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ImageNet Auto-annotation with Segmentation Propagation

Matthieu Guillaumin · Daniel Küttel · Vittorio Ferrari

Abstract ImageNet is a large-scale hierarchical database of

object classes with millions of images. We propose to auto-

matically populate it with pixelwise object-background seg-

mentations, by leveraging existing manual annotations in the

form of class labels and bounding-boxes. The key idea is

to recursively exploit images segmented so far to guide the

segmentation of new images. At each stage this propagation

process expands into the images which are easiest to seg-

ment at that point in time, e.g. by moving to the semantically

most related classes to those segmented so far. The propaga-

tion of segmentation occurs both (a) at the image level, by

transferring existing segmentations to estimate the probabil-

ity of a pixel to be foreground, and (b) at the class level, by

jointly segmenting images of the same class and by import-

ing the appearance models of classes that are already seg-

mented. Through experiments on 577 classes and 500k im-

ages we show that our technique (i) annotates a wide range

of classes with accurate segmentations; (ii) effectively ex-

ploits the hierarchical structure of ImageNet; (iii) scales ef-

ficiently, especially when implemented on superpixels; (iv)

outperforms a baseline GrabCut [52] initialized on the im-

age center, as well as segmentation transfer from a fixed

source pool and run independently on each target image [37].

Moreover, our method also delivers state-of-the-art results

on the recent iCoseg dataset for co-segmentation.
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1 Introduction

Foreground-background segmentation is the fundamental task

of producing a binary segmentation of an image, separating

the foreground object from the background [52,14]. Seg-

mentation is useful in many higher-level applications such

as object recognition, as it provides a spatial support for ex-

tracting texture and shape descriptors on objects [66,58]. It

is also valuable for human pose estimation, where silhou-

ettes have been shown to reliably convey pose [32], and for

3D reconstruction from silhouettes. However, manually an-

notating images with segmentations is tedious and very time

consuming. This prevents the above applications from scal-

ing both in the number of training images and the number

of classes. On the other hand, we have witnessed the ad-

vent of very large scale datasets for other computer vision

applications, including image search [27] and object classi-

fication [64].

In this paper, we want to bridge the gap between these

domains by automatically populating the large-scale Ima-

geNet [19] database with foreground segmentations (fig. 12).

ImageNet1 contains millions of images annotated by the class

label of the main object. However, only a small fraction of

the images is annotated with bounding-boxes, and none with

foreground segmentation. Our method leverages these exist-

ing annotations while exploiting the semantic hierarchy of

ImageNet to populate its images with segmentations of their

main objects, see fig. 12. Our work weaves together and ex-

tends several recent developments including Grabcut [52],

segmentation transfer [51,37], efficient binary codes [27],

cosegmentation [14,8] and structured output learning [65,

61] into a fully automatic, computationally efficient and re-

liable large scale segmentation framework. We jointly seg-

ment groups of semantically related images by sharing ap-

pearance models, and help the process by importing appear-

1 http://www.image-net.org/
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ance models from related classes that were segmented in

previous stages of our segmentation propagation process.

1.1 Overview of our approach: Segmentation Propagation

Our goal is to derive a binary segmentation for each image

in ImageNet, accurately delineating its main object. A key

idea is to employ the images segmented so far to help seg-

menting new images. At any stage t, we employ a source

pool St−1 of segmented images to transfer segmentations to

a target set Tt of new unsegmented images. The idea is to

transfer segmentations masks from windows in a subset of

St−1 to visually similar windows in Tt and then use Grab-

Cut to refine the segmentation (sec. 3). The subset of St−1

is chosen based on semantic similarity between classes. The

newly segmented images in Tt are then added to the source

pool, forming the pool St, which is used as source in the

next stage. Since no segmented images are available in Im-

ageNet, we start this recursive process from the PASCAL

VOC 2010 segmentation challenge images (S0). The pro-

cess is like a wave spreading through ImageNet, gradually

segmenting more and more images (fig. 1). In stage t = 1,

the wave propagates from S0 to ImageNet images annotated

with ground-truth bounding-boxes. We start from these im-

ages because here the segmentation task is the easiest as the

bounding-boxes provide a reliable estimate of the object lo-

cation. Moreover, we jointly segment images in the same

class by sharing appearance models across them (sec. 5).

This further improves segmentation accuracy. Because of all

these factors, the output of stage t=1 are excellent segmen-

tations for tens of thousands of images, which can be used

as surrogate ground-truth in the next stages (see sec. 6.2 for

a quantitative evaluation).

After the images in T1 are segmented, they are added

to the source pool S1 = S0 ∪ T1 to support the segmenta-

tion of a larger set of images T2. A key issue is now: which

images should be processed next? All remaining images are

annotated only with a class label, no bounding-box is left. In

general, a good choice for Tt would be unsegmented images

most related to the images in the source pool St−1, in terms

of the kind of objects they contain. Importantly, all images in

ImageNet are labeled by class labels and these are organized

in a semantic hierarchy. Therefore, we exploit the semantic

relation between the class labels to define Tt. Our choice for

T2 is the set of unsegmented images with the same class la-

bel as any image in T1 (i.e. 0 semantic distance). Analog to

stage 1, we jointly segment images in a class C to improve

accuracy, using as source the subset of S1 consisting of S0

and the images of C segmented at stage 1.

After stage t = 2, all remaining classes are completely

unsegmented and contain no image with bounding-boxes.

Therefore, we create Tt from batches containing entire classes.

A new class C is included in Tt if it is directly related to a

class C ′ in St−1. Two classes are directly related if they are

connected by an edge in the ImageNet DAG (i.e. they are

parent-child). In addition to jointly segmenting all images

in a new class C, here we also import appearance models

from its related classes C ′, which further helps accuracy

(sec. 5.3). Over the subsequent stages, the wave progres-

sively spreads to siblings, then to cousins, and continues un-

til the whole ImageNet is segmented.

When transferring from St−1 to a class C in Tt, we re-

strict the source pool to classes directly related to C and all

their respective sources. Hence, the source pool is tailored

to a target class to be maximally related to it and always

contains S0. When there is no possible confusion, we will

simply denote the source pool as S. Overall, our segmen-

tation propagation scheme balances two opposing forces.

On the one hand, the source pool contains perfect, manual

foreground-background segmentations, but of potentially ir-

revelant object classes from PASCAL VOC. On the other

hand, semantically related classes are relevant sources for

segmentation transfer, but the corresponding segmentations

are automatically generated by the propagation and are thus

imperfect. Our scheme balances these forces to make seg-

mentation transfer work at every stage and ultimately pro-

duce high quality segmentations for a large subset of Ima-

geNet.

1.2 Plan of the paper and overview of experiments

We review related work in sec. 2 and then detail the compo-

nents of our approach in sections 3 to 5. In sec. 3 we describe

the segmentation transfer paradigm and how we extend it to

make it suitable for large-scale applications. Then, sec. 4

describes how to employ the transferred mask to guide the

segmentation of each image independently by minimizing

an energy function analog to GrabCut. Section 5 extends

the energy function to segment all the images in a class

jointly. This include sharing appearance models within the

class (sec. 5.1) and importing appearance models of related

classes from the source pool (sec. 5.3).

In sec. 6, we present experimental results. First, we val-

idate the components of our approach on the smaller iCoseg

dataset, we compare it to several existing works [8,34,71,

45] and achieve state-of-the-art performance (sec. 6.1). Next,

we show that our process accurately segments 500k images

over 577 classes of ImageNet (sec. 6.2). To our knowledge,

this is the largest segmentation experiment to date. We com-

pare our results to several relevant alternatives, including:

(a) a baseline GrabCut [52] initialized on the image cen-

ter; this was shown to be a competitive baseline on several

datasets, such as Weizman horses [2], CalTech 101 [2] and

iCoSeg (sec. 6.1); (b) a simpler segmentation transfer tech-

nique based on global image similarity instead of windows;

(c) our recent segmentation transfer technique [37] on which
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t=1 t=2 t=3 t=4 t=5

S0

Fig. 1 Illustration of segmentation propagation on ImageNet. The stage of propagation is marked by t. Nodes are classes and edges represent the

class hierarchy. Node colors indicate the state of a class: white = “unsegmented”, red = “currently being segmented” (Tt), and black = “already

segmented” (St−1). Diagonally split nodes are classes partially annotated with bounding-boxes (bottom-left corner). Segmentation transfer is

shown by arrows.

this work is based. It keeps the source pool S0 fixed to PAS-

CAL VOC 2010 and does not include any propagation el-

ement nor sharing appearance models between images. Fi-

nally, we draw conclusions in sec. 7.

To promote applications, we have released all our Im-

ageNet segmentations online2. This paper is an extension

of our preliminary works [37,38]. It includes an accelerated

segmentation model based on superpixels, additional exper-

imental results for in-depth analysis, and more detailed ex-

planations of the method.

2 Related Work

Object segmentation Fully supervised segmentation tech-

niques aim at separating instances of an object class from

their background (e.g. horses, faces, cars [11,33,9]). They

are supervised in that the training set shows images of other

instances of the class along with their binary segmentations.

Several works have attempted to reduce the burden of an-

notating images with ground-truth segmentations. The de-

gree of supervision is typically reduced by providing only

the class names of the object appearing in the image [73,

4], and sometimes by annotating only a fraction of the pix-

els [69]. Our work is related to this, as most of the images in

ImageNet are only labeled by class names.

Another related recent trend is to guide the segmentation

process with class-generic techniques to propose candidate

regions likely to contain objects of any class [3,13,56,24],

as in [37,71,41]. As spatial support for our segmentation

transfer operations, we use the candidate windows detected

by the ‘objectness’ technique of [3]. However, other meth-

ods to obtain such candidates [56] could form a valid alter-

native, as long as they are fast to compute so they can be

applied at the ImageNet scale.

Interactive segmentation [52,57,10] has been thoroughly

researched since the very popular GrabCut [52]. Most of

these approaches minimize a binary pairwise energy func-

tion whose unary potentials are determined by appearance

models, in the form of pixel color distribution, estimated

2 Website: http://www.vision.ee.ethz.ch/

˜mguillau/imagenet.html?calvin

based on user input on the test image. Our approach builds

on their energy formulation, but is fully automatic.

Our work is also related to co-segmentation, where the

task is to segment multiple images at the same time [14,15,

8,71,34,35,45]. Similar to [14,15,8], we share appearance

models when segmenting many images of the same class.

This sharing helps to identify which image regions belong

to the foreground object.

Annotation transfer by nearest neighbours. Our method trans-

fers segmentation masks from windows in the source pool

to visually similar windows in a new target image. This is

related to works that transfer annotations between images

based on their global similarity, [51,43,30,31,62,54] as done

in inpainting [31], image tagging [30], object class detec-

tion [54], and scene parsing [43,62]. Malisiewicz et al. [44]

proposes to employ per-exemplar SVMs to find neighbours

for transfer, instead of simply measuring appearance sim-

ilarity. Rosenfeld et al. [51], transfers segmentation masks

between images based on their global similarity, for the task

of figure-ground segmentation. Recently we [37] improved

on their scheme by transferring segmentation masks at the

level of windows (using [3] to define windows likely to be

centered on objects). We build our work on this segmen-

tation transfer scheme, but make it computationally much

more efficient to scale up to ImageNet. As we recap in sec. 3.1,

(object) windows offer better spatial support for segmenta-

tion transfer than whole images.

Transfer learning. Our work is related to previous works

on transfer learning in computer vision, where learning a

new class (target) is helped by labeled examples of other re-

lated classes (sources) [5,6,25,40,48–50,55,60,63,22,28].

Most of these works try to reduce the number of examples

necessary to learn the target, improving generalization from

a few examples. Many methods use the parameters of the

source classifiers as priors for the target model [5,6,25,55,

63]. Other works [40,50] transfer knowledge through an in-

termediate attribute layer, which captures visual qualities

shared by many object classes (e.g. ‘striped’, ‘yellow’), or

through prototypes [49]. A third family of works transfer

object parts between classes [6,48,60], such as wheels be-

tween cars and bicycles or legs between cows and horses.
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Finally, [22,28] employ the knowledge transferred from the

source classes to reduce the degree of supervision necessary

to learn object class detectors from bounding-boxes to just

image labels.

The above works aim at image classification or object

detection, not segmentation. For segmentation, we propose

to use appearance models of previously segmented classes to

help segmenting a new class. Our segmentation propagation

scheme automatically determines which classes to segment

next.

ImageNet. ImageNet [19] is a large-scale hierarchical database

of images. ImageNet forms a directed acyclic graph (DAG)

where the classes are vertices linked by directed edges that

represent parent-child relations: Aircraft is a parent of Air-

plane because an airplane is an aircraft, along with heli-

copters, etc. Currently, ImageNet contains about 15 million

images of 22.000 classes. Its large scale, accurate annotation

of all images by the class of the main object they contain,

and the connections in the semantic hierarchy, make Ima-

geNet a great resource for computer vision research and the

ideal playground for experimenting with knowledge transfer

ideas. However, currently only a small fraction of the im-

ages is annotated with bounding-boxes, and none with fore-

ground segmentation.

There is a growing body of work which uses ImageNet.

Several works tackle image classification [18,42,21,20,36,

17] or object detection in the fully supervised setting [17].

Deselaers and Ferrari study the relation between appearance

similarity and semantic similarity [23]. Guillaumin and Fer-

rari [28] populate about 500k images of ImageNet with ob-

ject bounding-boxes automatically derived by transferring

knowledge from images with ground-truth bounding-box an-

notations. To our knowledge, ours is the first work trying

to automatically populate ImageNet with object segmenta-

tions.

3 Large-scale segmentation transfer

We present here the paradigm of segmentation transfer [37,

51], and explain how to make it computationally very ef-

ficient to scale up to ImageNet. We then describe how the

parameters of this transfer mechanism are learnt.

To segment a new image i, the idea is to transfer seg-

mentation masks from similar images in the source pool S of

pre-segmented images. The transferred masks are then used

to derive the unary potentials of an energy function which is

minimized to refine the segmentation (sec. 5).

transfer based on global image transfer based on windows

Fig. 3 An example to demonstrate the advantage of window-level seg-

mentation transfer over global transfer. In both cases the transferred

mask M is used to guide a GrabCut-like segmentation process of sec-

tion sec. 4.1. The two methods differ in how M is obtained.

3.1 Window-level segmentation transfer

The basic scheme [51] compares the image i to the source

images S based on global descriptors capturing the image

as a whole. The segmentation masks of the most similar

source images are averaged into a mask for i. However, often

the most similar source images have quite different figure-

ground segmentations than i. This happens because there is

too much variability at the level of the whole image, so typ-

ically there are no source images which are globally similar

and have similar objects at the correct position and size.

Recently, we have improved on the basic scheme by trans-

ferring segmentation masks at the level of windows [37]

(fig. 2a). In each image, we first extract 100 candidate win-

dows using the ‘objectness’ technique of [3], and then trans-

fer masks from windows in S (fig. 2b) to visually similar

windows in i (fig. 2c). The objectness sampling tends to

return more windows centered on an object with a well-

defined boundary in space, such as cows and cars, rather

than amorphous background elements, such as grass and

sky. These windows make a better spatial support for seg-

mentation transfer, as they exhibit less variability than whole

images, while at the same time containing enough distinc-

tive information. This leads to retrieving much better neigh-

bours, whose segmentation masks better match the target

image. As another important advantage, window-level seg-

mentation transfer enables to compose novel scenes using

local parts from different source images (e.g. the source im-

ages have either a cow or a dog, while the target image has

a cow and a dog). Finally, as the objectness window sam-

pling is covariant to translation and scale, the segmentation

transfer process can relocate objects to the appropriate po-

sition in the target image (e.g. all source images have a dog

in the center, while the target image has a dog in the top-left

corner).

After transferring masks for each window independently

(fig. 2c), they are aligned to their corresponding windows in

i and aggregated into a single mask Mi (fig. 2d, see sec. 3.3).

The window masks are first translated and rescaled to their

appropriate image location and then Mi is defined as their

pixelwise mean. Hence, Mip ∈ [0, 1] estimates the prob-
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Fig. 2 Two examples of window-level segmentation transfer at stage 3. (a) two out of 100 windows extracted in a target image; (b) the most

similar windows from the source set S2 transfer their segmentation masks (outlined in red) to the windows of the target image, giving (c); (d) the

100 individual window masks are aggregated into a single soft-segmentation mask M for the target image.

ability that the pixel p is foreground in image i (fig. 2d).

Mi is then used in two different ways in our energy min-

imization framework (sec. 4). First, they automatically set

the unary potentials based on appearance models by esti-

mating their parameters for the foreground and background

classes. Second, they are used directly as a location prior

unary potential that encourages the final segmentation to be

close to Mi. In this fashion, while segmentation transfer op-

erates on individual windows, the energy minimization step

integrates local evidence from all windows into a coherent

global segmentation of the target image (sec. 4.1). Figure

3 shows the benefit of our segmentation transfer based on

windows, compared to based on global image neighbours.

3.2 Efficient segmentation transfer

The quality of the output segmentation depends on the source

pool S containing windows with appearance as similar as

possible to windows in i and with segmentation masks truly

reflecting the underlying segmentation of i. In the spirit of

recent work for recognition [64], we aim at collecting the

largest possible pool of segmented windows. When apply-

ing this idea to millions of images that contain hundreds of

windows, a key requirement is efficiency both in terms of

computation and memory.

The first step to reduce computational cost is to describe

windows very quickly. Instead of GIST[47] as used in [51,

37], we use HOG[16]. In our experiments, it as accurate

while being much faster to compute. The second step is to

speed up the computation of distances between the descrip-

tors of all windows in i to all windows in S. This is in theory

the most computationally expensive step in segmentation

transfer. With 100 windows per image and a typical source

pool S containing 10k images, 100M distance computations

are needed to segment a single target image! Moreover, stor-

ing the HOG descriptors for all 100M windows in the 1M

images in an ImageNet scale experiment would require 3.1

TB of disk space. This cannot fit the memory of a computer,

and reloading the part of it corresponding to the source pool

of each target image is even slower than computing the dis-

tances. This makes window-level large-scale segmentation

transfer essentially infeasible.

In this paper we employ the efficient binary coding scheme

called “Iterative Quantization” (ITQ) [27] to circumvent this

issue. The key idea of ITQ is to encode high-dimensional

descriptors as short binary vectors so that points close in

L2 distance in the original descriptor space are close for the

Hamming distance in the binary space. Using 128 bits (i.e.

16 bytes) to encode each HOG, 100M windows now account

for a mere 1.6 GB, i.e. about 2000× less memory. More-

over, hamming distances are particularly fast to compute on

modern CPUs, which can perform a 64-bit XOR in a single

operation. Our standard desktop computer achieved a rate

of about 70 million distances computations per second (on a

single core of an Intel Core i7 CPU 923 2.67GHz). This is

about 350× faster than directly computing the distance be-

tween the original HOG descriptors. In practice, it takes only

about 1.5 seconds to do segmentation transfer for a typical

target image, which has 10k images in its source pool. While

this is already fast enough for the large-scale experiments in

this paper, it could be accelerated even further with fast near-

est neighbour techniques dedicated to hamming codes [46].

A natural question is whether the binary encoding causes

any loss in segmentation transfer performance. We investi-

gated this on the PASCAL VOC10 dataset, using as a source

the training subset of the challenge, and as target images

the validation set. Fig. 4 shows the intersection-over-union

segmentation performance when describing windows in the

original HOG space, and as a function of the number of bits

in the encoding. As the plot shows, the performance is es-

sentially unchanged when using 1024 bits, and there is only
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HOG 1024 512 256 128 64 32 16 8
44.5

45.0

45.5

46.0

46.5

47.0

47.5

Io
U

bits

Fig. 4 We conducted experiments on the pascal VOC10 challenge with

varying binary code sizes. We measure the IoU score of the final seg-

mentation. Even for relatively short code sizes the score does not suffer

much compared to using the full HOG features.

a very small loss when using 512 bits (-0.5%) or 128 bits

(-1%). Therefore, we can safely use binary encodings with

512 bits and enjoy the tremendous computational and mem-

ory advantages they bring.

3.3 Aggregating neighbour masks

As explained above, the key operation in our scheme is to

transfer segmentations from the K most visually similar win-

dows {s1, s2, . . . , sK} in S to the target window w, where

s1, . . . , sK are sorted from the most similar s1 to the K-th

most similar sK . We then model the mask mw for w as a

weighted sum of the masks msk of its neighbours:

mw =

K
∑

k=1

λkmsk , (1)

where λk ≥ 0,
∑

k λk = 1 and all the masks are normalized

to the same size (50× 50 in our experiments).

Using uniform weights λk would make the transfer very

dependent on K. An excessively large K would simply av-

erage the segmentations in the source pool, ignoring image

appearance. At the opposite end of the spectrum, K = 1
would only use the segmentation of the single nearest neigh-

bour, making the transfer process sensitive to errors in indi-

vidual source segmentations and reduce the ability to gener-

alize from the source set. With uniform weights, it is there-

fore crucial to carefully set K.
To avoid having to manually set K, we propose instead

to learn λk using training images from PASCAL VOC10
along with their ground-truth segmentations. For each train-
ing window w, we use the ground-truth segmentation of the
full image to derive its ground-truth mask mw. We train the

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

neighbor

w
ei

g
h
t

Fig. 5 Weights learned on the pascal VOC10 dataset for the first 10

neighbours. The weights rapidly decrease and after neighbour 10 they

are almost zero.

weights λk by minimizing the sum of the Frobenius norms
|| · ||F of the residuals:

min
{λk}

∑

w

∥

∥

∥
mw −

K
∑

k=1

λkmsk

∥

∥

∥

2

F

s.t. ∀k, λk ≥ 0, and

K
∑

k=1

λk = 1. (2)

We reparametrized this constrained convex quadratic pro-
gram using

λk = exp(λ̂k)/
K
∑

k=1

exp(λ̂k) (3)

to obtain an unconstrained problem in {λ̂k}, which we then

solved using Matlab’s fminunc optimization function, based

on an interior-point algorithm.

Observing the first 10 {λk} in fig. 5, we see that the

weights decrease rapidly. Learning the weights therefore serves

two purposes. First, it improves the accuracy of segmen-

tation transfer, over simply using uniform weights, as the

residuals to ground-truth masks are minimized. Second, it

allows to automatically determine the number K of neigh-

bours needed to reach good accuracy. Since neighborus be-

yond rank 10 have near-zero weights, we set K = 10 in the

rest of our experiments. As this K is small, the computation

of segmentation transfer by eq. (1) is also sped up.

4 Models for image segmentation

Thanks to the technique of sec. 3, each image i of a class C
in the target set Tt now has a transferred soft-segmentation

mask Mi (fig. 2). This mask provides a rough initial indi-

cation of the position of the object. The next step is to re-

fine it into a binary segmentation that delineates the object’s

spatial extent accurately. We model this task in an energy

minimization framework analog to GrabCut [52,37], where

Mi is used to replace the user interaction, resulting in a fully

automatic process.

In this section we describe how to segment each im-

age independently, and explore extensions of the traditional
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using only appearance model appearance and location model

Fig. 6 Our segmentation model uses the transferred mask M in two

ways. The left column uses it only to initialize the appearance models.

The right column uses it also as an additional location prior term. This

improves the final segmentation considerably.

GrabCut energy function (i) to incorporate the information

given by Mi (sec. 4.1); (ii) to share labels among neighbour-

ing pixels to improve computational and memory efficiency

(sec. 4.2). In sec. 5, we further extend the framework to seg-

ment all the images in a class C jointly. This includes ad-

ditional unary potentials for sharing appearance models be-

tween all images in C (sec. 5.1), and for importing appear-

ance models from semantically related classes which have

been segmented before in the propagation wave (sec. 5.3).

4.1 Iterative Graph-cuts guided by segmentation transfer

Let xip ∈ {0, 1} be the label and cip ∈ [0, 1]3 the color of

pixel p in image i. Let xi and ci be the vectors of all xip and

cip, respectively. The following energy function evaluates a

binary foreground-background segmentation xi

E(xi; ci,Mi, Ai) =
∑

p

EA
ip(xip; cip, Ai)

+
∑

p

EL
ip(xip;Mip) +

∑

(p,q)∈G

Eipq(xip, xiq) (4)

This function is an extension of the traditional GrabCut en-

ergy [52]. It consists of two unary potentials E·
ip for each

pixel and a pairwise term Eipq for each pair of neighbouring

pixels in a 8-connected grid G. The pairwise potential is

Eipq(xip, xiq) = δ(xip 6= xiq) · d(p, q)
−1

· exp(−γ||cip − ciq||
2). (5)

Analog to [52,10,70,59,12], this potential encourages

smoothness by penalizing neighbouring pixels taking differ-

ent labels. The penalty depends on the color contrast ||cip −

initialized with 50% center area initialized with seg. transfer

Fig. 7 An example to illustrate the advantage of our segmentation

transfer scheme. Left: segmentation produced by GrabCut when ini-

tialized by a rectangle in the image center. Right: GrabCut guided by

our segmentation transfer scheme of sec. 4.1.

ciq||2 between the pixels, being smaller in regions of high

contrast (image edges). It also depends on the distance d(p, q)

between the pixel positions in the image.

The first unary potential EA
ip(xip; cip, Ai) evaluates how

likely a pixel of color cip is to take the label xip according to

the image-specific color appearance model Ai. The model

accounts for visual characteristics unique to an image. As

in [52], the appearance model Ai consists of two Gaussian

mixture models (GMM), one for the foreground (used when

xip = 1) and one for the background (used when xip = 0).

Each GMM has 5 components and each component is a full-

covariance Gaussian over the RGB color space. We take the

negative log-likelihood of the GMM as the potential

EA
ip(xip; cip, Ai) = − log p(xip; cip, Ai). (6)

Many works using analog energy functions [53,7,10,72] re-

quire user interaction to estimate the appearance model, typ-

ically a manually drawn bounding-box or scribbles. In our

work instead, the appearance models are automatically esti-

mated from the transferred mask Mi. This is done by thresh-

olding Mi to obtain an initial binary segmentation, from

which foreground and background models are estimated.

Our energy function (4) also contains an additional unary

term, which plays the role of a location prior preferring seg-

mentations close to Mi. Because of the probabilistic nature

of Mip, we can directly use the negative log-likelihood of

the corresponding Bernoulli distribution

EL
ip(xip;Mip) = −xip logMip−(1−xip) log(1−Mip) (7)

as a unary potential (where Mip is the value of Mi at pixel

p). This second term encourages a foreground segmentation

at regions where Mi has high probability mass, which are

quite reliably on the object of interest (fig. 2). This has a
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Fig. 8 Example images from ImageNet with their superpixel segmen-

tations

complementary effect to using Mi to estimate the appear-

ance models. Even with good appearance models, the seg-

mentation could be attracted to similarly colored regions

elsewhere in the image (fig 6). As a combined effect of using

M in these two ways, the energy minimization becomes a

controlled refinement operation, where the appearance mod-

els are used to outline the contours of the object in detail,

but at the same time the segmentation is anchored approx-

imately at the position indicated by M . Hence, our model

fully exploits the information derived from segmentation trans-

fer (sec. 3).

Now that the model is fully defined, we obtain a binary

segmentation by minimizing (4) over all possible xi. Fol-

lowing [53], we now use this segmentation to update the

appearance models, and then iteratively alternate between

these two steps: finding the optimal segmentation x given

the appearance models, and updating the appearance models

given the segmentation. The first step is solved globally op-

timally using graph-cuts as our pairwise potentials are sub-

modular. The second step fits GMMs to labeled pixels using

the EM algorithm. Note that the segmentation transfer soft-

mask Mi remains fixed during the entire procedure. Figure

7 illustrates the potential benefit of using our segmentation

transfer scheme to guide GrabCut, compared to a baseline

which initializes its appearance models from a rectangle in

the center of the image.

4.2 Label sharing with superpixels

The method described in the previous section has the short-

comings of requiring us to store the full RGB image in mem-

ory and to construct a large graph-cut problem where every

pixel is a variable. Reducing the size of the problem be-

comes interesting in our large-scale setting, as we consider

the co-segmentation of thousands of images at the same time

(section 5). A simple and widely used technique is to group

pixels into superpixels [67,39], and assume that all the pix-

els inside a superpixel share the same label. This results in a

simplified energy function with only one unary term per su-

perpixel and with pairwise terms only between neighbour-

ing superpixels. We use the superpixel method of Felzen-

szwalb and Huttenlocher [26], which is readily available on-

line, with parameters k = 10, σ = 0.5 and a minimum of 50

pixels in each superpixel.

Let xis be the label of superpixel s in image i, and cis

be the vector of pixel colors in s. We denote with Mis the

transferred soft-mask for the image region covered by s. For

simplicity, we overload the notation xi to denote the vector

of all superpixel labels in image i. With these definitions, we

can now rewrite the energy (4) as

E(xi; ci,Mi, Ai) =
∑

s

EA
is(xis; cis, Ai)

+
∑

s

EL
is(xis;Mis) +

∑

s,t

Eist(xis, xit) (8)

The potentials are simply the sum of their counterparts in (4)

over the pixels p inside a superpixel

E·
is(xis; ·) =

∑

p∈s

E·
ip(xis; ·) (9)

Eist(xis, xit) =
∑

p∈s, q∈t, (p,q)∈G

Eipq(xis, xit) (10)

This new energy indeed has a reduced set of variables,

substantially speeding-up its minimization. Moreover, as we

assume that all pixels in a superpixel share the same label,

the corresponding pairwise terms vanish (Eipq(l, l) is 0 for

any label l, see eq. (5)). This greatly reduces the number of

pixel comparisons required to evaluate the pairwise terms.

As a matter of fact, eq. (10) only sums over neighbouring

pixels along the boundary between neighbouring superpix-

els.

However, there are no real memory benefits so far as

we still need to evaluate the appearance likelihoods at each

pixel, and the GMM apparance models themselves are still

estimated using pixel values. In order to greatly reduce mem-

ory consumption and also speed-up the estimation of the ap-

pearance GMMs, we derive an accelerated EM algorithm

below. This technique assumes that all the pixels inside a

superpixel s not only share the same label but also the same

responsibility zsk towards the components k of the GMMs.

This assumption is reasonable here, as a superpixel contains

pixels of similar color, by construction [26] (fig. 8). This

makes it likely for those pixels to have similar responsibili-

ties.

The key idea is to retain only the sufficient statistics

of the color distribution within each superpixel s, i.e. the

number of pixels ns, the color mean µs and covariance Σs.

With this information, and similar to [68] for accelerated
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EM clustering, we can derive an accelerated EM algorithm

to estimate the parameters (nk, µk, Σk) and mixture weight

πk of the GMMs. Below, we use N (x|µ,Σ) to denote the

probability of x under the Gaussian distribution centered at

µ and with covariance Σ.

E-step: Update the responsibilities zsk using the current pa-

rameters of the GMM.

Σ−1
sk = Σ−1

k +Σ−1
s (11)

ρsk = N (µs|µk, Σsk) (12)

zsk =
πkρsk
∑

l πlρsl
. (13)

M-step: Re-estimate the parameters and mixture weight of

each component under fixed responsibilities zsk.

nk =
∑

s

nszsk (14)

µk =
1

nk

∑

s

nszskµs (15)

Σk =
1

n

∑

s

nszsk
(

Σs + (µs − µk)(µs − µk)
⊤
)

(16)

πk =
nk

n
. (17)

After estimating the appearance models, we can use an

analog trick to also accelerate the computation of the ap-

pearance likelihood for all pixels in a superpixel

Eis(xis; ci, Ai) ≈ Eis(xis;ns, µs, Σs, Ai)

≈ −ns log

(

∑

k

πkρsk

)

.
(18)

Hence, in order to apply GrabCut on our superpixel model,

we only need to store the second-order statistics of each su-

perpixel. This amounts to 13 values per superpixel (one for

the number of pixels ns, 3 for the color mean µs, and 9 for

the 3 × 3 color covariance matrix Σs), compared to 3 per

pixel in a standard model. In a typical 500× 300 image, the

algorithm [26] produces between 100 and 1000 superpixels,

in about 0.1 seconds. This leads to memory savings in the or-

der of 30× to 300×, at negligible computational overhead.

Moreover, our experiments (sec. 6.1) show that the accuracy

of this approximate model is very close to the original one

described in sec. 4.1.

5 Joint segmentation of a set of images

This section describes how to jointly segment all the images

in a class C. Section 5.1 explains the general joint segmen-

tation scheme, which extends the single-image model (8)

with an additional unary potential carrying a class-wide ap-

pearance model. This scheme is adapted to each stage of

the segmentation propagation to fit the situation (sec. 1.1).

Stages 1 and 2 operate on classes for which some images

with bounding-box annotations are available, so they can

help constraining the segmentation (sec. 5.2). Later stages

can import appearance models from semantically related classes

that have been segmented in previous stages (sec. 5.3). This

gives rise to further additional unary potentials. In sec. 5.4,

we explain how to learn the optimal weights of all potentials

so as to maximize segmentation accuracy on a validation set

using structured-output SVMs [65].

5.1 Sharing appearance within a class

Given the set I of all images in a class C of ImageNet, let

x be the vector of all pixel labels xip in all images. The

energy function for jointly segmenting all images in I using

the current source pool S is

E(x;A,S) =
∑

i

(

∑

p

Eip(xip;A,S)

+
∑

(p,q)∈Gi

Eipq(xip, xiq)



 (19)

The pairwise potential remains unchanged from eq. (5),

but the unary potential is now a linear combination of several

terms

Eip(xip;A,S) =− αI log p(xip; cip, Ai)

− αC log p(xip; cip, AC)

− αM logMip(xip;S)

(20)

Each potential p(xip; cip, A) evaluates how likely a pixel

of color cip is to take label xip, according to the appear-

ance model A. The set of appearance models A contains

one model Ai specific to each image (as in sec. 4.1) and

one class model AC common to all images in I. This class

model enables us to share appearance among the images, so

they are jointly segmented. The image-specific models ac-

count for visual characteristics unique to an image (e.g. the

color of a particular cow), while the class model accounts

for classwide characteristics (e.g. the color of common cow

backgrounds, such as grass and sky). All appearance mod-

els, i.e. {Ai}i and AC , are GMMs with 5 full-covariance

components for foreground and background. Ai are learnt

separately on their respective images, whereas AC is learnt

on the union of all images. Finally, the last unary term is

the image-specific location prior formed by the transferred

soft-mask Mi (as in sec. 4.1). Figure 9 illustrates the various

unary potentials.
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Image j

Image i

S Ai Aj AC AC′ Final segmentation

Fig. 9 Our joint segmentation model. Left: two images i and j of a class to segment. The location priors Mi and Mj are obtained by segmentation

transfer from S (second column). Image models Ai and Aj contribute to an image-specific unary potential (third column). The fourth column

shows the class-wide unary potential (AC ) applied to these two images. The fifth column uses the appearance model AC′ of a related class C′

on these two images. Gray nodes represent fixed models, while white nodes illustrate models that are updated during the iterations of the energy

minimization. Unary potentials are represented by mapping the most likely background pixel to blue and the most likely foreground pixel to red.

Rightmost column: final segmentations produced by our model.

This joint segmentation model can be seen as a general-

ization of both GrabCut [53] and Batra et al. [7]. In Grab-

Cut each image is segmented independently, based on an ap-

pearance model for each image: A = {Ai}i∈I . Conversely,

Batra et al. [7] uses only a single model shared among all

images: A = {AC}.

The model (19) is used to segment the images I with

the usual iterative optimization scheme which alternates be-

tween finding the optimal segmentation given the appear-

ance models, and updating the appearance models given the

segmentation. Each image model Ai is fitted to the current

segmentation of its respective image i, while a single global

model AC is fitted to the segmentations of all images at the

same time. The benefits of having AC can be understood in

the light of this iterative scheme. The class model can be

more robustly estimated from all images, as the errors due

to inaccurate segmentations average out. In turn this more

accurate appearance model helps improving segmentations

in the next iteration. Image models complement the class

model with extra GMM components that finely adapt to the

specificities of each image.

As for the single-image model (sec. 4.2), we can also de-

rive an accelerated joint class-level model (19) using super-

pixels. Like the image models, the class appearance model

AC is also learnt from the sufficient statistics of the color

distributions in the superpixels, using the same accelerated

EM algorithm, except we use the union of all foreground

(resp. background) superpixels over all images.

5.2 Stages 1 and 2: Exploiting bounding-box annotations

As mentioned in sec. 1.1, stage t = 1 consists of segment-

ing images annotated with ground-truth bounding-boxes, as

they are easier to segment. Those images are jointly seg-

mented as presented in sec. 5.1 while constraining the min-

imization of (19) to the available ground-truth bounding-

boxes (some images have multiple bounding-box annota-

tions). This is done by imposing an infinite unary cost for

foreground for all pixels outside any bounding-box.

At stage 2, when segmenting unannotated images in the

same classes as stage 1, we include the images of stage 1

in (19) but keep their segmentation fixed to the output of

stage 1. This way they can improve the segmentation of new

images by contributing to the class model AC .

5.3 Later Stages: Importing appearance from related classes

From stage t=3 onward, the propagation wave reaches new

target classes Tt which are semantically related to the source

classes in St−1 (see sec. 1.1). As these related classes have

already been segmented in the previous stage, we propose to

import their appearance models to help segmenting the new

classes. This idea is related to knowledge transfer for object

classification [63], localization [29] and detection [55], but

we believe it is unexplored for segmentation.

More precisely, when segmenting a new class C, we add

to (19) a unary potential for each of its related classes C ′ ∈
R(C), which carries its appearance model AC′ . Since the

related classes C ′ are already segmented from stage t − 1,

their appearance models can be stored and used at stage t
without any extra computational cost. We therefore extend

the unary potentials in eq. (20) to

Eip(xip;A,R(C)) = −αI log p(xip; cip, Ai)

− αC log p(xip; cip, AC)

− αM logMip(xip;R(C))

−
αR

|R(C)|

∑

C′∈R(C)

log p(xip; cip, AC′)
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(21)

Note how the related source classes all have the same weight

αR, instead of their own specific weight αC′ . As the number

of related source classes varies for each target class, it is very

difficult to learn a weight per related model (sec. 5.4).

Note how in eq. (21) we restrict the source pool used for

segmentation transfer to R(C), to make it maximally related

to C (as discussed in sec. 1.1).

5.4 Learning the weights α

Many of the models described above combine multiple unary

potentials in a weighted sum. We learn the weights α of the

unary potentials on a small subset of 90 manually segmented

images from ImageNet.

We train two weight vectors α = {αI , αC , αM} specific

to stage 1 and 2 respectively, and one weight vector α =

{αI , αC , αM , αR} common to all later stages.

Let xi be the labeling of all pixels in image i. Given

n training images I with associated ground-truth labelings

x
∗ = (x∗

1, . . . ,x
∗
n), we seek the weights α such that the en-

ergy of the ground-truth labeling x
∗
i of each image is lower

than the energy of any other labeling xi of that image, as-

suming fixed models A and source pool S. This translates to

the following contraints

E(x∗
i |i,α) ≤ E(xi|i,α), ∀xi 6= x

∗
i , ∀i ∈ I. (22)

where E(x|i,α) is one term in the outermost summation

of eq. (19), corresponding to only one image. For simplicity,

we omit A and S as they are predetermined by the segmen-

tation transfer process and cannot change during the min-

imization of (19). To learn the parameters α we solve a

structured-output SVM training problem, following [65]

min
α,ξ

1

2
‖α‖2 + C

n
∑

j=1

ξi

s.t. ∀xi 6= x
∗
i ,

E(xi|i,α)− E(x∗
i |i,α) ≥ ∆i(x

∗
i ,xi)− ξi,

∀i ∈ I, ξi ≥ 0.

(23)

where C > 0 is a constant; ξi is the slack variable for xi,

which is necessary if no α fulfilling all constraints exists;

∆i(x
∗
i ,x) is a loss function quantifying the difference be-

tween a labeling xi and the ground-truth x
∗
i .

Our choice for ∆i is the average number of mislabelled

pixels, weighted to account for the ratio of foreground and

background pixels in the image

∆i(x
∗
i ,xi) =

∑

p∈i

wip|xip − x∗
ip|, (24)

where wip = 1/n+
i if x∗

ip is foreground and wip = 1/n−

i

otherwise; n+
i , n

−

i are the number of ground-truth foreground

and background pixels in i, respectively. In essence, this

weighted loss gives equal importance to foreground and back-

ground regions, thus avoiding biases towards the background

which often occupies most of an image. Note how this is

a good proxy to the intersection-over-union (IoU) perfor-

mance measure, on which we base much of our experiments

(see sec. 6 for a discussion). However, IoU cannot be ex-

pressed exactly as a sum over unary potentials.

As each labeling xi corresponds to a constraint, the num-

ber of constraints is exponential in the number of pixels.

Constraint generation [65] circumvents this issue by iter-

atively solving (23) while updating a set of most violated

constraints. Finding the most violated constraint for an im-

age i involves minimizing E(xi|i,α) − ∆i(x
∗
i ,xi). Since

∆i can be expressed as a unary potential over pixels, this

problem can be solved exactly using graph-cut [61].

In the case of models based on superpixels (sec. 4.2),

we only need to modify ∆i to reflect the misclassification of

pixels using the shared label xis:

∆i(x
∗
i ,xi) =

∑

s∈i

∑

p∈s

wip|xis − x∗
ip|. (25)

To maximize performance, we learn separate sets of weights

for early and later stages of the segmentation propagation,

as the characteristics of the source pool and the role of the

terms might change over stages.

6 Experiments

We validate the components of our approach on the recent

iCoseg dataset [7] in sec. 6.1, and then present results on

ImageNet in sec. 6.2. We conclude in sec. 7.

6.1 Cosegmentation on iCoseg

The iCoseg dataset [7] contains 643 images grouped into 38

classes (e.g. stonehenge, brown bear, gymnasts, airplanes).

The task, as set out by previous works [7,34,71,45] is to

jointly segment the foreground object in all images of a class.

Following these works, we measure performance as the per-

centage of correctly labelled pixels (accuracy). Addition-

ally, we also report performance as the area of intersection

between the foreground in the output segmentation and the

foreground in the ground-truth segmentation, divided by the

area of their union(IoU [1]).

In tab. 2 we compare several stripped down versions

of our model (sec. 5.1). The first three use no segmenta-

tion transfer (sec. 3) and initialize their appearance models
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Fig. 10 Top: Segmentations produced by our image+transfer+class method at the pixel-level on the Elephants class of the iCoseg dataset. Bottom:

the same images segmented using complete superpixels models.

from a window centered on the image. (1) image only: us-

ing only the image-specific unary potential Ai. This is es-

sentially GrabCut [52], but with the user initialization re-

placed by a window in the image center; (2) class only:

using only the class-wide unary potential AC . This is very

similar to [7], but again without user initialization; (3) im-

age+class: using both types of unaries; (4) image+transfer:

using the image-specific unary Ai and segmentation trans-

fer (sec. 3) to initialize the appearance models and to add a

location prior unary potential Mi (sec. 4). The source pool

is fixed to the PASCAL VOC10 training set. This is a com-

putationally efficient version of [37] using the speedups we

proposed in sec. 3.2. As reported in [37], it obtains state-

of-the-art figure-ground segmentation performance on PAS-

CAL VOC10. (5) image+transfer+class: using image-specific

unaries, class-wide unaries, and segmentation transfer with

source pool fixed to the VOC10 training set. Note that here

we cannot evaluate the idea of recursively updating the source

pool (sec. 1.1) nor of importing appearance models from re-

lated classes (sec. 5.3), as classes in iCoseg are not organized

in a hierarchy.

The size of the initialization window for models (1-3)

is set to 25% of the image area, which worked best on this

dataset. For the models using multiple unary potentials (3-

5), we use the technique in sec. 5.4 to learn their weights

α in a leave-one-class-out fashion. When evaluating a class,

we use weights learned from two random images from each

of the other 37 classes.

For each method, in addition to the pixel-level models

(pixel model), we also report the accuracy obtained when

sharing the labels of pixels in each superpixel as described

in sec. 4.2. The results are obtained without (label sharing)

or with the accelerated EM algorithm (complete superpixel

model).

As the first row of table 2 shows, the baseline pixel-level

GrabCut model already shows a good performance (82.4%
accuracy). Using class-wide appearance models proves very

beneficial, because the object instances in different images

of a class have very similar appearance. Class models alone

perform better than image models (83.6%), and greatly im-

prove the performance when combined with other models:

+5.8% with image models, +3.8% with image models and

segmentation transfer (fig. 10). Segmentation transfer [37]

also proves very useful: it improves by +5.2% over Grab-

Cut using image models only, and by +3.2% with both im-

age and class models. This shows that segmentation transfer

is a very effective way to automatically initialize GrabCut,

confirming what we observed in [37] on other datasets (PAS-

CAL VOC10, Graz-02, Weizmann horses).
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The second row of table 2 shows that sharing labels within

superpixels has an impact on performance around a few tenth

of percent, and is largest for the full model (+0.8% on im-

age+transfer+class). The same conclusions as for pixel-level

models remain valid: adding class-wide appearance models

improves over image-specific models (+5.5% alone, +4.2%

combined with transfer), and segmentation transfer provides

substantial benefits (+5.5% on image-only, +4.2% on im-

age+class). Interestingly, the approximate speeded-up EM

algorithm to estimate the GMM for superpixel-level models

obtains very similar performance as well (third row of ta-

ble 2). This implies the approximation described in sec. 4.2

is reasonable and that the underlying assumptions (notably,

that the pixels inside a superpixel share the same responsi-

bility) are valid. The approximation is tighter when using

more powerful models (+0.4% on the full model, −0.1%

on image+class vs. −0.8% on image-only). This is expected

in particular for class models, as their GMMs are estimated

from many more superpixels, and therefore are less likely

to overfit to the statistics of a few superpixels. Importantly,

these models defined completely on superpixels are much

faster to run (≈ 15× faster) and use orders of magnitude less

memory (≈ 100×) than the pixel-level ones. Therefore, they

are a good choice for large-scale image co-segmentation (sec. 6.2).

Interestingly, these computational savings come at no loss of

performance for the full model, which in fact improves by a

small amount (+1.2%).

Table 2 also reports the average accuracy of two recent

state-of-the-art works [71,34] as reported in [71]. In a com-

parable setting using only iCoseg images, our image+class

method outperforms them both (image+class). Our image+

transfer+class method performs best by a considerable mar-

gin. While it uses manually segmented PASCAL VOC10

images as training data, we stress that these contain differ-

ent classes than iCoSeg (e.g. there are no elephants in PAS-

CAL VOC10). Importantly, our method is also computation-

ally much more efficient than [71,34]. It takes only about 60

seconds to segment a typical iCoSeg class containing 20 im-

ages, including all processing stages. This is in contrast to

several hours per class reported by [71,34]. Hence, we can

apply our technique to the much larger ImageNet dataset.

As our method is roughly linear in the number of images

in a class, we report here a breakdown of the computational

cost of each stage per image: 2s for extracting objectness

windows, 0.1s for the HOG features, 0.2s for segmentation

transfer (sec. 3.2), 0.1s for extracting superpixels [26], 0.5s

to setup the segmentation model (i.e. computing the color

models, unary and pairwise potentials) 0.1s for energy min-

imization (see table 1). As an additional remark, our best

performance of 92.6% accuracy is also similar to the one

reported in the recent work of [45] (92.5%). However, their

average is computed over only 14 of the 38 classes, which

makes this comparison only indicative.

extract objectness windows 2.0s

HOG features 0.1s

segmentation transfer 0.2s

superpixels 0.1s

segmentation model setup 0.5s

energy minimization 0.1s

total per image 3.0s

Table 1 Breakdown of the computational costs per image.

We also computed the performance of the different com-

ponents of our method using the intersection-over-union mea-

sure [1]. This is a much more challenging and realistic mea-

sure of performance. It is considered superior to the sim-

pler percentage of correctly labeled pixels [1], as it is auto-

matically normalized to the scale of the foreground object

and properly penalizes segmentations which miss the ob-

ject. An empty segmentation scores 0 on IoU, but it might

still score high in per-pixel accuracy (especially for small

objects, fig. 11). Therefore, we expect that what were small

differences in accuracy in 2 can correspond to larger dif-

ferences in IoU. This is particularly true beyond 85% ac-

curacy. Equivalently, this corresponds to the idea that IoU

decreases much more rapidly than accuracy as the number

of incorrect foreground pixels increases. Table 3 reports the

results. The conclusions are similar to what observed under

the accuracy measure. Class models now perform consider-

ably better than image models. Adding either class models

or segmentation transfer is always beneficial (e.g. +7.2% by

adding segmentation transfer to image models). Combining

image model, class models and segmentation transfer leads

to the best results, which are substantially better than the ba-

sic image only GrabCut (+15%). Analog to what observed

for the accuracy measure, using superpixel-level models has

only a minor impact on segmentation performance. The per-

formance of our full method (image+transfer+class) increases

by 1.2% compared to the pixel-level models, yielding a final

IoU of 73.2%.

6.2 Segmentation propagation on ImageNet

We have run our full segmentation propagation method on

two subtrees (animal and instruments) of ImageNet contain-

ing about 500k images over 577 classes. We selected the

classes automatically to ensure that about half of the classes

have some images annotated by bounding-boxes, while half

of the classes have none. For those classes with bounding-

boxes, only a fraction (typically about 25%) of the images

indeed have a bounding-box annotation. In total, there are

60k images with bounding-boxes and 440k images with only

class labels. On this subset of ImageNet, segmentation prop-

agation runs for 5 stages to completion.
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[34] [71]
image only class only image+class image+transfer image+transfer

Accuracy ≈GrabCut [52] ≈Batra [7] ≈Kuettel [37] +class

Pixel model 78.9 85.4 82.4 83.6 88.2 87.6 91.4

Label sharing - - 82.5 83.4 88.0 88.0 92.2

Complete superpixel model - - 81.3 82.3 87.9 87.8 92.6

Table 2 Segmentation accuracy on iCoseg. The results for [71,34] are taken from table 1 in [71]. Columns 3-6 are stripped down versions of our

model. The last column is our complete model (see main text).

image only class only image+class image+transfer image+transfer

IoU ≈GrabCut [52] ≈Batra [7] ≈Kuettel [37] +class

Pixel model 57.3 61.7 62.6 64.5 72.0

Label sharing 57.8 61.4 62.6 64.8 72.7

Complete superpixel model 55.7 60.2 62.5 64.4 73.2

Table 3 Performance of segmentation models on iCoseg as measured by IoU. Columns 1-4 are stripped down versions of our model. The last

column is our complete model (see main text).

Fig. 11 From the top left to the bottom right image, the intersection

over union performance (21%, 60%, 82%, 91%, resp.) better represents

the quality of the segmentation than accuracy (95%, 94%, 97%, 100%,

resp.). This is particularly true for small objects.

To quantitatively evaluate our approach, we obtained seg-

mentation annotations via Amazon Mechanical Turk for 10

random images from 446 classes, for a total of 4460 im-

ages. We requested multiple human annotators per image.

Our preliminary results in [38] were based directly on these

segmentations, which included a small amount of noise. Af-

ter a manual clean up, 184 images that had no good qual-

ity annotations were discarded.3 We released the remaining

6225 segmentations for 4276 images of 445 classes online at

http://www.vision.ee.ethz.ch/˜mguillau/imagenet.

html?calvin. These annotations enable us to reliably es-

timate the segmentation performance of our method on a

wide range of classes. Additionally, we have held out a small

set of 90 images to estimate α, as discussed in sec. 5.4.

In the remainder of this section, we evaluate the different

components of our model, and provide in-depth analysis of

the resulting segmentations.

3 Therefore, the numbers reported in [38] are not directly compara-

ble with the ones in this article.

Spatial support for transfer. An important element of our

approach is on which spatial support to perform segmen-

tation transfer (sec. 3). Hence, we evaluate the quality of

the transferred masks while varying the kind of spatial sup-

port: (1) Full image: transfer masks based on global sim-

ilarity at the image level. The mask of the target image is

the weighted sum of the masks of its 10 nearest neighbours

(sec. 3.3). (2) Random windows: use 100 uniformly sam-

pled windows in the source and target images to perform

window-level mask transfer. (3) Objectness windows: use

100 objectness windows, sampled following [3]. This corre-

sponds to our method in sec. 3.

We present our quantitative evaluation of the transfer

masks in table 4 for accuracy and in table 5 for IoU. We

assess the quality of the transfer masks in two ways: (1) di-

rectly, by thresholding them at 0.5 (i.e. keep as foreground

all pixels with probability > 0.5, column ‘Thresholded mask’);

(2) refine the segmentation by using the transfer mask to

guide our GrabCut-like segmentation model described in sec. 4.1

(column ‘Mask + GrabCut’). We observe that using local

support, either random windows or objectness windows, is

always beneficial over the use of global support (full image).

Indeed, using random windows outperforms using the full

image both when thresholding the mask and with GrabCut.

The difference is as big as +11% (with GrabCut and un-

der IoU). Interestingly, objectness windows bring a further

improvement over random windows in all settings, with as

much as +13% IoU with GrabCut. This confirms the obser-

vations in [37] that transferring masks benefits from object-

centered spatial support. GrabCut improves segmentation

over thresholding for all spatial supports and performance

measures (+10% IoU for our method using objectness win-

dows).

Segmentation models. We compare here the segmentation

performance of various baselines and variants of our sys-

tem on ImageNet: (a) GrabCut [52] image center: run in-
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Thresholded mask Mask + GrabCut

Full image 72.7 75.8

Random windows 72.1 78.5

Objectness windows 79.2 82.5

Table 4 Mean accuracy for different spatial supports for segmentation

transfer on ImageNet.

Thresholded mask Mask + GrabCut

Full image 21.4 29.0

Random windows 23.9 40.0

Objectness windows 42.1 52.0

Table 5 Mean IoU for different spatial supports for segmentation

transfer on ImageNet..

Accuracy IoU

GrabCut image center 73.4 24.0

Pixel image+transfer [37] 82.5 52.0

Superpixel image+transfer 82.2 52.7

Superpixel image+propagation 84.1 57.0

Superpixel image+propagation+class 84.4 57.3

Table 6 Mean accuracy and mean IoU on ImageNet.

dividually on every image, using a centered window for ini-

tialization (as in “image only” in iCoseg experiments); (b)

Pixel image+transfer: use the objectness transfer mask to

guide GrabCut. This is the best performing method from

the previous paragraph, and corresponds to our segmenta-

tion transfer scheme [37] (with the modifications detailed

in sec. 3), using VOC10 as a fixed source pool; (c) Su-

perpixel image+transfer: the superpixel version of (b), us-

ing the accelerated models of sec. 4.2; (d) Superpixel im-

age+propagation: now including our propagation scheme,

where the segmentations output by a stage are added to the

source pool of the next (sec. 1.1); this also uses ground-truth

bounding-boxes at stage 1; (e) Superpixel image+propagation+class:

now including also class appearance models (sec. 5.1) and

importing appearance models from related classes segmented

in previous stages (sec. 5.3)). This is our full pipeline.

As reported in table 6, the performance of GrabCut ini-

tialized from the image center is 73.4% accuracy and 24.0%

IoU. When using VOC10 as a fixed source pool for segmen-

tation transfer to guide GrabCut, the performance greatly

increases to 82.5% accuracy / 52.0% IoU. Accelerated su-

perpixel models obtain very similar performance: -0.3% ac-

curacy, +0.7% IoU. This confirms that these faster models

come at no significant loss in performance. Propagating the

segmentation masks between stages further increases perfor-

mance to 84.1% accuracy and 57.0% IoU. It is interesting to

analyse the effects of propagation on each stage individually

(table 7). In stage 1, the large performance improvement be-

tween the first two rows is due to using the segmentation

process to guide the ground-truth bounding-box. Stages 2-

5 are interesting because their source pools contain many

(imperfect) segmentations produced by earlier stages rather

than only the ground-truth masks S0 from VOC10. This en-

ables to test the effect of the segmentation propagation idea,

compared to segmentation transfer from the fixed S0 pool.

As the table shows, propagation improves IoU for all lev-

els by about 1.8%.4 This demonstrates the value of recur-

sively employing images segmented before to help segment-

ing new images. Finally, we note how sharing appearance

models between images of a class and importing models

from related classes brings only a minor additional benefit

of +0.3% IoU on average (third row of table 7).

Finally, we notice that the visual variability in ImageNet

classes is huge. As a consequence, the weights α learned

on ImageNet are quite different from the ones learned on

iCoseg. Typically, class models in iCoseg perform very well

and have high weight. On the contrary, class and related

models have lower weights in ImageNet. This stresses the

value of learning these weights automatically rather than

setting them manually. Comparing the performance of our

full method on iCoseg (92.6% accuracy and 73.2% IoU) and

ImageNet 84.4% / 57.3%, we see that iCoseg is an easier

dataset, and ImageNet provides a much more challenging

setting.

Propagation statistics. A central element of our propaga-

tion scheme is that the source set for mask transfer contin-

uously grows over stages (sec. 1.1). This is in contrast to

using only PASCAL VOC10 as a fixed source set through-

out. If the propagation idea works, then the fraction of re-

trieved window neighbours that come from ImageNet itself

should gradually increase as the stages progress (sec. 3.1).

The fraction of VOC10 neighbours should instead decrease.

We investigate this phenomenon here.

Naturally, the first level uses 100% VOC10 neighbours,

as there no ImageNet images have been segmented yet. At

stage 2, 58% of the neighbours are from VOC10, the others

propagate from level 1. Interestingly, at stage 2, the VOC10

data still makes up for 81% of the source set. The fraction

of neighbours that are actually from VOC10 is below this

expected value, which demonstrates that the propagation is

already happening at this stage. Moreover, as propagation

unfolds over levels 3 to 5, the fraction of neighbours that

come from VOC10 shrinks further. At level 3, 26% VOC10

neighbours are used, whereas the source set is composed

4 This differs from the conclusion we reached in our earlier paper

[38]. The output segmentations were affected by a bug in our GrabCut

implementation, resulting in many erroneous segmentations. These er-

rors were amplified through propagation, leading to the observation

that performance decreased with stages. On average over all images,

in [38], we reported 77.1% accuracy. When evaluated using the refined

ground-truth, those segmentations yield 80.0% accuracy and 37.3%

IoU, clearly below the correct result we report in this paper (84.4%

accuracy and 57.3% IoU).
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IoU Stage 1 Stage 2 Stage 3 Stage 4 Stage 5 Overall

Superpixel image+transfer 50.6 50.3 54.4 54.6 60.9 52.7

Superpixel image+propagation 63.3 52.1 56.3 56.0 62.6 57.0

Superpixel image+propagation+class 63.6 52.7 56.6 56.2 62.4 57.3

Table 7 Breakdown of performance per stage, measured in IoU, for “Superpixel image+transfer”, “Superpixel image+propagation”, “Superpixel

image+propagation+class”.

at 39% by VOC10 data. At level 4, it is 14% versus 22%,

and at level 5, 10% versus 17%. As the VOC10 neighbours

are always below the proportion observed in the source set,

we can conclude that our scheme to choose related classes

for transfer in the propagation scheme is appropriate, as the

source set of a stage truly contains windows that are more

visually similar to the target images in that stage than the

default source VOC10.

7 Conclusion

We have presented segmentation propagation: a computa-

tionally efficient technique to recursively segment images in

ImageNet. It successfully combines ideas from segmenta-

tion transfer, cosegmentation, structured output learning, ef-

ficient binary codes, and GrabCut. The technique was shown

to segment 500k images over 577 ImageNet classes with

good accuracy. We have shown how accuracy degrades grace-

fully as the propagation waves moves from easier images

with bounding-box annotations, to unannotated images in

the same classes, to images in completely unannotated classes.

We have also demonstrated the value of the various compo-

nents of our method on the smaller iCoseg dataset [7] for

co-segmentation, where it delivers state-of-the-art results.

In future work, we plan plan to exploit the fact that classes

in ImageNet are very diverse. Some have more images than

others and some have much larger variations in appearance

than others. This suggests that we adapt the segmentation

technique to each target class, and propagate segmentations

based on visual similarity between classes, rather than only

based on semantic similarity. To improve robustness we plan

to automatically detect bad segmentations in early stages,

to avoid propagating errors to later stages. This could be

achieved, e.g. by analysing the entropy of the transfer mask

M , as a measure of the confidence of the method (fig. 2d).
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Fig. 12 Example segmentation output by our full segmentation propagation scheme. The rightmost column shows some failure cases.
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Fig. 13 More example segmentation output by our full segmentation propagation scheme.


