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Fibrinogen production is enhanced in an
in-vitro model of non-alcoholic fatty liver
disease: an isolated risk factor for
cardiovascular events?

Emily N. W. Yeung1*†, Philipp Treskes1†, Sarah F. Martin2, Jonathan R. Manning3, Donald R. Dunbar3,
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Abstract

Background: Cardiovascular disease (CVD) remains the major cause of excess mortality in patients with non-
alcoholic fatty liver disease (NAFLD). The aim of this study was to investigate the individual contribution of NAFLD
to CVD risk factors in the absence of pathogenic influences from other comorbidities often found in NAFLD
patients, by using an established in-vitro model of hepatic steatosis.

Methods: Histopathological events in non-alcoholic fatty liver disease were recapitulated by focused metabolic
nutrient overload of hepatoblastoma C3A cells, using oleate-treated-cells and untreated controls for comparison.
Microarray and proteomic data from cell culture experiments were integrated into a custom-built systems biology
database and proteogenomics analysis performed. Candidate genes with significant dysregulation and concomitant
changes in protein abundance were identified and STRING association and enrichment analysis performed to
identify putative pathogenic pathways.

Results: The search strategy yielded 3 candidate genes that were specifically and significantly up-regulated in
nutrient-overloaded cells compared to untreated controls: fibrinogen alpha chain (2.2 fold), fibrinogen beta
chain (2.3 fold) and fibrinogen gamma chain (2.1 fold) (all rank products pfp <0.05). Fibrinogen alpha and
gamma chain also demonstrated significant concomitant increases in protein abundance (3.8-fold and 2.0-fold,
respectively, p <0.05).

Conclusions: In-vitro modelling of NAFLD and reactive oxygen species formation in nutrient overloaded C3A
cells, in the absence of pathogenic influences from other comorbidities, suggests that NAFLD is an isolated
determinant of CVD. Nutrient overload-induced up-regulation of all three fibrinogen component subunits of the
coagulation cascade provides a possible mechanism to explain the excess CVD mortality observed in NAFLD
patients.

Keywords: Systems biology, Proteomics, Microarray, STRING, Non-alcoholic fatty liver disease, Cardiovascular
disease, Metabolic syndrome, C3A cells
* Correspondence: N.W.Yeung@sms.ed.ac.uk
†Equal contributors
1Hepatology Laboratory, Division of Health Sciences, University of Edinburgh,
Chancellor’s Building, 49 Little France Crescent, Edinburgh EH16 4SB, UK
Full list of author information is available at the end of the article

© 2015 Yeung et al. This is an Open Access article distributed under the terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://
creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

http://crossmark.crossref.org/dialog/?doi=10.1186/s12944-015-0069-3&domain=pdf
mailto:N.W.Yeung@sms.ed.ac.uk
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/


Yeung et al. Lipids in Health and Disease  (2015) 14:86 Page 2 of 8
Background
Non-Alcoholic Fatty Liver Disease (NAFLD) has been trad-
itionally regarded as the consequence of a high-fat western
diet and sedentary lifestyle [1, 2]. Its increasing worldwide
prevalence, however, suggests that NAFLD is more than a
lifestyle disease. Studies have identified susceptibility genes
and genetic polymorphisms that associate with develop-
ment and severity of NAFLD [3]. This may explain the dif-
ferences in demographic data observed in Asia compared
to elsewhere in the world, including a younger age distribu-
tion and a higher proportion of patients who are judged
lean by Body Mass Index, but show an altered metabolic
profile associated with obesity [4, 5].
Cardiovascular disease (CVD) remains one of the

major causes of excess mortality in NAFLD patients
[6–8]. The term “Metabolic Syndrome” (MetS) describes
a clinical cluster of diseases that tend to aggregate in in-
dividuals over time, including central obesity, hyperten-
sion, impaired fasting glucose and dyslipidemia [9–11].
Together these components create a pro-atherogenic
environment that is postulated to accelerate atheroscler-
osis and increase the risk of cardiovascular diseases.
Whilst the definition of MetS does not presently include
NAFLD, the association of atherosclerotic markers, such
as carotid artery wall thickness, with NAFLD has been re-
ported previously [12, 13]. Further attempts to understand
the possible causative role of NAFLD in CVD have used
statistical models to exclude atherogenic contributions
from traditional CVD risk factors and other components
of MetS [14, 15]. However, to date, there are no experi-
mental genomic or proteomic studies that examine specif-
ically whether NAFLD is an isolated risk factor for CVD in
absence of other components of MetS, or if these condi-
tions have a common cause.
Previously, we developed an in vitro model of cellular

steatosis by exposing hepatoblastoma C3A cells to nutri-
ent overload (treatment with lactate, pyruvate, octanoate
and ammonia), which reproduces the characteristic
pathophysiological changes found in NAFLD, including
intracellular triglyceride accumulation and reactive oxygen
species (ROS) formation [16]. This model allows the
opportunity to assess the individual contribution of
NAFLD to CVD risk factors in the absence of patho-
genic influences from other comorbidities often found
in NAFLD patients.
In the present study, changes in hepatoblastoma C3A

gene transcription and protein expression in response to
cellular steatosis and ROS formation induced specifically
by nutrient overload were assembled into a custom-built
data portal allowing evaluation of integrated transcrip-
tomic and proteomic data to identify gene products
potentially involved in pathogenic pathways. Candidates
showing consistently greater than two fold alterations in
specific nutrient overload-mediated gene transcription and
protein expression were subjected to further analysis by
the Search Tool for the Retrieval of Interacting Genes/
Proteins (STRING) v9.1 database (http://string-db.org)
and enrichment analysis to identify predicted functional
partners and pathogenic pathways contributing poten-
tially to a pro-atherogenic environment.

Methods
Cell culture, treatment and sample collection
Hepatoblastoma C3A cells (ATCC® CRL-10741TM, LGC
Standards, Teddington, UK) were cultured as previously
described [16]. Briefly, cell cultures were treated either
with the combination of lactate, pyruvate, octanoate and
ammonia (LPON), oleate (OLE), or untreated controls.
Both octanoate and oleate readily diffuse into mitochon-
dria to promote efficient ß-oxidation and lipid accumu-
lation, but while OLE treatment causes simple cellular
steatosis, LPON treatment induces both ROS formation
and mitochondrial dysfunction, in addition to steatosis,
typically seen in NAFLD [16]. C3A cells were treated in
three separate experiments either with LPON, OLE, or
untreated controls and processed for transcriptomic or
proteomic analysis as described in the following
sections.

Sample preparation and transcriptomics
Cells were washed twice in cold PBS and transferred to
cold RNALater® (Life Technologies, Paisley, UK) for over-
night incubation at 4 °C. Afterwards, RNA was isolated
with an RNAqueous®-4PCR kit (Life Technologies) and
subsequently amplified and biotinylated with an Illumina®
TotalPrep RNA Amplification kit (Life Technologies), fol-
lowing the manufacturer’s instructions. RNA expression
was measured by hybridization to the Illumina® Whole Hu-
man Genome BeadChip H12 Microarray (Illumina United
Kingdom, Essex, UK). Data were extracted through the
GCOS software (Affymetrix UK Ltd., High Wycombe,
UK). CELfiles were used for additional data processing and
imported into Bioconductor [17] to examine differences
between LPON- and OLE-treated groups and untreated
controls. Data were normalized by robust multi-array aver-
age (RMA) in the Oligo module (http://www.bioconduct
or.org/packages/2.0/bioc/html/oligo.html). Gene ontology
and Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathway enrichment analysis was performed with the
DAVID tool [18, 19] on genes that were significantly differ-
entially expressed. Data was statistically analyzed with the
bioconductor Limma package [20].

Sample preparation and proteomics
Protein extraction was performed as previously de-
scribed [21]. Briefly, samples were denatured in 8 M
urea, reduced by incubating with dithiothreithol prior to
cysteine alkylation with iodoacetamide and overnight

http://string-db.org
http://www.bioconductor.org/packages/2.0/bioc/html/oligo.html
http://www.bioconductor.org/packages/2.0/bioc/html/oligo.html
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digestion with 8 μg trypsin. Protein concentrations were
estimated by Bradford protein assay (Thermo Scientific,
Rockford, IL, USA) on a 10 μl sample, diluted to 2 M
Urea and quantified against a BSA standard curve. 4 μg
peptide samples were acidified (1 % formic acid), centri-
fuged and cleaned using Stagetips [22], dried by Speed-
Vac, and stored at −20 °C.
2 μg peptide samples were analysed in a randomised se-

quence by capillary-HPLC- MSMS as described previously
[23], using an on-line system consisting of a micro-pump
(1200 binary HPLC system, Agilent, UK) coupled to a hy-
brid LTQ-Orbitrap XL instrument (Thermo-Fisher, Leices-
tershire, UK). Acetonitrile and water were HPLC quality
(Fisher). Formic acid was Suprapure 98-100 % (Merck,
Darmstadt, Germany) and trifluoroacetic acid was 99 %
purity sequencing grade. LC-MSMS label-free quantifica-
tion was performed using Progenesis 4.0 (Nonlinear Dy-
namics, Newcastle upon Tyne, UK) as described previously
[24]. Multicharged (2+,3+,4+) ion intensities were ex-
tracted from LC-MS files and MSMSdata were searched
using Mascot Version 2.4 (Matrix Science Ltd, London,
UK) against the Homo Sapiens subset of the NCBI pro-
tein database (12/01/2011; 34,281 sequences) using a
maximum missed-cut value of 2, variable oxidation (M),
N-terminal protein acetylation and fixed carbamido-
methylation (C); precursor mass tolerance was 7 ppm
and MSMS tolerance 0.4 Da. The significance threshold
(p) was < 0.05 (MudPIT scoring). A minimum peptide cut
off score of 20 was set, corresponding to <3 % global false
discovery rate (FDR) using a decoy database search. Pro-
teins identified and quantified with two or more peptide
sequences were retained. A two-tailed t-test for independ-
ent samples or biological triplicates was performed on arc-
sinh transformed, normally distributed intensity data.

Data mining and candidate gene identification
Changes in hepatoblastoma C3A gene transcription and
protein expression in response to cellular steatosis in-
duced by nutrient overload, compared with OLE-
treatment and untreated controls, were analysed in a
custom built bioinformatics data mining tool established
by the BHF Centre of Research Excellence Bioinformat-
ics Team at the Queen’s Medical Research Institute at
the University of Edinburgh. This allows evaluation of
integrated transcriptomic and proteomic data, by match-
ing differential gene transcription with altered protein
abundance, to identify gene products potentially in-
volved in pathogenic pathways. Genes of interest were
analysed in a stepwise approach outlined in Fig. 1 to
identify genes showing a consistently greater than 2.0
fold increase in both gene transcription and protein
abundance. To focus on the specific effects of steatosis
with ROS formation and mitochondrial dysfunction
and to eliminate candidates up-regulated by simple



Fig. 1 Strategy for data mining and candidate gene identification.
Step 1: C3A cell cultures treated with LPON, OLE or untreated controls,
as described under ‘Methods’, were subject to transcriptomic or
proteomic analysis and data screened for candidate genes specifically
up-regulated by nutrient overload using the screening criteria outlined
in Box 1. Step 2: Predicted functional partners of primary candidates
showing >2.0 fold nutrient overload-induced increases in gene
transcripts and protein abundance were identified by STRING network
associations. Step 3: Primary gene candidates, identified in step 1, and
their predicted functional partners, identified in step 2, were grouped
by enrichment analysis according to their functional annotations to
identify representation of common biological processes among the
candidate genes. Further details of these bioinformatics procedures are
described under ‘Methods’.
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steatosis, genes showing similar > 2.0 fold increases in
expression in both OLE- and LPON-treated cells com-
pared to untreated controls were excluded from the
analysis.
STRING Network Associations
Predicted functional partners of candidate genes in-
duced specifically in response to nutrient overload were
identified using the Search Tool for the Retrieval of
Interacting Genes/Proteins (STRING) v9.1 database
(http://string-db.org). Only interactions in Homo
sapiens with a probabilistic confidence score ≥0.900,
corresponding to a "highest-confidence" network, were
considered in this study. STRING PFPs were cross-
validated against the original transcriptomic and
proteomic data for differential expression and protein
abundance, using similar criteria (>2.0 fold increase in
LPON-treated cells, excluding PFPs with >2.0 fold in-
crease in OLE-treated cells: see Fig. 1) in order to iden-
tify candidate genes that had otherwise been excluded
by the more stringent primary search strategy.
Enrichment analysis
To identify dysregulated pathways and biological pro-
cesses contributing potentially to a pathogenic phenotype,
Table 1 Microarray data for candidate genes specifically up-regulate

Entrez
gene
ID

Accession Gene
Symbol

Description Control LPON

Max
Mean
value

Max
Mean
value

Direct
chang
contro

2222 FDFT farnesyl-
diphosphate
farnesyltransferase
1

1055.01 2501.65 ↑

2243 NP_000499 FGA Fibrinogen alpha
chain

3686.45 7280.47 ↑

FGA and FDFT were identified as candidate genes showing > 2.0 fold specific up-reg
treated cells compared to untreated controls.
LPON Lactate, pyruvate, octanoate and ammonia, FC fold change, RP pfp Rank prod
chain, FDFT Farnesyl-diphosphate farnesyltransferase 1.
candidate genes differentially expressed in response to
nutrient overload and their PFPs were grouped according
to their functional annotations with data from the Gene
Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) database via the Gene Ontology
enRIchment anaLysis and visuaLizAtion (GOrilla) tool
(http://cbl-gorilla.cs.technion.ac.il) [25, 26]. Only dysregu-
lations with p < 0.05 were considered in this study, with
p-values being corrected for multiple testing using the
Benjamini and Hochberg method [27]. Enrichment was
based on gene ranking, which was indicated by the
STRING analysis confidence score.
Results
Bioinformatics, using the screening criteria defined in
step 1 of Fig. 1, identified 2 genes that showed a >2-fold
increase in both gene transcription and protein abun-
dance specifically in response to nutrient overload,
namely fibrinogen alpha chain and farnesyl-diphosphate
farnesyltransferase (Tables 1 and 2). These were selected
for STRING association and enrichment analysis to
identify predicted functional partners and pathogenic
pathways as described below. Several other genes
demonstrated a >2-fold increase in specific nutrient
overload- induced gene transcription, but lacked corrob-
orative proteomics data and consequently were not used
for primary STRING association and enrichment ana-
lysis. No examples were found of any gene showing
a >2-fold reduction in gene transcription and protein
abundance, supporting either unchanged or increased
gene expression specifically in response to nutrient
overload.
Fibrinogen alpha chain (FGA)
FGA gene expression was significantly higher in LPON-
treated cells compared to untreated controls by 2.3 fold
(rank products pfp = 0.0002). The FGA protein product
was also more abundant in LPON-treated cells (3.8 fold
change, p = 0.009).
d by nutrient overload

Control-LPON OLE Control-OLE

ion of
e wrt
l

Maximum
FC

RP
pfp

Max
Mean
value

Direction of
change wrt
control

Max
Mean
value

RP
pfp

2.37121 0 1558.93 ↑ 1.47764 0.0194

2.24956 0.0002 6716.9 ↑ 1.97551 0.0009

ulation of gene expression and protein abundance (see Table 2) in LPON-

ucts estimated percentage of false positive predictions; FGA Fibrinogen alpha

http://string-db.org
http://cbl-gorilla.cs.technion.ac.il


Table 2 Proteomics data for candidate genes specifically up-regulated by nutrient overload

Gene Unique Ratio

Accession Symbol Peptides Description p value LPON/ctrl

NP_004453 FDFT 3 Farnesyl-diphosphate farnesyltransferase 1 0.015711376 3.22

NP_000499 FGA 1 Fibrinogen alpha chain 0.00913822 3.81

FGA and FDFT were identified as candidate genes showing > 2.0 fold specific up-regulation of gene expression (see Table 1) and protein abundance in LPON-
treated cells compared to untreated controls.
For abbreviations: see Table 1.
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STRING network analysis (step 2, Fig. 1) identified 32
STRING PFPs of FGA in Homo sapiens with a probabilis-
tic confidence score ≥ 0.900 (Supplementary material;
Additional File 1). Expression of four out of 32 PFPs were
up-regulated by >2 fold in LPON-treated cells compared
to untreated controls (rank products pfp <0.05). This in-
cluded the remaining two fibrinogen beta (FGB) and fi-
brinogen gamma (FGG) chains, fibrinogen-like 1 (FGL1),
and cystatin C (CST3) (Table 3). These 4 genes were not
identified in the primary analytical strategy either because
no proteomics data was available (FGB, FLG1, CST3;
Table 4) or the differential protein abundance did not
quite reach the primary fold change search criteria and/or
statistical significance (FGG, fold change 1.97462, p = 0.07,
Table 4).Of these up-regulated PFPs, FGL1 and CST3
were subsequently excluded from further analysis, as
transcription of both genes was also up-regulated by
more than 2-fold in OLE-treated cells compared to un-
treated controls (Table 3). In contrast, FGG and FGB,
along with FGA identified in the primary screen, were
up-regulated to a much lesser extent in OLE-treated
compared to LPON-treated cells (all less than 2 fold-
change, see Tables 1 and 4). In total, three genes of the
coagulant cascade (FGA, FGG, and FGB) met the final
inclusion criteria as being specifically up-regulated in
response to nutrient overload.
Enrichment analysis of FGA and its STRING-predicted

functional partners by gene ontology revealed platelet
Table 3 Microarray data for predicted functional partners of FGA up

Entrez
gene
ID

Accession Gene
symbol

Description Control LPON

Maximum
mean
value

Maximum
mean
value

Dire
of c
wrt
con

2266 NP_000500 FGG Fibrinogen
gamma
chain

4612.12 1227.85 ↑

2244 NP_001171670 FGB Fibrinogen
beta chain

644.648 1505.62 ↑

2267 NP_004458 FGL1 Fibrinogen-
like 1

400.579 1086.52 ↑

1471 NP_000090 CST3 Cystatin C 2153.68 5232.34 ↑

>2 fold up-regulation in gene expression of FGG, FGB, FGL1 and CST3 were observe
For abbreviations: see Table 1.
activation, coagulation, and hemostasis as significantly
over-represented biological processes (Table 5 ).

Farnesyl-diphosphate farnesyltransferase 1 (FDFT1)
Gene expression of FDFT1, which catalyses the first
committed step in sterol synthesis on the pathway to
cholesterol, was up-regulated by 2.4 fold (rank products
pfp = 0) in LPON-treated cells compared to untreated
controls. A concomitant increase in protein abundance
by 3.2 fold (p = 0.02) in LPON-treated cells was also
recorded. 10 STRING PFPs of FDFT1 in Homo sapiens
with a probabilistic confidence score ≥0.900 were identi-
fied (Supplementary material; Additional File 2); how-
ever none of these genes satisfied the criteria of >2.0
fold change in gene expression (Rank products pfp
<0.05) when comparing LPON-treated cells to untreated
controls.

Discussion
CVD remains a major cause of excess mortality in NAFLD
patients [6–8]. In the present study, we sought to clarify
the possible causative role of NAFLD in CVD by identify-
ing gene and protein dysregulation using an in vivo model
of cellular steatosis. Use of an in vitro model is particularly
relevant as it enables experimental strategies to be de-
signed to exclude pathogenic influences from conditions,
such as diabetes mellitus and hypertension, which com-
monly co-exist with NAFLD [28].
-regulated by nutrient overload

Control-LPON OLE Control-OLE

ction
hange

trol

Maximum
FC

RP
pfp

Maximum
mean
value

Direction
of change
wrt
control

Maximum
FC

RP
pfp

2.10864 0.003 7458.56 ↑ 1.61716 0

2.33556 0.0018 1239.23 ↑ 1.92234 0.02

2.43005 0.003 884.484 ↑ 2.20802 0.0178

2.42948 0 4730.95 ↑ 2.19668 0

d in LPON-treated cells compared to untreated controls.



Table 4 Proteomics data for predicted functional partners of
FGA up-regulated by nutrient overload

Gene Unique Ratio

Accession Symbol Peptides Description P value LPON/
ctrl

NP_000500 FGG 3 Fibrinogen
gamma chain

0.072855965 1.97

For abbreviations: see Table 1.

Table 5 Enrichment analysis based on the number of predicted
functional partners of FGA indicated by STRING analysis

GO term Description P-value FDR
q-value

Enrichment
(N, B, n, b)

GO:0030168 Platelet
activation

1.43E-05 1.96E-02 3.00
(33,11,8,8)

GO:0051592 Response to
calcium ion

1.83E-04 1.26E-01 11.00
(33,3,3,3)

GO:0050817 Coagulation 3.02E-04 1.38E-01 1.55
(33,16,20,15)

GO:0007599 Chemostasis 3.02E-04 1.04E-01 1.55
(33,16,20,15)

GO:0007596 Blood
coagulation

3.02E-04 8.30E-02 1.55
(33,16,20,15)

GO:0001775 Cell
activation

4.88E-04 1.12E-01 2.36
(33,14,8,8)

GO:0006887 Exocytosis 5.88E-04 1.15E-01 2.89
(33,10,8,7)

GO:0002576 Platelet
degranulation

5.88E-04 1.01E-01 2.89
(33,10,8,7)

GO:0032940 Secretion by cell 5.88E-04 8.96E-02 2.89
(33,10,8,7)

Enrichment was calculated as (b/n) / (B/N), where N is the total number of
partners including FGA; B is the total number of genes associated with a
specific GO term; n is the number of genes in the STRING partner list, as
ranked by confidence score or in the target set when appropriate b is the
number of genes in the intersection.
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Fibrinogen is produced in the liver and is made up of
alpha, beta, and gamma chains in a 1:1:1 ratio. We found
similar up-regulation in gene expression of all three fi-
brinogen subunits (see Tables 1 and 3), which provides a
potential mechanism to explain the excess CVD mortal-
ity observed in NAFLD patients. In the common path-
way of the coagulation cascade, fibrinogen (factor I) is a
precursor of fibrin (Ia), which contributes to the
subsequent formation of a stable fibrin clot (see Fig. 2).
An increased plasma fibrinogen level is therefore pro-
thrombotic and its potential clinical application as a sur-
rogate biomarker for predicting future CVD events is
currently being explored [29, 30]. Two large-scale stud-
ies, which together included 400,880 patients, concluded
that fibrinogen is a reliable predictor of cardiovascular
mortality [31, 32]. Such a correlation persists even after
adjustment for other established risk factors of CVD
known to associate with fibrinogen levels, including total
Fig. 2 Common pathway of the coagulation cascade. Common pathway of the coagulation cascade, showing how fibrinogen (factor I) as a
precursor of fibrin (Ia), contributes to the subsequent formation of a stable fibrin clot.
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cholesterol and blood pressure. This suggests that there
is an independent association between plasma fibrinogen
levels and CVD. Therefore NAFLD, through up-
regulation of fibrinogen coagulation factor, is an inde-
pendent risk factor of CVD, potentially by enhancing
clot strength [33]. This is logical, because liver is the site
of synthesis of most coagulation factors, and therefore
pathologies of the liver would most probably contribute
to systemic cardiometabolic dysregulation. Indeed, ele-
vated plasma fibrinogen is frequently reported as an
additional and independent cardiovascular risk factor in
a clinical context of MetS, with a significant association
with the severity of hyperinsulinaemia [34, 35]. To our
knowledge, our in vitro approach is unique in providing
a controlled environment for isolating events that occur
specifically in the hepatocytes, independent of the influ-
ence exerted by other disease variables forming the
clinical cluster of MetS. This allows us to identify
hepatocyte dysfunction as the pathophysiological culprit
of increased cardiovascular risk observed in these
individuals.

Difference between OLE and LPON-treated cells
Up-regulation in the genetic expressions of all 3 fibrino-
gen chains was consistently more dramatic in LPON-
treated compared OLE-treated cells, the latter of which
models simple cellular steatosis. In contrast, LPON
treatment additionally induced ROS formation and
mitochondrial dysfunction [16] Thus, we hypothesize
that dysregulation of gene expression in LPON-treated
cells was made more dramatic by oxidative stress due to
free radical formation.
Previous cross-sectional studies have demonstrated in-

creased blood fibrinogen concentrations in response to
mild pulmonary inflammation in healthy humans caused
by diesel exhaust particulates, a major constituent of city
air pollution [36, 37]. In a previous double-blinded ran-
domised crossover study, diesel exhaust inhalation has
also been shown to mediate excess CVD risk caused by
air pollution by increasing thrombus formation following
platelet activation secondary to ROS formation and
oxidative stress [38]. This supports the notion that
multiple mechanisms intersecting at the level of ROS
formation may contribute to excess CVD risk. However,
while ROS-formation in C3A cells after exposure to
nanoparticles has been confirmed in our laboratory, such
observations should be taken with caution as the mech-
anism of free radical generation may be different in
particulate-induced and steatosis-induced conditions
[39]. Thus, while ROS formation observed after inhal-
ation of diesel exhaust arises from the alteration of redox
potential by particulates and inflammatory cells [40], in
our model of NAFLD, ROS are formed endogenously
due to nutrient excess [16].
In conclusion, this study presents evidence supporting
the hypothesis of NAFLD being an isolated determinant
of CVD, as use of a proven in vitro model of NAFLD
eliminates the confounding influences of other comor-
bidities found in NAFLD patients. This supports the no-
tion that the liver is a source of pro-coagulant molecules
which contributes to the risk of thrombosis and en-
hanced CVD risk in the NAFLD population. However, in
using an in vitro model examines only one aspect of the
concomitant pathophysiological mechanisms operating
in vivo. Other factors operating in concert may play sig-
nificant roles in modifying the systemic response to the
observed cellular effects, for example the role of visceral
fat as a systemic pro-inflammatory signal in CVD risk in
NAFLD patients. Further work is required to elucidate
the pathophysiological mechanisms explaining the asso-
ciation between free radical-induced oxidative stress and
CVD in a NAFLD setting. Clinical evidence could be
sought by measuring the plasma levels of FGA, FGB and
FGG in NAFLD patients, to investigate potential rela-
tionships between plasma fibrinogen levels and severity
of CVD determined by conventional atherosclerotic
markers, such as carotid artery wall thickness. Indeed,
verification of FGA, FGB and FGG as early plasma pre-
dictors of CVD development would provide a rationale
to explore the possibility of prophylactic fibrinolytic
therapy in a NAFLD context, similar to that already used
in myocardial infarction [41].
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