

THE UNIVERSITY of EDINBURGH

Edinburgh Research Explorer

Frontal Lobe Intraconnectivity

Citation for published version:

Cox, SR, Ferguson, K, Aribisala, B, MacPherson, SE, Valdes Hernandez, M, Royle, N, Maclullich, A, Starr, J, Deary, I, Wardlaw, J & Bastin, M 2014, 'Frontal Lobe Intraconnectivity: Short Range Tract Characteristics in Old Age' 20th Annual Meeting of the Organization for Human Brain Mapping, Hamburg, Germany, 8/06/14, pp. 1.

Link: Link to publication record in Edinburgh Research Explorer

Document Version: Peer reviewed version

Publisher Rights Statement:

© Cox, S. R., Ferguson, K. J., Aribisala, B., MacPherson, S. E., Hernandez Valdez, M., Royle, N. A., ... Bastin, M. (2014). Frontal Lobe Intraconnectivity: Short Range Tract Characteristics in Old Age. 1. Poster session presented at 20th Annual Meeting of the Organization for Human Brain Mapping, Hamburg, Germany.

General rights

Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy

The University of Édinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.

Frontal Lobe Intraconnectivity: Short-range tract characteristics in old age

S.R. Cox^{1,2,3*}, B.S. Aribisala^{1,2,4,5*}, K.J. Ferguson^{2,6}, S.E. MacPherson^{2,3}, S. Muñoz Maniega^{1,2,5}, M.C. Valdéz Hernández^{1,2,5}, N.A.Royle^{1,2,5}, A.M.J. MacLullich^{2,7,8}, J.M. Starr^{2,8,9}, I.J. Deary^{2,3}, J.M. Wardlaw^{1,2,5}, M.E. Bastin^{1,2,5}

First Joint Authors

¹Brain Research Imaging Centre, University of Edinburgh, UK, ²Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, UK, ³Department of Psychology, University of Edinburgh, UK, ⁴Department of Computer Science, Lagos State University, Lagos, Nigeria, ⁵Scottish Imaging Network, A Platform for Scientific Excellence (SINAPSE), ⁶School of Clinical Sciences, University of Edinburgh, UK, ⁷Endocrinology Unit, University of Edinburgh, UK, ⁸Geriatric Medicine Unit, University of Edinburgh, UK, ⁹Alzheimer Scotland Dementia Research Centre, University of Edinburgh, UK.

Introduction

- The frontal lobes
 - facilitate our most complex thinking
 - contain multiple cytoarchitecturally and functionally discrete regions¹
 - regions interact via complex, short-range white matter (WM) connections
- The frontal lobes are particularly prone to age-related structural decline²
- This may partially explain age-related cognitive ability decline in the elderly³
- Most studies of the frontal lobes focus on various frontal cortical areas.

Results

- *Tracts (Fig. 1) and connectivity profiles (Fig. 2) concurred with previous anatomical reports of healthy younger participants*^{4,9}.
- Individual variation in connection probability and tract FA (Fig. 3) was high. Particularly for lateral and cingulate regions.

Fig. 1. Examples of intralobar frontal tracts.

Left Image Red: dACC and SFG

- Yet, the WM connecting these regions remains relatively under-researched⁴
- It is unclear how individual differences in the number of connections and WM integrity in the frontal lobe vary in older age.

Aims

- Measure connectivity among frontal regions in older adults.
- Obaracterise variation in the number, density and integrity of these tracts.

Methods

Subjects & MR Imaging

- Eighty eight males from Lothian Birth Cohort 1936⁵, mean age 73.7 \pm 1 yr.
- Community-dwelling, MMSE≥24, HADS<11, not on antidepressants.
- T_1W scan (resolution 1x1x1.3 mm), 1.5 T GE scanner
- DTI scan (resolution 2x2x2mm), 1.5T GE scanner

Structural Images

- Seven gyral frontal regions were manually segmented on T₁W with Analyze 8.1 using a protocol published elsewhere⁶ with excellent reproducibility (intra-rater ICCs > .96).
- Brain extraction (multi-spectral in Analyze).

Cyan: SFG and FP Orange: OFC and FP Yellow: vACC and OFC

Right Image Yellow: SFG to IFG Green: SFG to MFG Red: MFG to IFG

- T₂*-weighted and FLAIR volumes were fused using an image fusion tool
- Brain extracted using object extractor tool
- \succ Masks from this processes then applied to T₁W

Diffusion Tensor Images

- Motion & eddy current distortion corrected by registering all diffusionweighted volumes to the 1st undistorted b0 image⁷
- DT-MRI reconstruction used interpolated streamline and fractional anisotropy (FA) computation in DTI Toolkit.
- Segmented frontal lobe regions then transformed to DT-MRI space (via T_1W) using FLIRT⁷
- Site-to-site connection performed in TrackVis⁸ (<u>www.trackvis.org</u>). Tracts connecting each pair of manually-segmented frontal ROIs were isolated.
- Primary measures were:
 - Connection Probability (# tracks connecting each pair of regions / the total # frontal lobe tracks).
 - Mean FA values of the connecting tracts.

Variation in connectivity and FA were tightly related across frontal lobe tracts (β = .89, p<.000001)

Coefficient of variation (CoV) was used to index tract variation across individuals.

Fig. 4: Coefficient of variation (CoV) bar chart showing variability in the connection probability and FA values of the connecting tracts, and scatter plot with regression line (inset; top right) of the association between connection probability CoV and FA values CoV.

Conclusions

- The results show that the measures of connections involving cingulate and lateral frontal regions are highly variable in older age.
- This is a promising approach from which to examine the relationship between cognitive ability and the number, density and integrity of short range frontal lobe connections in old age.
- Longitudinal data or comparison with a younger group would help to determine if this variability is a feature of ageing, rather than pre-existing individual differences.
- More advanced tractography algorithms such as those based on probabilistic methods with 2 fibre populations per voxel will be investigated.

References

[1] Zald, D.H. (2007). Orbital versus dorsolateral prefrontal cortex: anatomical insights into content versus differentiation models of the prefrontal cortex. *Ann. of the New York Academy of Sc.*, vol. 1121, pp. 395-406. [2] Fjell, A.M. et al. (2009). High consistency of regional cortical thinning in aging across multiple samples. *Cerebral Cortex*, vol. 19, pp.2001-2012. [3] MacPherson et al. (2002). Age, executive function and social decision making: a dorsolateral prefrontal theory of cognitive aging. *Psychology and Aging*, vol.17, no.4, pp.598-609. [4] Catani M. et al. (2012), Short frontal lobe connections of the human brain, *Cortex*, vol. 48, no. 2, pp. 273-291. [5] Deary, I. J. et al. (2007). The Lothian Birth Cohort 1936: a study to examine influences on cognitive ageing from age 11 to age 70 and beyond. *BMC Geriatrics*, vol. 7, pp. 28. [6] Cox S.R. et al. (2014), A systematic review of brain frontal lobe parcellation techniques in magnetic resonance imaging, *Brain Structure and Function* vol. 219, no. 1, pp. 1-22. [7] Jenkinson, M., & Smith, S. (2001). A global optimisation method for robust affine registration of brain images. *Medical Image Analysis*, vol. 5, no. 2, pp. 143-156. [8] www.trackvis.org [9] Beckmann M. et al. (2009), Connectivity-Based Parcellation of Human Cingulate Cortex and Its Relation to Functional Specialization, *The Journal of Neuroscience*, vol. 29, no. 4, pp. 1175–1190.

Correspondence:

simon.cox@ed.ac.uk benjamin.aribisala@lasu.edu.ng 7 George Square, Edinburgh, EH8 9JZ, United Kingdom | www.ccace.e Computer Science Department, Lagos State University, Lagos, Nigeria |

www.ccace.ed.ac.uk www.bric.ed.ac.uk s, Nigeria | www.lasu.edu.ng