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Abstract. Soil carbon storage simulated by the Coupled

Model Intercomparison Project (CMIP5) models varies 6-

fold for the present day. Here, we confirm earlier work show-

ing that this range already exists at the beginning of the

CMIP5 historical simulations. We additionally show that this

range is largely determined by the response of microbial de-

composition during each model’s spin-up procedure from

initialization to equilibration. The 6-fold range in soil car-

bon, once established prior to the beginning of the historical

period (and prior to the beginning of a CMIP5 simulation),

is then maintained through the present and to 2100 almost

unchanged even under a strong business-as-usual emissions

scenario. We therefore highlight that a commonly ignored

part of CMIP5 analyses – the land surface state achieved

through the spin-up procedure – can be important for de-

termining future carbon storage and land surface fluxes. We

identify the need to better constrain the outcome of the spin-

up procedure as an important step in reducing uncertainty in

both projected soil carbon and land surface fluxes in CMIP5

transient simulations.

1 Introduction

The land surface currently absorbs about a third of an-

thropogenic emissions of CO2 (Canadell et al., 2007; Le

Quéré et al., 2009) and so helps to offset global warming.

Future global warming may enhance microbial decomposi-

tion and emissions of CO2 from respired soil organic car-

bon (SOC), the largest carbon pool in the terrestrial bio-

sphere (Jobbágy and Jackson, 2000). Higher emissions from

SOC could accelerate increases in atmospheric CO2 con-

centrations even if plant carbon uptake by photosynthesis

increased under higher atmospheric CO2 (Ahlström et al.,

2013; Friedlingstein et al., 2014; Nishina et al., 2014). Con-

versely, if the soil remains a carbon sink (Le Quéré et al.,

2009; Lund et al., 2010) the negative feedback on rising at-

mospheric CO2 (Davidson and Janssens, 2006) would help

limit rates of increase. How soil carbon is represented in

models and how it responds to climate is critical to resolv-

ing whether the land will remain a sink or become a source

of CO2.

Recent model intercomparisons, such as the fifth phase of

the Coupled Model Intercomparison Project (CMIP5; Taylor

et al., 2012) and the Inter-Sectoral Impact Model Intercom-

parison Project (ISI-MIP; Warszawski et al., 2014), have

highlighted a lack of consensus among models on whether

the soil carbon sink will be sustained during the 21st century

(Friedlingstein et al., 2014; Nishina et al., 2014). These mod-

els also exhibit large discrepancies in stores of SOC they sim-

ulate. For example, Todd-Brown et al. (2013) report that total

SOC simulated by CMIP5 models for the present day repre-

sents a 6-fold variation ranging from ∼ 510 to ∼ 3040 Pg C.

Another large range (∼ 1090 to ∼ 2645 Pg C) exists in the

present day SOC simulated by ISI-MIP models despite be-

ing driven by a harmonized weather data set (Nishina et al.,

2014). These latter results indicate that a significant fraction

of the uncertainty in estimates of total SOC arises from the

representation of land processes rather than differences in cli-

mate drivers.

Published by Copernicus Publications on behalf of the European Geosciences Union.
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Soil carbon pools of widely different sizes have the poten-

tial to react differently to future climate change. We therefore

examine the likely reasons for the large differences between

CMIP5 models in their simulation of SOC. This work is

founded in the recognition that the SOC varies among the

CMIP5 models for the present day over a 6-fold range (Todd-

Brown et al., 2013) and this range contributes to model-to-

model variations in SOC change in the future (Todd-Brown

et al., 2014). We explore why this 6-fold range exists and

ultimately show that individual model responses to the spin-

up procedure, particularly the dominant role of turnover time

relative to SOC input, are the key reason for this range. Ex-

plaining why the amount of carbon mobilized in the active

cycle varies greatly between models is critical but has been

largely ignored in the literature to date. As noted by Knutti

and Sedláček (2013), there may be multiple sources of dis-

agreement between models such as a lack of process under-

standing, or the reduced availability of relevant observational

data sets to constrain models. Technical aspects of climate

modelling, such as how different state variables are initial-

ized or spun up to an equilibrated state prior to an experiment

being conducted, and how equilibration is defined in this con-

text, can also lead to major differences between model simu-

lations. Discriminating between these sources of uncertainty

to understand why CMIP5 models differ so significantly in

the amount of SOC in the present day, and subsequently in

the total amount of C mobilized in the global cycle under a

future climate, enables an improvement in model projections.

Increasing the consistency between models is required to im-

prove our confidence in the sign of the soil carbon feedback

in the future.

To avoid misconceptions, we define and differentiate be-

tween two states that are commonly called “initial” states

in land modelling. Our definition of “initial state”, which

is not known or reported in CMIP5 models, is the state at

the beginning of a climate model integration. This “initial

state” may come from a previous simulation, from off-line

simulations, from observations or via expert judgement. In

the case of SOC, it may be initialized as a “cold start” or

in a state equilibrated with an atmosphere that reflects the

period prior to the beginning of a simulation. This model

state is then commonly integrated forward in time until those

model states that are considered important are in equilib-

rium with the atmospheric model over some period of time

and to a degree that is defined by the modeller (but not re-

ported). This generates what we define as an “equilibrated

state”. In CMIP5, simulations are then reported from the be-

ginning of the historical period (say 1850), initialized with

this “equilibrated state” and integrated forward in time to the

present day under observed forcings, and then into the fu-

ture using a representative concentration pathway (Taylor et

al., 2012). The values of a climate model’s state variables

at 1850 are commonly thought of as the “initial state” but

they are not; it is the model-specific equilibrated state un-

der pre-industrial forcing and this reflects the ability of the

climate model to represent global and regional temperatures,

rainfall and so forth. We therefore call this the “equilibrated

state” and note that this differs from the “initial state” due

to the earth system model’s simulated climate, the definition

of “equilibrium” over time and space and crucially how the

state variables are parameterized. Here we show that a great

deal of the 6-fold range in SOC in the CMIP5 models at

the “equilibrated state” assumed representative of 1850 (and

consequently in the present day reported by Todd-Brown et

al., 2013) is a consequence of the procedures used to evolve

the model from the “initial state” to the “equilibrated state”.

These procedures may influence how SOC changes through

to 2100 (Todd-Brown et al., 2014) due to the current state-

of-the-art representation of SOC decomposition.

2 Material and methods

2.1 SOC in earth system models

In all global terrestrial models participating in recent inter-

comparison projects such as CMIP5 and ISI-MIP, the SOC

balance and its change (1SOC) are represented in a sim-

ilar way. First, inputs of carbon into the soil are derived

from plant pools. Plant carbon uptake and turnover times re-

spond to climate change, climate variability and atmospheric

CO2 independent of the size of the SOC pools. Meanwhile,

modelled microbial decomposition releases carbon by het-

erotrophic respiration (Rh). The balance can be summarized

by

1SOC= SOCin−Rh, (1)

where SOCin is the input to the SOC pools from plant and

litter pools.

Microbial decomposition is commonly represented as a

first-order process and applied to a succession of pools. In

each pool, a parameter k reflects the specific baseline decom-

position rate (Xia et al., 2013; Exbrayat et al., 2013a, b) at a

reference soil temperature and non-limiting moisture condi-

tions. Then, the decay rate is adjusted at each time step by

an environmental scalar (Todd-Brown et al., 2013; Xia et al.,

2013; Exbrayat et al., 2013a, b; Nishina et al., 2014) that de-

scribes the instantaneous response of microbial activity to the

soil physical state as the product of a soil temperature (fT )

and a soil moisture respiration function (fW ). Various formu-

lations of fT and fW have been implemented in model codes

(Lloyd and Taylor, 1994; Falloon et al., 2011; Todd-Brown

et al., 2013; Exbrayat et al., 2013a, b; Nishina et al., 2014),

usually assuming a space- and time-invariant response to the

same conditions. Their effect on decay rate varies according

to local soil conditions and therefore climate.

The actual decay rate (k× fT × fW ) is applied to the

amount of substrate available, SOC, to determine the amount

of microbial decomposition Dm at each model time step:

Dm = k× fT × fW ×SOC, (2)

Geosci. Model Dev., 7, 2683–2692, 2014 www.geosci-model-dev.net/7/2683/2014/
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Table 1. CMIP5 models and number of simulations used in this paper for historical and RCP 8.5 runs. The first column provides the letter

code used in the figures. References and details about soil carbon components are provided in Table 2.

Number of model runs

Model name Institution Historical RCP 8.5

A BCC-CSM1.1 Beijing Climate Center (China) 3 0

B CanESM2 Canadian Centre for Climate Modelling and Analysis (Canada) 5 5

C CCSM4 National Center for Atmospheric Research (USA) 6 6

D GFDL-ESM2G Geophysical Fluid Dynamics Laboratory (USA) 1 1

E∗ GISS-E2-H NASA Goddard Institute for Space Studies (USA) 17 3

GISS-E2-R 25 3

F∗ HadGEM2-CC Met Office/Hadley Centre (UK) 1 1

HadGEM2-ES 3 3

G∗ IPSL-CM5A-LR Institut Pierre Simon Laplace (France) 6 4

IPSL-CM5B-LR 1 1

H∗ MIROC-ESM Japan Agency for Marine-Earth Science and Technology (Japan) 3 1

MIROC-ESM-CHEM 1 1

I MPI-ESM-LR Max Planck Institute (Germany) 3 3

J∗ NorESM1-M Bjerknes Centre for Climate Research (Norway) 3 1

NorESM1-ME 1 1

∗ Models from the same institution were averaged to avoid pseudo-replication.

where k× fT × fW is equivalent to the fraction of respired

substrate, the inverse of the turnover time SOC/Rh. A part of

the decomposed organic matter is routed to pools with longer

turnover time and the rest is emitted as CO2. There may be

variations between models in the number of pools they repre-

sent (Todd-Brown et al., 2013; Nishina et al., 2014) and the

formulations of the environmental response functions (Fal-

loon et al., 2011; Exbrayat et al., 2013a) but at the ecosystem

scale, Rh is proportional to the amount of substrate, i.e. SOC,

available in the soil. This parameterization may be inconsis-

tent with our current understanding of microbial decompo-

sition (Allison et al., 2010; Schmidt et al., 2011; Wieder et

al., 2013) because it lacks the representation of processes

such as microbial activity and priming effect (e.g. Xenakis

and Williams, 2014). However, the first-order dependency of

Rh on SOC, soil temperature and moisture is able to explain

complex phenomena such as the apparent acclimation of de-

composers to warming by quick depletion of the most labile

substrate pools (Luo et al., 2001; Kirschbaum, 2004; Knorr

et al., 2005).

2.2 CMIP5 data

From the CMIP5 archive we downloaded monthly soil car-

bon density (cSoil in metadata), litter carbon density (cLit-

ter) and heterotrophic respiration (rh) for 15 CMIP5 mod-

els from 10 international institutions. A list of models can

be found in Table 1 while further details about models

and land components have been summarized in Table 2.

We note that four of these models, namely BCC-CSM1.1

(model A), CCSM4 (model C), NorESM1-M and NorESM1-

ME (grouped as model J), represent nitrogen limitation on

plant productivity while the others do not. We selected data

for the historical (1850–2005) and the most intensive Repre-

sentative Concentration Pathway 8.5 (RCP 8.5, 2006–2100)

experiments. A total of 79 simulations for the historical ex-

periment, including 34 simulations continuing for RCP 8.5

(Table 1) were available. When cLitter was reported, we

added it to cSoil as both pools are parameterized to gener-

ate Rh following first-order kinetics.

To calculate stock sizes we first multiplied spatially ex-

plicit data of cSoil and cLitter in kg C m−2 by corresponding

grid-cell areas (areacella in metadata) and integrated their

values globally. Similarly, we calculated global fluxes of Rh

by multiplying monthly fluxes in kg C m−2 by grid-cell areas

and integrating them globally. Fluxes were summed to ob-

tain annual averages. Annual soil carbon input (SOCin) from

above-ground biomass was not available from the database.

Therefore, we calculated it by inverting the SOC balance:

SOCin =1SOC+Rh. (3)

As models did not start their historical simulations at the

same time, we focus our analyses on the overlapping pe-

riod of 1861–2100. We also averaged all simulations from

the same model or institution in an attempt to account for

model dependence (see Bishop and Abramowitz, 2013, for a

discussion on the topic).

In the following, we report values of stocks and fluxes

averaged for three periods of time, the pre-industrial

(1861–1870), modern (1996–2005) and future (2091–2100)

periods. While the period 1861–1870 is not part of the pre-

industrial control runs sensu stricto, the minor increase in

atmospheric CO2 between pre-industrial times (i.e. before

1850) and 1870 is unlikely to have led models to simulate

www.geosci-model-dev.net/7/2683/2014/ Geosci. Model Dev., 7, 2683–2692, 2014
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Table 2. Details about the CMIP5 models’ terrestrial and soil components and associated references.

# of pools
N

Model name Terrestrial component Soil biogeochemistry L S limitations

A BCC-CSM1.1 (Wu et al., 2013) AVIM2 (Ji et al., 2008) Based on CENTURY (Parton et al., 1987) 2 6 No

B CanESM2 (Chylek et al., 2011) CTEM (Arora and Boer, 2010) CTEM (Arora and Boer, 2010) 1 1 No

C CCSM4 (Gent et al., 2011) CLM4-CN (Lawrence et al., 2011) CN module (Thornton et al., 2007) based on

Biome-BGC 4.1.2 (Thornton and Rosenbloom,

2005)

3 3 Yes

D GFDL-ESM2G (Dunne et al., 2012) LM3.0 (Shevliakova et al., 2009) Based on CENTURY (Parton et al., 1987) – 2 No

E GISS-E2 (Shindell et al., 2013) NCAR-CSM1.4 (Doney et al., 2006) Based on CASA (Randerson et al., 1997) – 9 No

F HadGEM2 (Collins et al., 2011) JULES (Clark et al., 2011) Based on TRIFFID (Cox, 2001) and RothC

(Jenkinson, 1990)

– 4 No

G IPSL-CM5 (Dufresne et al., 2013) ORCHIDEE STOMATE (Krinner et al., 2005) and

CENTURY (Parton et al., 1988)

3 4 No

H MIROC-ESM (Watanabe et al., 2011) SEIB-DGVM (Sato et al., 2007) Based on DEMETER-1 (Foley, 1995) – 2 No

I MPI-ESM-LR (Giorgetta et al., 2013) JSBACH (Raddatz et al., 2007) Based on Bethy (Knorr, 2000) and CENTURY

(Parton et al., 1988)

1 1 No

J NorESM1 (Bentsen et al., 2013) CLM4-CN (Lawrence et al., 2011) CN module (Thornton et al., 2007) based on

Biome-BGC 4.1.2 (Thornton and Rosenbloom,

2005)

3 3 Yes

a strong change in the greenhouse effect and terrestrial

C fluxes. Values are shown in Table 3.

2.3 Harmonized world soil database

HWSD (FAO, 2012) is a global data set of dominant soil

units at a 30 s arc resolution, providing soil properties for

the top (0–30 cm) and sub-soil (30–100 cm). We use version

1.21 and follow the approach by Todd-Brown et al. (2013) to

obtain global values. First, we regrid the HWSD by selecting

dominant soil units in a 0.5◦ latitude× 0.5◦ longitude grid.

Then, we multiply the organic carbon content of the domi-

nant soil units (in % weight) by the bulk density (provided

in kg dm−3) to obtain the carbon density (in kg C m−2) in

each 0.5◦× 0.5◦ grid cell. We multiply the density by the

surface area of each grid cell and sum results to obtain a total

soil carbon content of ∼ 1170 Pg C. Following Todd-Brown

et al. (2013), a confidence interval of 29 % below the mean

(i.e. ∼ 830 Pg C) to 32 % above the mean (i.e. ∼ 1550 Pg C)

was considered to take variations in soil carbon content and

the mapping processes into account. The range we obtain is

slightly smaller than reported by Todd-Brown et al. (2013)

(890–1660 Pg C) because we use an updated version of the

HWSD and did not replace bulk density values for Andisols

and Histosols.

3 Results

We first compare total SOC for pre-industrial (1861–1870),

modern (1996–2005) and future (2091–2100) periods. Fig-

ure 1 compares the total SOC range in CMIP5 models for

1861–1870 (563–2938 Pg C), 1996–2005 (576–3047 Pg C),

and 2091–2100 (582–3266 Pg C, derived using the RCP 8.5

scenario). All three periods show very similar distributions of

SOC among the models and the present day and future ranges

already exist at the beginning of the historical simulations.

Figure 1 highlights that the size of SOC pools of individual

CMIP5 models remains largely consistent over the three time

periods. Indeed, pre-industrial SOC predicts modern SOC,

modern SOC predicts future SOC and pre-industrial SOC

predicts future stocks with a high degree of precision (Fig. 1).

Also represented in Fig. 1 is the 95 % confidence interval

of total SOC estimated from HWSD that we use as a ref-

erence for modern total SOC (i.e. in 1996–2005). We note

that only three models fall within this range: BCC-CSM1.1

(model A), CanESM2 (model B) and HadGEM2 (model F).

Models based on the CLM4 land surface model (i.e. mod-

els C and J) underestimate modern SOC while all remain-

ing models overestimate it. Note that these models C and J

include nitrogen limitation of the vegetation response to in-

creasing CO2.

We next investigate the likely reasons for the existence of

this pre-industrial CMIP5 range in total SOC. The first obvi-

ous step is to check whether models are at equilibrium prior

to climate change experiments. Models may not agree on to-

tal SOC simply because some of them, and especially those

at the extremes of the CMIP5 spectrum, are still drifting to-

wards their own steady-state and therefore do not comply

with our experiment protocol. In Fig. 2 we show the relation-

ship between pre-industrial SOCin and Rh. This relationship

is highly significant (R2
= 1; p < 0.001) and strongly sug-

gests that all models were equilibrated under pre-industrial

boundary conditions. This removes the possibility that mod-

els were not in equilibrium and means that the 6-fold CMIP5

range is likely linked with the internal terrestrial processes

represented in these models.

Two major internal terrestrial processes are involved:

SOCin, the amount of SOC that enters the soil pools, and

the turnover time of organic matter that corresponds to

the amount of SOC that is released from soil pools. The

Geosci. Model Dev., 7, 2683–2692, 2014 www.geosci-model-dev.net/7/2683/2014/
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Table 3. Model specific values of SOCin, Rh and SOC used in Figs. 1 to 4. Values are averaged over the indicated years. All data are rounded

to whole numbers. Values for 2091–2100 are from the Representative Concentration Pathway 8.5 (RCP 8.5) simulations.

SOCin [Pg C yr−1] Rh [Pg C yr−1] Total soil carbon [Pg C]

Model 1861–1870 1996–2005 2091–2100 1861–1870 1996–2005 2091–2100 1861–1870 1996–2005 2091–2100

A 75 87 – 75 86 – 1273 1351 –

B 57 64 84 56 65 85 1511 1541 1490

C 46 49 56 46 49 57 563 576 582

D 79 85 119 79 86 120 1798 1781 1785

E 45 55 58 45 55 61 2113 2306 2118

F 67 86 140 67 84 137 1178 1287 1596

G 76 87 123 76 87 123 1598 1626 1709

H 57 59 71 56 55 74 2515 2566 2494

I 66 75 100 66 74 99 2938 3047 3266

J 52 55 61 52 55 62 650 666 654

relationship between SOCin and total SOC during the pre-

industrial period is shown in Fig. 3. Overall, the relationship

is not significant (R2
= 0.04; p= 0.604). Further, the mod-

els that equilibrate with the largest total SOC stock (mod-

els E, H, I) are not the models with the largest SOC input.

Similarly, the small equilibrated SOC pool size of models C

and J seems unrelated to SOCin despite these models includ-

ing N limitations on plant productivity and SOCin. In short,

the amount of SOCin cannot explain the size of the equili-

brated pools. In Fig. 4, we therefore present the relationship

between the pre-industrial SOC turnover time (i.e. the in-

verse of the decay rate expressed as SOC/Rh) and total SOC.

This relationship is highly significant (p < 0.001) and linear

(R2
= 0.84) and models with a longer turnover time, i.e. a

low decay rate, require larger pools to offset the same SOC

input, and vice versa. Further, turnover times are not affected

by the number of SOC pools represented. Models with the

longest turnover time have alternatively nine (model E) or

two pools (models H and I), while models with the shortest

turnover time have eight (model A), six (models C and J) or

four pools (model F).

4 Discussion

Despite the change imposed on boundary conditions during

global warming experiments (Anav et al., 2013; Friedling-

stein et al., 2014), CMIP5 present day and projected SOC

stocks are largely determined by their equilibrated pool size

(Fig. 1) in 1860. This was not unexpected due to the slow

response of SOC pools but it clearly shows that modern and

future stocks are mostly defined by the equilibrated pool size

while changes can be explained by a combination of changes

in the input and output fluxes (see Todd-Brown et al., 2014,

for a detailed account of these mechanisms). Further, as SOC

in 1860 is unknown from observations, CMIP5 models use a

spin-up procedure from an initial state assuming steady pre-

industrial boundary conditions (Xia et al., 2012) to obtain an

equilibrated state for pre-industrial SOC. In order to reach

equilibrium, iterative or semi-analytical methods (e.g. Xia et

al., 2012) are employed to reach the pool sizes required to

balance input (SOCin) and output fluxes (Rh). Steady-state

is assumed when the trend in 1SOC becomes negligible.

Hence, it is not the actual value of SOC that defines the equi-

librium but its lack of variation in time (Xia et al., 2013;

Exbrayat et al., 2013b). It is worrisome that these procedures

are not clearly documented and therefore how a model is

evolved from its true “initial state” to its “equilibrated state”

is not known.

However, we have verified that all CMIP5 models were

close to equilibrium prior to the initiation of climate change

experiments. Following Eqs. (1) and (2), the model-specific

value of SOC obtained by a model via spin-up depends on

two factors. First, if SOCin is large, a larger SOC pool is re-

quired to offset it through microbial decomposition and Rh,

for a given decay rate, k× fT × fW . Conversely, low val-

ues of SOCin lead SOC pools to equilibrate to lower val-

ues for a particular decay rate. Second, if the decay rate is

high (short turnover time) during spin-up, SOC pools will re-

main small, for a given SOCin. Conversely, low decay rates,

or long turnover time, will require large pools of substrate

to offset the same input SOCin. Both factors are model-

specific: SOCin is derived from plant primary productivity

fluxes (Davidson and Janssens, 2006) while the baseline de-

composition rate k and the shape of the response functions

fT and fW are highly model-dependent (Falloon et al., 2011;

Exbrayat et al., 2013a, b; Todd-Brown et al., 2013).

Here we have shown that the large range exhibited by

CMIP5 SOC is principally due to the response of microbial

decomposition during the spin-up process. This is a long pro-

cess that corresponds to multiple centuries of steady climate

conditions but as noted is not reported as part of CMIP5 and

might represent a short period if the “initial state“ is already

well equilibrated or may represent many centuries if not.

Throughout this period, however, for each CMIP5 model,

model-specific parameter k and environmentalresponse func-

tions fT and fW drive SOC pools to the size required by the

www.geosci-model-dev.net/7/2683/2014/ Geosci. Model Dev., 7, 2683–2692, 2014
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Figure 1. Relationship between total SOC in CMIP5 models at two

different times: modern stocks as a function of pre-industrial stocks

(upper panel), future stocks as a function of modern stocks (mid-

dle panel) and future stocks as a function of pre-industrial stocks

(lower panel). Letters correspond to models as in Table 1 and mod-

els in green (i.e. C and J) integrate nitrogen limitation. The grey area

is the 95 % confidence interval of modern total SOC derived from

the HWSD. Equation, R2 and p values correspond to the linear re-

lationship between stocks built using data from all models (solid

line). The dotted line is the 1 : 1 line.
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Figure 2. Relationship between pre-industrial global SOC input and

pre-industrial Rh. Letters are the same as in Table 1 and models

in green (i.e. C and J) integrate nitrogen limitation. The solid line

is a linear relationship constructed using all models with equation,

R2 and p values indicated in the top left corner. The dotted line

represents the 1 : 1 relationship.

turnover time they simulate to compensate for SOCin. This

observation corroborates the predominance of turnover time

in the uncertainty of ecosystem response to climate change

(Friend et al., 2014) and Fig. 4 shows that it is independent

of the number of pools considered in each model. The re-

sulting equilibrated state obtained prior to the initiation of

CMIP5 transient simulations propagates through the present

and into the future even when one is using RCP 8.5.

Our results raise a critical problem linked to model initial-

ization and then equilibration by spin-up. According to our

analysis of the CMIP5 models, a simple solution to reduce

the uncertainty in simulated SOC stocks would be to modify

model parameters, especially those related to SOC turnover,

to obtain a steady-state consistent from model to model with

SOC values representative of pre-industrial conditions. Al-

ternatively, because of the millennial timescales of soil gen-

esis, as well as land use changes, steady-state of global SOC

stocks is not guaranteed to have existed at the end of the pre-

industrial era. Therefore, one could choose to consider only

model parameters that achieve modern stocks in accordance

with observations in response to past changes (e.g. Exbrayat

et al., 2014). However, this would require multiple realiza-

tions of computationally expensive models, or the use of em-

ulators. Furthermore, it would be necessary to represent site

history, and especially disturbances, with a high degree of

confidence during simulations to avoid over-fitting parame-

ters and this may not be realistic at global scale. Therefore,

assuming an equilibrated pre-industrial state is a more readily

available option that is supported by the lack of variations in

simulated SOC during historical experiments despite chang-

ing boundary conditions.
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Figure 3. Relationship between pre-industrial SOC input and pre-

industrial total SOC stocks at the beginning of the historical experi-

ment. Letters correspond to the same models as in Table 1 and mod-

els in green (i.e. C and J) integrate nitrogen limitation. The solid line

is a linear relationship constructed using all models with equation,

R2 and p values indicated in the top left corner.

Thus, we suggest that one could use available estimates

and confidence interval of modern SOC stocks to constrain

the pre-industrial equilibrated state. These estimates include

global data sets such as HWSD and other (Shangguan et

al., 2014) but also regional data that may better repre-

sent high latitude stocks and permafrost (e.g. Northern Cir-

cumpolar Soil Carbon Database; Hugelius et al., 2013). Of

course, while changing parameter values corresponding to

SOC turnover time is relatively straightforward, it would be

important to ensure that these pools are sustained by an in-

put representative of carbon uptake. At equilibrium SOCin

equals net primary productivity (NPP) because plant pools

do not vary in size. Here all models predict SOCin within two

standard deviations of the uncertainty range of modern, high

confidence, NPP estimates (56.4± 8–9 Pg C yr−1; Ito, 2011).

Although not directly comparable with pre-industrial values,

this global estimate indicates that models simulate acceptable

values of global carbon uptake.

As decomposition processes are represented following

first-order kinetics, simulating more realistic SOC stocks

from an initial condition, and through spin-up to an equi-

librated state in response to adequate uptake fluxes would

likely lead models to represent more correct modern stocks.

Nevertheless, as each model relies on its own formulation

of the response functions fT and fW , the ensemble would

still exhibit different sensitivities of SOC stocks to climate

change. However, by removing a degree of freedom associ-

ated with spin-up procedures, we believe that these observa-

tional data sets are a valuable tool for increasing the consis-

tency between models and making them more comparable. It

would improve the confidence we can have in projections of

SOC fluxes and feedbacks on future climate change.
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Figure 4. Relationship between pre-industrial global SOC turnover

time and total SOC. Letters correspond to the same models as in Ta-

ble 1 and models in green (i.e. C and J) integrate nitrogen limitation.

The solid line is a linear relationship constructed using all models

with equation, R2 and p values indicated in the top left corner.

5 Conclusions

We have demonstrated that the 6-fold range in SOC stocks

simulated by CMIP5 models can be explained by the model-

specific response of microbial decomposition to spin-up un-

der pre-industrial conditions. Model-dependent parameter

and response functions drive the size of the pools to the

amount required by decay rates to offset SOCin under the

steady-state assumption. Once established, the resulting pool

sizes remain similar through to the present and into the fu-

ture even under the high-emission RCP8.5 scenario that gen-

erates future conditions the least similar to current ones. We

therefore identify the spin-up procedure, and especially the

response of microbial decomposition during this very long

model integration, as a key source of uncertainty in the simu-

lation of SOC in CMIP5 models. Critically, this involves the

interaction of a technical and a process-linked uncertainty

in CMIP5 models’ experimental framework. The technical

methods used for spin-up are model specific and not com-

monly reported. Interlinked with the technical uncertainty is

the parameterization of processes within the spin-up period.

A model that equilibrates to a soil carbon store well out-

side the observed range should be examined with care. A

very large amount of stored carbon increases the potential

for the land surface to become a source as even a tiny rela-

tive change in decay rate can strongly enhance Rh and possi-

bly reach a tipping point where it offsets increases in SOCin.

Conversely, a very small SOC store increases the likelihood

that it will remain a sink. Such results are likely to be arte-

facts of model implementation when SOC values are largely

inconsistent with observed ranges.

In conclusion, we recommend that future intercompar-

isons should constrain model parameters so that each model

achieves an equilibrated state similar to observations as the
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outcome of the spin-up procedure. This would remove a de-

gree of freedom associated with the process linking initial-

ization to equilibration via a poorly constrained spin-up pro-

cedure when comparing differences in projected changes.

Acknowledgements. This work was supported by the Australian

Research Council through grants DP110102618 and CE110001028.

We thank P. Petrelli for the availability of CMIP5 data and

the National Computational Infrastructure for data hosting and

computational resources to process these model data. We thank

K. Todd-Brown for guidance in processing the HWSD database and

Y. Zhang for information about the BCC-CSM1.1 model.

We acknowledge the World Climate Research Programme’s

Working Group on Coupled Modelling, which is responsible for

CMIP, and we thank the climate modelling groups (listed in Table 1

of this paper) for producing and making available their model

output. For CMIP the US Department of Energy’s Program for Cli-

mate Model Diagnosis and Intercomparison provides coordinating

support and led development of software infrastructure in partner-

ship with the Global Organization for Earth System Science Portals.

Edited by: C. Sierra

References

Ahlström, A., Smith, B., Lindström, J., Rummukainen, M., and

Uvo, C. B.: GCM characteristics explain the majority of uncer-

tainty in projected 21st century terrestrial ecosystem carbon bal-

ance, Biogeosciences, 10, 1517–1528, doi:10.5194/bg-10-1517-

2013, 2013.

Allison, S. D., Wallenstein, M. D., and Bradford, M. A.: Soil-carbon

response to warming dependent on microbial physiology, Nat.

Geosci., 3, 336–340, doi:10.1038/ngeo846, 2010.

Anav, A., Friedlingstein, P., Kidston, M., Bopp, L., Ciais, P., Cox,

P., Jones, C., Jung, M., Myneni, R., and Zhu, Z.: Evaluating

the Land and Ocean Components of the Global Carbon Cycle

in the CMIP5 Earth System Models, J. Clim., 26, 6801–6843,

doi:10.1175/JCLI-D-12-00417.1, 2013.

Arora, V. K. and Boer, G. J.: Uncertainties in the 20th century car-

bon budget associated with land use change, Glob. Chang. Biol.,

16, 3327–3348, doi:10.1111/j.1365-2486.2010.02202.x, 2010.

Bentsen, M., Bethke, I., Debernard, J. B., Iversen, T., Kirkevåg,

A., Seland, Ø., Drange, H., Roelandt, C., Seierstad, I. A.,

Hoose, C., and Kristjánsson, J. E.: The Norwegian Earth Sys-

tem Model, NorESM1-M – Part 1: Description and basic evalu-

ation of the physical climate, Geosci. Model Dev., 6, 687–720,

doi:10.5194/gmd-6-687-2013, 2013.

Bishop, C. H. and Abramowitz, G.: Climate model dependence

and the replicate Earth paradigm, Clim. Dynam., 41, 885–900,

doi:10.1007/s00382-012-1610-y, 2012.

Canadell, J. G., Le Quéré, C., Raupach, M. R., Field, C. B., Buiten-

huis, E. T., Ciais, P., Conway, T. J., Gillett, N. P., Houghton,

R. A., and Marland, G.: Contributions to accelerating atmo-

spheric CO2 growth from economic activity, carbon intensity,

and efficiency of natural sinks, P. Natl. Acad. Sci. USA, 104,

18866–18870, doi:10.1073/pnas.0702737104, 2007.

Chylek, P., Li, J., Dubey, M. K., Wang, M., and Lesins, G.: Ob-

served and model simulated 20th century Arctic temperature

variability: Canadian Earth System Model CanESM2, Atmos.

Chem. Phys. Discuss., 11, 22893–22907, doi:10.5194/acpd-11-

22893-2011, 2011.

Clark, D. B., Mercado, L. M., Sitch, S., Jones, C. D., Gedney, N.,

Best, M. J., Pryor, M., Rooney, G. G., Essery, R. L. H., Blyth, E.,

Boucher, O., Harding, R. J., Huntingford, C., and Cox, P. M.: The

Joint UK Land Environment Simulator (JULES), model descrip-

tion – Part 2: Carbon fluxes and vegetation dynamics, Geosci.

Model Dev., 4, 701–722, doi:10.5194/gmd-4-701-2011, 2011.

Collins, W. J., Bellouin, N., Doutriaux-Boucher, M., Gedney, N.,

Halloran, P., Hinton, T., Hughes, J., Jones, C. D., Joshi, M., Lid-

dicoat, S., Martin, G., O’Connor, F., Rae, J., Senior, C., Sitch,

S., Totterdell, I., Wiltshire, A., and Woodward, S.: Develop-

ment and evaluation of an Earth-System model – HadGEM2,

Geosci. Model Dev., 4, 1051–1075, doi:10.5194/gmd-4-1051-

2011, 2011.

Cox, P. M.: Description of the TRIFFID dynamic global vegetation

model, Met Office Hadley Centre Tech. Note, 24, 17 pp., 2001.

Davidson, E. A. and Janssens, I. A.: Temperature sensitivity of soil

carbon decomposition and feedbacks to climate change, Nature,

440, 165–173, doi:10.1038/nature04514, 2006.

Doney, S. C., Lindsay, K., Fung, I., and John, J.: Natural Variabil-

ity in a Stable, 1000-Yr Global Coupled Climate–Carbon Cycle

Simulation, J. Climate, 19, 3033–3054, doi:10.1175/JCLI3783.1,

2006.

Dufresne, J.-L., Foujols, M.-A., Denvil, S., Caubel, A., Marti, O.,

Aumont, O., Balkanski, Y., Bekki, S., Bellenger, H., Benshila,

R., Bony, S., Bopp, L., Braconnot, P., Brockmann, P., Cadule, P.,

Cheruy, F., Codron, F., Cozic, A., Cugnet, D., Noblet, N., Duvel,

J.-P., Ethé, C., Fairhead, L., Fichefet, T., Flavoni, S., Friedling-

stein, P., Grandpeix, J.-Y., Guez, L., Guilyardi, E., Hauglus-

taine, D., Hourdin, F., Idelkadi, A., Ghattas, J., Joussaume, S.,

Kageyama, M., Krinner, G., Labetoulle, S., Lahellec, A., Lefeb-

vre, M.-P., Lefevre, F., Levy, C., Li, Z. X., Lloyd, J., Lott, F.,

Madec, G., Mancip, M., Marchand, M., Masson, S., Meurdes-

oif, Y., Mignot, J., Musat, I., Parouty, S., Polcher, J., Rio, C.,

Schulz, M., Swingedouw, D., Szopa, S., Talandier, C., Terray,

P., Viovy, N., and Vuichard, N.: Climate change projections us-

ing the IPSL-CM5 Earth System Model: from CMIP3 to CMIP5,

Clim. Dynam., 40, 2123–2165, doi:10.1007/s00382-012-1636-1,

2013.

Dunne, J. P., John, J. G., Adcroft, A. J., Griffies, S. M., Hallberg,

R. W., Shevliakova, E., Stouffer, R. J., Cooke, W., Dunne, K. A.,

Harrison, M. J., Krasting, J. P., Malyshev, S. L., Milly, P. C. D.,

Phillipps, P. J., Sentman, L. T., Samuels, B. L., Spelman, M. J.,

Winton, M., Wittenberg, A. T., and Zadeh, N.: GFDL’s ESM2

Global Coupled Climate–Carbon Earth System Models. Part I:

Physical Formulation and Baseline Simulation Characteristics, J.

Climate, 25, 6646–6665, doi:10.1175/JCLI-D-11-00560.1, 2012.

Exbrayat, J.-F., Pitman, A. J., Abramowitz, G., and Wang, Y.-P.:

Sensitivity of net ecosystem exchange and heterotrophic respi-

ration to parameterization uncertainty, J. Geophys. Res.-Atmos.,

118, 1640–1651, doi:10.1029/2012JD018122, 2013a.

Exbrayat, J.-F., Pitman, A. J., Zhang, Q., Abramowitz, G.,

and Wang, Y.-P.: Examining soil carbon uncertainty in a

global model: response of microbial decomposition to tem-

perature, moisture and nutrient limitation, Biogeosciences, 10,

7095–7108, doi:10.5194/bg-10-7095-2013, 2013b.

Geosci. Model Dev., 7, 2683–2692, 2014 www.geosci-model-dev.net/7/2683/2014/

http://dx.doi.org/10.5194/bg-10-1517-2013
http://dx.doi.org/10.5194/bg-10-1517-2013
http://dx.doi.org/10.1038/ngeo846
http://dx.doi.org/10.1175/JCLI-D-12-00417.1
http://dx.doi.org/10.1111/j.1365-2486.2010.02202.x
http://dx.doi.org/10.5194/gmd-6-687-2013
http://dx.doi.org/10.1007/s00382-012-1610-y
http://dx.doi.org/10.1073/pnas.0702737104
http://dx.doi.org/10.5194/acpd-11-22893-2011
http://dx.doi.org/10.5194/acpd-11-22893-2011
http://dx.doi.org/10.5194/gmd-4-701-2011
http://dx.doi.org/10.5194/gmd-4-1051-2011
http://dx.doi.org/10.5194/gmd-4-1051-2011
http://dx.doi.org/10.1038/nature04514
http://dx.doi.org/10.1175/JCLI3783.1
http://dx.doi.org/10.1007/s00382-012-1636-1
http://dx.doi.org/10.1175/JCLI-D-11-00560.1
http://dx.doi.org/10.1029/2012JD018122
http://dx.doi.org/10.5194/bg-10-7095-2013


J.-F. Exbrayat et al.: Spin-up and CMIP5 soil carbon range 2691

Exbrayat, J.-F., Pitman, A. J., and Abramowitz, G.: Disentangling

residence time and temperature sensitivity of microbial decom-

position in a global soil carbon model, Biogeosciences Discuss.,

11, 4995–5021, doi:10.5194/bgd-11-4995-2014, 2014.

Falloon, P., Jones, C. D., Ades, M., and Paul, K.: Direct soil mois-

ture controls of future global soil carbon changes: An impor-

tant source of uncertainty, Global Biogeochem. Cy., 25, GB3010,

doi:10.1029/2010GB003938, 2011.

FAO/IIASA/ISRIC/ISSCAS/JRC: Harmonized World Soil

Database (version 1.21). FAO, Rome, Italy and IIASA,

Laxenburg, Austria, 2012.

Foley, J. A.: An equilibrium model of the terrestrial carbon budget,

Tellus B, 47, 310–319, doi:10.1034/j.1600-0889.47.issue3.3.x,

1995.

Friedlingstein, P., Meinshausen, M., Arora, V. K., Jones, C. D.,

Anav, A., Liddicoat, S. K., and Knutti, R.: Uncertainties in

CMIP5 Climate Projections due to Carbon Cycle Feedbacks, J.

Climate, 27, 511–526, doi:10.1175/JCLI-D-12-00579.1, 2014.

Friend, A. D., Lucht, W., Rademacher, T. T., Keribin, R., Betts,

R., Cadule, P., Ciais, P., Clark, D. B., Dankers, R., Falloon, P.

D., Ito, A., Kahana, R., Kleidon, A., Lomas, M. R., Nishina, K.,

Ostberg, S., Pavlick, S., Peylin, P., Schaphoff, S., Vuichard, N.,

Warszawski, L., Wiltshire, A., and Woodward, F. I.: Carbon res-

idence time dominates uncertainty in terrestrial vegetation 508

responses to future climate and atmospheric CO2, P. Natl. Acad.

Sci., 111, 3280–3285, doi:10.1073/pnas.1222477110, 2014.

Gent, P. R., Danabasoglu, G., Donner, L. J., Holland, M. M., Hunke,

E. C., Jayne, S. R., Lawrence, D. M., Neale, R. B., Rasch, P. J.,

Vertenstein, M., Worley, P. H., Yang, Z.-L., and Zhang, M.: The

Community Climate System Model Version 4, J. Climate, 24,

4973–4991, doi:10.1175/2011JCLI4083.1, 2011.

Giorgetta, M. A., Jungclaus, J., Reick, C. H., Legutke, S., Bader,

J., Böttinger, M., Brovkin, V., Crueger, T., Esch, M., Fieg, K.,

Glushak, K., Gayler, V., Haak, H., Hollweg, H.-D., Ilyina, T.,

Kinne, S., Kornblueh, L., Matei, D., Mauritsen, T., Mikolajew-

icz, U., Mueller, W., Notz, D., Pithan, F., Raddatz, T., Rast, S.,

Redler, R., Roeckner, E., Schmidt, H., Schnur, R., Segschnei-

der, J., Six, K. D., Stockhause, M., Timmreck, C., Wegner, J.,

Widmann, H., Wieners, K.-H., Claussen, M., Marotzke, J., and

Stevens, B.: Climate and carbon cycle changes from 1850 to

2100 in MPI-ESM simulations for the Coupled Model Intercom-

parison Project phase 5, J. Adv. Model. Earth Syst., 5, 572–597,

doi:10.1002/jame.20038, 2013.

Hugelius, G., Tarnocai, C., Broll, G., Canadell, J. G., Kuhry, P.,

and Swanson, D. K.: The Northern Circumpolar Soil Carbon

Database: spatially distributed datasets of soil coverage and soil

carbon storage in the northern permafrost regions, Earth Syst.

Sci. Data, 5, 3–13, doi:10.5194/essd-5-3-2013, 2013.

Ito, A.: A historical meta-analysis of global terrestrial net primary

productivity: are estimates converging?, Glob. Change Biol., 17,

3161–3175, doi:10.1111/j.1365-2486.2011.02450.x, 2011.

Jenkinson, D. S.: The turnover of organic-carbon and nitrogen in

soil, Philos. T. Roy. Soc. London, 329, 361–368, 1990.

Ji, J., Huang, M., and Li, K.: Prediction of carbon exchanges be-

tween China terrestrial ecosystem and atmosphere in 21st cen-

tury, Sci. China Ser. D, 51, 885–898, doi:10.1007/s11430-008-

0039-y, 2008.

Jobbágy, E. G. and Jackson, R. B.: The vertical distribu-

tion of soil organic carbon and its relation to climate

and vegetation, Ecol. Appl., 10, 423–436, doi:10.1890/1051-

0761(2000)010[0423:TVDOSO]2.0.CO;2, 2000.

Kirschbaum, M. U. F.: Soil respiration under prolonged soil warm-

ing: are rate reductions caused by acclimation or substrate

loss?, Glob. Chang. Biol., 10, 1870–1877, doi:10.1111/j.1365-

2486.2004.00852.x, 2004.

Knorr, W.: Annual and interannual CO2 exchanges of the ter-

restrial biosphere: process-based simulations and uncertain-

ties, Glob. Ecol. Biogeogr., 9, 225–252, doi:10.1046/j.1365-

2699.2000.00159.x, 2000.

Knorr, W., Prentice, I. C., House, J. I., and Holland, E. A.: Long-

term sensitivity of soil carbon turnover to warming, Nature, 433,

298–301, doi:10.1038/nature03226, 2005.
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