentration, and is accurate at intermediate concentration. As indicated above, this

suggests that higher-order terms in the density expansion of (19) may play a role.

0 2 4 6 8 10
χ

L

0.8

1.0

1.2

1.4

1.6

1.8

χ
p

o
ly

 /
 χ

m
o

n
o

(a) Equal ϕ
v

ϕ
v
 = 0.20

ϕ
v
 = 0.30

ϕ
v
 = 0.40

0 2 4 6 8 10
χ

L

0.8

1.0

1.2

1.4

1.6

1.8

χ
p

o
ly

 /
 χ

m
o

n
o

(b) Equal ϕ
m

ϕ
m

 = 0.059259

ϕ
m

 = 0.088889

ϕ
m

 = 0.118519

Figure 5. Ratio of the initial susceptibilities of polydisperse and monodisperse systems
from simulations (points) and theory (lines). The theoretical predictions are given by
the ratio of χΛ (21) and χλ (20). In (a), results are shown for ϕv = 0.20 (circles
and solid line), ϕv = 0.30 (squares and dashed line), and ϕv = 0.40 (diamonds and
dotted line). In (b), results are shown for ϕm = 0.059259 (circles and solid line),
ϕv = 0.088889 (squares and dashed line), and ϕv = 0.118519 (diamonds and dotted
line).

The results so far concern the discretized particle-size distribution shown in figure 1.

The general effects of polydispersity can be characterized by the ratio Λ/λ0; recall that

λ0 is the dipolar coupling constant of the monodisperse system with the same Langevin
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susceptibility. This ratio has been calculated for Γ-distributions over a wide range of

polydispersity. For a given polydispersity s, the width parameter for the corresponding

Γ-distribution is α = s
−2 − 1. To determine the corresponding value of y, equations

(15) and (17) are solved in the equal-ϕv and equal-ϕm cases, respectively. The non-

magnetic layer thickness δ/x0 = 1/2 throughout. Figure 6 shows the results for the

equal-ϕv and equal-ϕm cases. Firstly, Λ and λ are larger in the equal-ϕv case than in

the equal-ϕm case. This just a mathematical consequence of the difference between the

two particle-size distributions, arising from the different conditions in equations (15) and

(17). Secondly, λ < λ0 in the equal-ϕm case, again due to the details of the particle-

size distribution. The stronger polydispersity effect in the equal-ϕv case can therefore

be attributed to stronger dipolar correlations, as measured by the coupling constant

λ. Finally, table 2 shows that for the discrete distributions, Λ/λ0 � 1.86 (equal ϕv)

and 1.56 (equal ϕm), while figure 6 shows that for the Γ-distribution with the same

polydispersity (s � 0.363), these ratios are approximately 3.31 and 2.64, respectively.

The differences are due to the tails of the Γ-distributions making large contributions to

Λ, since equation (22) contains moments of high order.
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Figure 6. Λ/λ0 and λ/λ0 as functions of polydispersity s in the equal-ϕv and equal-
ϕm cases. The particle sizes are governed by Γ-distributions for which s = (1+α)−1/2,
and the non-magnetic layer thickness is δ/x0 = 1/2 throughout.

4. Conclusions

In this work, the initial susceptibilities of concentrated ferrofluids were examined with

a particular focus on the effects of polydispersity. To this end, comparisons were made

between model monodisperse and polydisperse systems. The model particles were hard

spheres with magnetized cores and a non-magnetic surface layer (mimicking adsorbed
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surfactant and demagnetized material). In the polydisperse case, a convenient magnetic-

core size distribution was chosen to resemble those for real ferrofluids. Comparisons were

made between monodisperse and polydisperse systems with the same Langevin (low-

concentration, high-temperature) susceptibility, and either the same hard-core volume

fraction or the same magnetic volume fraction. Computer simulations and analytical

theory were employed to study the model systems. The theory contained a correct

account of the particle-size distribution, and as a result, predicted a difference between

the monodisperse and polydisperse cases. A comparison of simulation and theory showed

general consistency, inasmuch as polydispersity clearly leads to a significant increase in

the initial susceptibility, above and beyond that one would expect merely from the

presence of some large particles in the system; this latter, trivial effect is cancelled

out by comparing systems with the same Langevin susceptibility. The enhancement

of the initial susceptibility is greater at equal hard-core volume fraction than at equal

magnetic volume fraction. This is due to the respective values of the dipolar coupling

constant in the two cases, and that orientational correlations are expected to be more

pronounced in the former case, leading to greater fluctuations in the instantaneous

magnetization. Although the quantitative agreement between simulation and theory

could be improved, the overall conclusion is unaffected: both approaches show that

the particle-size distribution significantly affects the initial susceptibility, and therefore

it must be accounted for correctly in theoretical studies and in magnetogranulometric

analyses of ferrofluids.
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[27] Klokkenburg M, Erné B H, Meeldijk J D, Wiedenmann A, Petushkov A V, Dullens R P A and

Philipse A P 2006 Phys. Rev. Lett. 97 185702
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