

Edinburgh Research Explorer

Verifying Hybrid Systems Involving Transcendental Functions

Citation for published version:
Jackson, P, Sogokon, A, Bridge, J & Paulson, L 2014, Verifying Hybrid Systems Involving Transcendental
Functions. in J Badger & K Rozier (eds), NASA Formal Methods: 6th International Symposium, NFM 2014,
Proceedings. Lecture Notes in Computer Science, vol. 8430, Springer-Verlag GmbH, pp. 188-202. DOI:
10.1007/978-3-319-06200-6_14

Digital Object Identifier (DOI):
10.1007/978-3-319-06200-6_14

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
NASA Formal Methods

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 05. Apr. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/43710037?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1007/978-3-319-06200-6_14
https://www.research.ed.ac.uk/portal/en/publications/verifying-hybrid-systems-involving-transcendental-functions(167c4b65-4c02-4756-bd39-5bec10767cfa).html

Verifying Hybrid Systems
Involving Transcendental Functions

Paul Jackson1, Andrew Sogokon1, James Bridge2, and Lawrence Paulson2

1 School of Informatics, University of Edinburgh, UK
pbj@inf.ed.ac.uk, a.sogokon@sms.ed.ac.uk

2 Computer Laboratory, University of Cambridge, UK
jpb65@cam.ac.uk, lp15@cam.ac.uk

Abstract. We explore uses of a link we have constructed between the
KeYmaera hybrid systems theorem prover and the MetiTarski proof en-
gine for problems involving special functions such as sin, cos, exp, etc.
Transcendental functions arise in the specification of hybrid systems and
often occur in the solutions of the differential equations that govern how
the states of hybrid systems evolve over time. To date, formulas ex-
changed between KeYmaera and external tools have involved polynomi-
als over the reals, but not transcendental functions, chiefly because of
the lack of tools capable of proving such goals.

1 Introduction

KeYmaera is an interactive prover which makes use of external tools such as com-
puter algebra systems for simplification, solving differential equations and prov-
ing quantified formulas involving real arithmetic. MetiTarski is a prover specifi-
cally tailored for reasoning with transcendental functions. It eliminates transcen-
dental functions from inequalities by applying polynomial and continued-fraction
bounds and employs external provers to discharge goals involving these approx-
imations. In this section we will give an overview of the context which motivates
the integration of these two systems.

1.1 Hybrid Systems

Hybrid systems generalise both transition systems and continuous dynamical
systems. The state of a hybrid system has both discrete- and continuous-valued
components. Together, the values of the discrete components specify the mode of
the system. Within each mode the evolution of the state is governed by differen-
tial equations. Transitions between between modes usually have guards describ-
ing when they are enabled and specify how the continuous components might
jump in value when the transitions are taken. Figure 1 shows an example hybrid
system, described using the hybrid automaton formalism.

Hybrid systems are very useful for creating models of cyber-physical systems,
systems which involve computers or some kind of discrete control logic interact-
ing with a physical environment [7]. Cyber-physical systems are found in many

2

x

y

Fig. 1. Switched damped oscillator (left) and a possible phase portrait (right).

industrial sectors, including transport, energy and health-care automation. They
are frequently safety-critical, so there is much interest in improved verification
techniques for them.

1.2 Formal Verification of Hybrid Systems

In the past two decades a variety of techniques have been explored for the for-
mal verification of hybrid systems. Many have involved a bounded approach
where one computes an over-approximation of the state space reachable after
some number of interleaved time evolutions within modes and jumps between
modes [8, 5, 15, 6]. The primary verification goal has been to show that no un-
safe states are reached. Depending on the hybrid system considered, the chosen
bound and the approximation methods, the state space exploration might reach
a fixed-point, in which case verification of safety is sound. Otherwise, there’s
the possibility that there is an unsafe reachable state which has not yet been
explored.

Since the early work there has been much improvement in the methods for
representing and computing the over-approximations of the reachable state sets.
Often these approaches have placed restrictions on the form of the differen-
tial constraints in modes and the jumps, requiring them to be linear or to be
bounded by constants, for example. In these cases, systems with more general
non-linear differential equations, perhaps involving transcendental functions, can
be approximated with piecewise linear equations.

With KeYmaera [13] a different approach is investigated.

1.3 KeYmaera

KeYmaera mechanises a deductive calculus for reasoning about hybrid systems.
The base calculus is differential dynamic logic (dL) [12]. It extends first-order
logic with modalities [α]φ and 〈α〉φ, where α is a hybrid program and φ is a dL
formula. Hybrid programs are described in a simple compositional language that
includes conditional statements, loops, discrete state updates, and continuous

3

state updates in which states evolve over a period of time according to differential
equations. The modality [α]φ asserts that φ holds after every run of α, the
modality 〈α〉φ asserts that φ holds after some run of α. The calculus augments
the first-order logic rules with rules for handling the modalities and decomposing
the structure of hybrid programs within the modalities.

The most common kinds of statements proved concern invariants of the sys-
tems. Proofs of such statements usually involve creation of inductive invariants
and differential invariants. A differential invariant is a property of the system
that can be established to hold over some interval of time by considering the
truth of a certain auxiliary property at each point in time in the interval. Differ-
ential invariants are related to the concept of Lyapunov functions, generalised
energy functions whose decrease in value over a state space region of interest is
used to argue for stability in the theory of dynamical systems. Previous work in
safety verification of hybrid systems introduced barrier certificates [14] which im-
pose Lyapunov-like conditions on the time derivative of differentiable functions
in order to prove safety properties. Differential invariants in turn generalise bar-
rier certificates to formulas with boolean connectives [12] and thus allow one to
work with a much larger class of invariants.

Proofs in KeYmaera can be guided interactively or can be automated us-
ing tableau-based strategies. KeYmaera includes heuristics for guessing simpler
forms of inductive and differential invariants. The KeYmaera logic implements
directly very little reasoning concerning expressions of real arithmetic and con-
straints on the derivatives of the real-valued state components. Instead, use is
made of procedures in external tools such as the Mathematica computer alge-
bra system and QEPCAD-B [2] for simplification of real expressions, solution of
differential equations and proving goals involving real arithmetic.

To date the interface to these external tools has limited the expression lan-
guage to real-valued polynomials, and has not permitted the use of transcen-
dental functions such as sine, cosine, logarithm and exponentiation. This was
primarily because there had been no effective techniques for proving goals that
involved inequalities over expressions including transcendental functions. Such
goals can arise in several ways. For example, transcendental functions can be
used in the descriptions of hybrid systems. They are also commonly found in the
solutions of linear differential equations. And there are examples of Lyapunov
functions in the dynamical systems literature where transcendental functions are
required.

The deductive approach taken in KeYmaera is harder to apply than the
bounded automated approaches described in Section 1.2, as interaction and
human-directed creative steps are needed. Its advantages include the possibility
of proving richer properties, the lack of a restriction of analyses to some bound,
and often better capabilities for exploring parameterised systems.

1.4 MetiTarski and Goals of Work

For several years, Paulson and others have been developing MetiTarski, an au-
tomatic proof engine specifically tailored for proving goals involving inequalities

4

over transcendental functions [11, 10]. In the work reported here we are inter-
ested in exploring how MetiTarski could support reasoning about hybrid systems
in KeYmaera. We are also hoping that transcendental problems generated from
the hybrid systems domain can help steer the future development of MetiTarski.

Previously MetiTarski has been used for the verification of analog circuits,
modeled as dynamical systems or hybrid systems [4]. The computer algebra sys-
tem Maple was used to analyse continuous behaviours of the systems, to solve
linearisations of the differential equations describing their time evolution, for ex-
ample. A systematic partly-manual process was then used to set up the relevant
goals for MetiTarski to solve. In the work reported here, KeYmaera provides a
significantly richer, more automated framework for the top-level reasoning about
hybrid systems and the coordination of external reasoning services.

The core of MetiTarski is a first-order resolution theorem prover Metis and
a database of axioms specifying polynomial and rational function bounds on
transcendental functions. Weights that guide the resolution are tailored so as to
employ the axioms to reduce problems involving inequalities over transcendental
functions to problems involving inequalities over real polynomial expressions.
MetiTarski augments the resolution calculus with extra rules for handling real
polynomial expressions. These rules make use of external tools for proving goals
involving polynomial expressions, for example the Z3 SMT solver [9], QEPCAD-
B [2], and the quantifier-elimination procedure provided by the Mathematica
computer algebra system.

2 KeYmaera-MetiTarski interface

KeYmaera implements a plugin architecture (shown in Figure 2) in which the
user may choose a backend tool to perform particular tasks, such as solving dif-
ferential equations, simplifying arithmetic expressions and performing quantifier
elimination.

The primary purpose of quantifier elimination is to prove goals involving
quantified arithmetic expressions by reducing them to “true”. In KeYmaera, it
is sometimes also useful to have quantifier elimination produce quantifier-free
expressions involving variables that are free in the goals, as these quantifier-free
expressions can suggest missing assumptions.

In our work we have added MetiTarski as a new quantifier elimination back-
end tool, handling the common case of when quantifier-elimination is expected
to return “true”. The link is implemented in Scala and Java and uses a file-level
interface in which first-order goals from KeYmaera are translated into Meti-
Tarski’s input format (a variation on the TPTP format that allows infix nota-
tion) and stored in temporary files. These files are passed as arguments to the
MetiTarski binary along with command-line options which the KeYmaera user
selects in KeYmaera’s GUI. This link from KeYmaera to MetiTarski is now part
of standard KeYmaera releases.

The diagram in Figure 2 labels with ∀ the interfaces where KeYmaera goals
are universally closed and the quantifier-elimination procedure is only ever ex-

5

Fig. 2. KeYmaera plugin architecture

pected to return “true” when it succeeds. Label p is used for interfaces that
handle purely polynomial problems, problems without special functions.

MetiTarski itself relies on decision procedures for real arithmetic and is able
to call QEPCAD-B, Z3 and Mathematica to access this functionality. KeYmaera
users may select the appropriate tool for MetiTarski by setting the pertinent
option in KeYmaera. The problems sent to these external tools are purely poly-
nomial, as shown in Figure 2.

In Figure 2, Mathematica is shown to provide more functionality than any
of the other tools. In particular, it is able solve systems of differential equations.
The user has to trust these solutions, but in certain cases this may introduce
unsoundness.

The simplifier offered by Mathematica is very powerful and it may often be
necessary to simplify complicated expressions before any further progress can be
made on a problem using either Mathematica itself or MetiTarski. Once more,
one needs to be aware of the potential soundness issues in performing this step.

While MetiTarski may use Mathematica’s decision procedure for real closed
fields (RCF), which it trusts to be sound, it will not make use of other potentially
unsound computer algebra functionality, such as the simplifier.

3 Examples of how transcendental functions arise

We review here three ways in which transcendental functions can arise during
formal verification of continuous and hybrid systems.

3.1 Systems with closed form solutions

Some systems admit closed-form solutions to the initial value problem; how-
ever, these tend to be much more complicated than the differential equations
themselves and will often involve special functions.

6

KeYmaera offers inference rules which allow reasoning about safety and live-
ness properties by considering closed form solutions when they exist. Using this
facility tends to generate first-order goals involving transcendental functions,
which are delegated to an external solver.

We consider here a safety verification scenario where the solution is available
in closed form and the safety property is ensuring boundedness of oscillation.
The motion of a damped oscillator, such as that shown in Figure 3, can be

Fig. 3. Damped oscillator

described by the linear second-order differential equation

ẍ+ 2dωẋ+ ω2x = 0,

where ω =
√

k
m is the frequency, d = c

2
√
km

is the damping factor and x is the

displacement from the point of equilibrium. We can convert this into a state
space model by setting x1 = ẋ and x2 = x. For a concrete example, let us choose
ω = 2 and d = 3

5 .

ẋ1 = −3

5
· 2 · 2 · x1 − 22 · x2,

ẋ2 = x1

1 2 3 4 5
t

0.2

0.4

0.6

0.8

1.0

x2

Fig. 4. x2-component of solutions with x2(0) = {1, 1
2
, 1
5
}, x1(0) = 0.

7

It is intuitively obvious that a damped oscillator will lose energy and even-
tually come to a halt, assuming there is no input. Consider proving that an
initial displacement x2 will never result in that displacement subsequently being
exceeded. We could phrase this property using differential dynamic logic as

t ≥ 0, x1 = 0, x2 ≤ b, x2 ≥ a ` [ẋ = f(x)] x2 ≤ b.

Here the box modality [] expresses the property that x2 ≤ b is necessarily
true after the system evolves according to the system of differential equations
ẋ = f(x) whenever it is initialised in a state satisfying the antecedent.

Consider the case where initial velocity is zero and the initial displacement
is in the interval [0, 1]. A formalisation of this problem in KeYmaera is shown
in Figure 5.

\programVariables{
R x1;
R x2;

}

\problem {
(x2 <=1 & x2 >=0 & x1=0) ->

\[{x1’ = -((3/5) *2*2* x1 + 2^2*x2), x2’ = x1 } \]
(x2 <=1)

}

Fig. 5. Proving boundedness of displacement of a damped oscillator using KeYmaera.

Computing the solution, this amounts to proving

t ≥ 0, x2 ≤ 1, x2 ≥ 0 ` 1

4
e−

6
5 tx2

(
4 cos(

8

5
t) + 3 sin(

8

5
t)

)
≤ 1.

This goal is difficult to prove, with Mathematica being unable to handle it
in reasonable time; MetiTarski can solve this in under a second.

3.2 Transcendental functions in system description

In the previous example, we proved a property of a system by proving a property
of the closed form solution to the differential equations governing evolution. It
is not uncommon to encounter systems in which transcendental functions are
used in the description of how system state continuously evolves. Transcenden-
tal functions can occur too in the description of the guards and state updates
associated with mode switches in hybrid systems. Sometimes the descriptions of
such systems can be transformed so as to eliminate the transcendental functions
and have descriptions purely involving polynomial functions. In general though
it is desirable to work directly with the transcendental functions.

It is rare that closed form solutions can be found for the continuous state
evolution of systems described using transcendental functions. Indeed, it is also

8

not possible to find closed form solutions for most systems described using non-
linear polynomials. To address these cases, a number of related methods have
been developed that allow the proof of properties of interest by referring directly
to the differential equations governing state evolution and not requiring solution
of the equations. These methods use such concepts as Lyapunov function, barrier
certificate and differential invariant (we refer the reader to the Appendix).

We give an example here of a simple dynamical system which involves tran-
scendental functions in its description and sketch how an invariance property
can be proven using differential invariants.

Fig. 6. Whirling pendulum

Consider a whirling pendulum (i.e. one which is itself suspended from a rod
of radius la, moving with an angular velocity ω). Its equations of motion are
given by the following non-polynomial system:

ẋ1 = x2,

ẋ2 = − kf
mb

x2 + ω2 sin(x1) cos(x1)− g

lp
sin(x1),

where the state x1 is the pendulum’s angle with the vertical and x2 is the
rate of change of this angle, kf is the friction coefficient, lp is the length of the
rigid arm, and mb is its mass (see [3] for a detailed description of the model). A
possible Lyapunov function for this system suggested by Chesi [3] is

V (x) = x2
1 + x1x2 + 4x2

2.

In KeYmaera we might formulate the property of time-evolution being con-
fined to sub-level sets for a in the range 0 . . . b for some constant b using the
sequent

0 ≤ a, a ≤ b, V (x) ≤ a ` [ẋ = f(x)] V (x) ≤ a .

This is most easily proved in KeYmaera by first rephrasing it as

0 ≤ a, V (x) ≤ a ` [ẋ = f(x) ∧ V (x) ≤ b] V (x) ≤ a .

9

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

x1

x
2

Fig. 7. Estimate to the domain of attraction V (x) ≤ 0.69 (dark shaded area) and
states where ∇V · f(x) < 0 (light shaded area).

\programVariables { R x1, x2, kf , mb , omega , g, lp , a; }

\problem {
kf = 0.2 & /* FRICTION */
mb = 1 & /* MASS OF RIGID ARM */
omega = 0.9 & /* ROTATING ANGULAR VELOCITY */
g = 10 & /* GRAVITY ACCELERATION */
lp = 10 & /* LENGTH OF RIGID ARM */

(x1^2 +x1*x2 +4*(x2^2)) <= a & a>=0 /* LYAPUNOV FUNCTION */ ->

\[{ x1’ = x2,
x2’ = -(kf/mb)*x2 + (omega ^2)*Sin(x1)*Cos(x1) - (g/lp)*Sin(x1) &
(x1^2 +x1*x2 +4*(x2^2)) <= 0.69929971

}
\] (x1^2 +x1*x2 +4*(x2^2)) <= a

}

Fig. 8. Lyapunov function V (x) = x2
1 +x1x2 +4x2

2 is non-increasing within the domain
of attraction V (x) ≤ 0.69929971.

10

Taking kf = 0.2, mb = 1, ω = 0.9, lp = 10, gravity g = 10 and b =
0.69929971, we can formalise this property in KeYmaera as shown in Figure 8.

The number 0.69929971 defines the bound on the sub-level set of V (x), which
is used as a conservative estimate to the domain of attraction of the whirling
pendulum.

Explicitly the subgoal we get in KeYmaera in applying the differential in-
duction rule is

kf = 0.2, mb = 1, ω = 0.9, g = 10, lp = 10, x2
1 + x1x2 + 4x2

2 ≤ a, a ≥ 0 `
∀x21, x11 ∈ R. x2

11 + x11x21 + 4x2
21 ≤ 0.69929971 =⇒

2x11x21 + x2
21

+ x11

(
− kf
mb

x21 −
g

lp
sin(x11) + ω2 cos(x11) sin(x11)

)
+ 8x21

(
− kf
mb

x21 −
g

lp
sin(x11) + ω2 cos(x11) sin(x11)

)
≤ 0.

MetiTarski solves this problem in under 10 minutes.

3.3 Non-polynomial invariant candidates

A further use case for the link between the two systems concerns the handling
of invariant candidates which are non-polynomial.

Unlike in the previous example, where transcendental functions were used
to define the dynamics of the system and the invariant candidate was polyno-
mial, one may instead have a polynomial vector field and an invariant candidate
featuring transcendental functions. An simple example is shown in Figure 9.

-4 -2 0 2 4

-4

-2

0

2

4

x

y

Fig. 9. Invariant sub-level sets of a non-polynomial Lyapunov function
V (x, y) = ln(1 + x2) + y2 [1].

11

Recently it has been shown that even for purely polynomial vector fields
that are globally asymptotically stable it may be impossible to find a Lypaunov
function which is of polynomial form [1].

Generally, allowing special functions in the description of invariant candidates
enlarges the class of invariant assertions amenable to verification (given the right
tools).

4 Performance and discussion

At present, MetiTarski and Mathematica are the only tools that are able to
handle problems involving special functions which appear in KeYmaera proofs.
Table 1 compares them on some of the problems featuring transcendental func-
tions which arose during proof attempts in KeYmaera. The table shows the
run-time in milliseconds of several tool configurations on the problems. Time
here is wall-clock time on an Intel i5-2520M CPU @ 2.50GHz. A ‘-’ character
indicates that no result was obtained after running for 10 minutes. There are
three columns for the MetiTarski results, each using a different external tool for
proving polynomial problems. The name of the external tool is shown in paren-
theses in each case. The right-hand column shows how Mathematica performs
when we pass it directly the problems with special functions.

Table 1. Problems involving transcendental functions in KeYmaera proofs.

Problem Functions MetiTarski Mathematica
(Z3) (QEPCAD-B) (Mathematica)

Damped oscillator exp, sin, cos 430 850 2,403 -
Whirling pendulum sin, cos 419,340 3,849 14,182 -

Domain of attraction exp, cos - 2,161 3,899 -
Drill string sin, cos 17,441 30,270 48,944 -

Local Lyapunov exp - - - -
Diffcut 1 exp 45 154 956 33
Diffcut 2 exp - - - 59

Heater Simple exp 144 376 1,427 68
Tunnel diode 1 exp - - - 84,171
Tunnel diode 2 exp 227 370 1,587 18,444

MetiTarski handles well the first three problems featuring inequalities over
trigonometric functions or a combination of trigonometric and exponential func-
tions, whereas Mathematica times out on all these. The goal for the first problem,
shown also earlier in Section 3.1, is

t ≥ 0 ∧ x2 ≤ 1 ∧ x2 ≥ 0 ` 1

4
e−

6
5 tx2

(
4 cos(

8

5
t) + 3 sin(

8

5
t)

)
≤ 1.

12

MetiTarski proves this by using the bounding properties

0 ≤ x ⇒ sin(x) ≤ x

cos(x) ≤ 1− x2

2 + x4

24

x ≤ 0 ⇒ ex ≤ 2304
(−x3+6x2−24x+48)2 .

MetiTarski’s performance on the problems involving just the exponential
function is more mixed. Consider the diffcut 2 goal:

x > 15, t ≥ 0 ` 25et + et/2(x− 40) > 0.

MetiTarski’s strategy of substituting polynomial or rational function bounds
for exponential function occurrences is not so appropriate here, as the goal’s
validity depends on the relationship between et and et/2 for all t ≥ 0. In general,
polynomial or rational function bounds are accurate and best used for special
function with bounded arguments, although we happened to have success with
them in the damped oscillator example above where t is also unbounded. For
diffcut 2, a simple solution strategy involves replacing et/2 with a new variable,
and we are considering introducing such substitutions if we observe a significant
number of further examples where they would useful.

The tunnel diode 1 and tunnel diode 2 goals are

t ≥ 0 ` −a1e
−k1t + a2e

−k2t − a3e
k3t ≤ 0,

t ≥ 0 ` −a1e
−k1t + a2e

−k2t + a4e
k3t ≥ 0

respectively, where a1, a2, a3, a4, k1, k2 and k3 are all positive constants. The
constants a3 and a4 are both significantly larger than a1 and a2, and so the
inequalities can be seen as obviously true from just basic bounding properties
of the exponential function. MetiTarski has problems with the tunnel diode 1
because the constants are not just rationals, but constant expressions involving
square roots. For example a1 is 1104311− 34469

√
254841. MetiTarski currently

works with such constants by breaking them down and using bounding lemmas
for the square root. MetiTarski has an interval constraint solver that can work
with bounded interval approximations for constants, and it would easily handle
such constants as above if we were to extend this facility to handle square roots.

The differences in MetiTarski’s performance with different real polynomial
arithmetic proof procedures appears primarily due to the differences in the pro-
cedures themselves and the interfaces to them. With virtually all the problems
considered, the proof found by MetiTarski does not vary with the proof proce-
dure selected. The lower performance of MetiTarski with Mathematica as the
proof procedure for real arithmetic is due in part to the performance overhead
incurred from contacting the Mathematica license server. KeYmaera keeps an
open TCP connection with Mathematica, whereas MetiTarski needs to establish
a new connection for each problem.

13

5 Conclusion

We have presented here some preliminary experiments with an interface between
the KeYmaera and MetiTarski tools. The results are encouraging and we are
now seeking more complex examples that bear a closer relationship to practical
hybrid systems verification problems and that produce interesting problems for
MetiTarski.

One issue is that often readily available examples have been reformulated
or simplified so as to allow working only with polynomials. To this end we are
finding we are having to develop expertise in how problems are first represented
in KeYmaera and how KeYmaera is then guided to solving verification problems
of interest. We are also trying to build closer ties with current users of KeYmaera.
For example, we know of at least two groups applying KeYmaera to autonomous
car problems that involve transcendental functions and we are hoping for fruitful
collaboration with these groups.

Acknowledgements. This research was supported by EPSRC grants EP/I011005/1,
EP/I010335/1. We would like to thank the anonymous reviewers for their feed-
back and helpful suggestions. We extend special thanks to Grant Passmore at
the LFCS, University of Edinburgh, for offering his expert advice.

References

1. Ahmadi, A.A., Krstic, M., Parrilo, P.A.: A globally asymptotically stable poly-
nomial vector field with no polynomial Lyapunov function. In: CDC-ECE. pp.
7579–7580 (2011)

2. Brown, C.W.: Qepcad b: a program for computing with semi-
algebraic sets using cads. SIGSAM Bull. 37(4), 97–108 (Dec 2003),
http://doi.acm.org/10.1145/968708.968710

3. Chesi, G.: Estimating the domain of attraction for non-polynomial systems via
LMI optimizations. Automatica 45(6), 1536–1541 (2009)

4. Denman, W., Akbarpour, B., Tahar, S., Zaki, M., Paulson, L.: Formal verification
of analog designs using metitarski. In: Formal Methods in Computer-Aided Design,
2009. FMCAD 2009. pp. 93–100 (2009)

5. Fränzle, M., Herde, C.: Hysat: An efficient proof engine for bounded model checking
of hybrid systems. Formal Methods in System Design 30(3), 179–198 (2007)

6. Frehse, G., Guernic, C.L., Donzé, A., Cotton, S., Ray, R., Lebeltel, O., Ripado,
R., Girard, A., Dang, T., Maler, O.: Spaceex: Scalable verification of hybrid sys-
tems. In: Computer Aided Verification - 23rd International Conference, CAV 2011,
Snowbird, UT, USA, July 14-20, 2011. Proceedings. Lecture Notes in Computer
Science, vol. 6806, pp. 379–395. Springer (2011)

7. Heemels, W., Lehmann, D., Lunze, J., De Schutter, B.: Introduction to hybrid sys-
tems. In: Lunze, J., Lamnabhi-Lagarrigue, F. (eds.) Handbook of Hybrid Systems
Control – Theory, Tools, Applications, chap. 1, pp. 3–30. Cambridge University
Press, Cambridge, UK (2009)

8. Henzinger, T.A., Ho, P.H., Wong-Toi, H.: Hytech: A model checker for hybrid
systems. STTT 1(1-2), 110–122 (1997)

14

9. de Moura, L., Bjørner, N.: Z3: An efficient SMT solver. In: Tools and Algorithms for
the Construction and Analysis of Systems, TACAS. LNCS, vol. 4963, pp. 337–340.
Springer (2008)

10. Paulson, L.C.: MetiTarski: Past and Future. In: Beringer, L., Felty, A. (eds.) Inter-
active Theorem Proving, Lecture Notes in Computer Science, vol. 7406, pp. 1–10.
Springer Berlin Heidelberg (2012)

11. Paulson, L.C.: http://www.cl.cam.ac.uk/ lp15/papers/Arith/. University of Cam-
bridge (2013)

12. Platzer, A.: Logical Analysis of Hybrid Systems: Proving Theorems for Complex
Dynamics. Springer, Heidelberg (2010)

13. Platzer, A.: http://symbolaris.com/info/KeYmaera.html. Carnegie Mellon Unier-
sity (2013)

14. Prajna, S., Jadbabaie, A.: Safety verification of hybrid systems using barrier certifi-
cates. In: Alur, R., Pappas, G. (eds.) Hybrid Systems: Computation and Control,
Lecture Notes in Computer Science, vol. 2993, pp. 477–492. Springer Berlin Hei-
delberg (2004)

15. Ratschan, S., She, Z.: Safety verification of hybrid systems by constraint
propagation-based abstraction refinement. ACM Trans. Embedded Comput. Syst.
6(1) (2007)

Appendix: Direct methods and safety verification

Historically, Lyapunov was perhaps one of the first to observe that in the study
of stability, closed form solutions are rarely revealing and that it is possible to
work with the differential equation directly to prove properties of interest. This
observation led to what has become known as Lyapunov’s direct method, which
introduced the concept of Lyapunov functions.

Informally, a Lyapunov function V is a continuously-differentiable positive-
definite function of the system state, whose time-derivative along the vector
field is never greater than zero. More precisely, given a system ẋ = f(x) which
is defined on some state space X ⊆ Rn, if one can find a V : X → R such that

V (x) > 0 ∀x ∈ X \ 0,

∇V · f(x) ≤ 0 ∀x ∈ X,

then one can conclude that the origin is stable.
A set {x | V (x) ≤ a} is known as an a sub-level set of V and if V is a

Lyapunov function, then each sub-level set of V is a system invariant (in forward
time); that is, once a solution enters the set, it cannot escape.

The method of barrier certificates [14] uses Lyapunov-like conditions to argue
for safety, rather than stability. Given a system ẋ = f(x) as before, a set of initial
states Xi ⊆ X and a set of unsafe states Xu ⊆ X, if one can find a continuously-
differentiable function B : X → R such that

B(x) > 0 ∀x ∈ Xu,

B(x) ≤ 0 ∀x ∈ Xi,

∇B · f(x) ≤ 0 ∀x ∈ X,

15

then the system is guaranteed to be safe.
The problem of safety verification with barrier certificates is essentially that

of finding a B which satisfies the above conditions.
The dL calculus used by KeYmaera provides a proof rule called differential

induction (henceforth called DI; see Platzer [12] for a thorough exposition),
which allows one to reason about invariance of sets defined by quantifier-free
formulas,

DI
X → Ḟ

F → [ẋ = f(x) ∧X]F
.

In DI, F is a quantifier-free first-order formula in the theory of real arithmetic,
X is the evolution domain constraint and the differential formula Ḟ is defined
using the derivation operator D [12] which is given as follows:

D(r) = 0 for real numbers,

D(x) = ẋ for real variables,

D(a+ b) = D(a) +D(b),

D(a · b) = D(a) · b+ a ·D(b),

D(F ∧G) ≡ D(F) ∧D(G),

D(F ∨G) ≡ D(F) ∧D(G), (∧ here is important for soundness)

D(a ≤ b) ≡ D(a) ≤ D(b), accordingly for ≥, >,<,= .

The differential formula Ḟ is shorthand for D(F)
f(x)
ẋ , where each ẋ in D(F)

is replaced with the corresponding right hand side in the differential equation.
Formulas F provable using DI are called differential invariants.

Safety verification with differential invariants is similar to the method of bar-
rier certificates, i.e., given a formula Fi which is satisfied by the initial states and
a formula Fu satisfied by the unsafe states, one requires a differential invariant
F such that

Fi → F,

F → [ẋ = f(x) ∧X]F,

F → ¬Fu.

Indeed, if one succeeds in finding a F ≡ B(x) ≤ 0, then this is equivalent
to a proof of safety using barrier certificates. Differential invariants thus include
barrier certificates as a special case [12].

